JP3635354B2 - Multifunctional wood-based material and its manufacturing method - Google Patents

Multifunctional wood-based material and its manufacturing method Download PDF

Info

Publication number
JP3635354B2
JP3635354B2 JP09480693A JP9480693A JP3635354B2 JP 3635354 B2 JP3635354 B2 JP 3635354B2 JP 09480693 A JP09480693 A JP 09480693A JP 9480693 A JP9480693 A JP 9480693A JP 3635354 B2 JP3635354 B2 JP 3635354B2
Authority
JP
Japan
Prior art keywords
solution
wood
performance
gel
woody material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09480693A
Other languages
Japanese (ja)
Other versions
JPH08174512A (en
Inventor
東彦 山口
徹也 岡村
Original Assignee
東彦 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東彦 山口 filed Critical 東彦 山口
Priority to JP09480693A priority Critical patent/JP3635354B2/en
Publication of JPH08174512A publication Critical patent/JPH08174512A/en
Application granted granted Critical
Publication of JP3635354B2 publication Critical patent/JP3635354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、木質系材料へ難燃性能、防腐性能、防虫性能、電磁シールド性能の一つないし数種を付与する方法および付与された材料に関する。
【0002】
【従来の技術】
従来、木質系材料への難燃化処理方法として、無機質水硬性物質を用いる物のほか、一般にリン系化合物、ホウ素系化合物、ハロゲン系化合物などが主に用いられ、これらの難燃化剤を木質系材料に注入、混合、撒布、塗布などを行い、木材質と反応(反応型)させたり単に混合(添加型)して用いる。これらの薬剤は、木質系材料を単に覆って着火時期を遅らせる役割を行うものから、例えば木材の熱分解温度よりも低い温度で発泡し木質系材料を覆い空気から遮断することによって燃焼を遅らせるタイプのものまで、多くの難燃化剤が用いられている。
【0003】
また、防腐、防虫効果のある薬剤としては、フェノール類・無機ふっ化物系防腐剤あるいはクロム・銅・ひ素化合物系防腐剤(いわゆるC・C・A)に代表されるような、動物や人間に有害と考えられる薬品を含む処理剤ほとんどである。
【0004】
上記3つの性能、すなわち難燃性能、防腐性能、防虫性能を同時に付与する
ものとして、飽水木材を先ず塩化バリウム溶液に浸せきし、その後リン酸水素アンモニウム溶液に浸せきして木質材料中にリン酸バリウムとリン酸水素バリウムを生成させる方法[西本孝一:科学朝日、1987(10)、38−43]や、ケイ酸塩を先ず木材に含浸させその後塩化バリウム、ホウ酸、ホウ砂などを反応させ木材中に不溶性のケイ酸塩化合物を生成させる報告[古野毅ら:木材学会誌、37,462−472(1991)および木材学会誌、38,448−457(1992)]、あるいはゾルーゲル法によりシリカ(SiO)ゲルを木材の細胞壁中に生成させる無機質複合化木材の報告[坂志朗ら:木材学会誌、38、1043−1049(1992)]等がある。
【0005
磁シールド性能等の電磁波に対する特性を木質系材料に付与する方法としては、例えば鉄、銅、鉛、あるいは黒鉛、木炭などの粉末や粒子あるいは板状物をそのまま、あるいは紙や木質系製品に種々の方法で含浸、塗布、混合、あるいは張り付けなどを行っているのがほとんどである。
【0006】
【発明が解決しようとする課題】
従来、木質系材料への難燃化処理方法として用いられてきた方法のうち無機質水硬性物質を用いる方法の場合、木質系材料の樹種によっては無機質水硬性物質が硬化しない場合がみられた。また、リン系化合物、ホウ素系化合物の中には水などの媒体に溶解し難く常温では数パーセントで飽和となるものもある。このため、木材に含浸する場合に高含浸量にし難く、また、例え含浸が良好に行えても耐水性に劣り含浸液の水による木質系材料からの溶脱が起こるなどの欠点がある。
【0007】
防腐、防虫効果のある薬剤には、フェノール類・無機ふっ化物系防腐剤やクロム・銅・ひ素化合物系防腐剤(いわゆるC・C・A)に代表されるように、人間を含めた動物に有害と考えられる薬品を含む処理剤がそのほとんどを占めている。
【0008】
また、難燃性能、防腐性能、防虫性能を同時に付与するものとして[従来の技術]の項に挙げた3つの方法、すなわち▲1▼木質系材料中にリン酸バリウムとリン酸水素バリウムを生成させる方法[西本孝一:科学朝日、1987(10)、38−43]、▲2▼木材中に不溶性のケイ酸塩化合物を生成させる方法[古野毅ら:木材学会誌、37,462−472(1991)および木材学会誌、38,448−457(1992)]、あるいは▲3▼シリカゲル(SiO)を木質材料中に生成させる無機質複合化木材の方法[坂志朗ら:木材学会誌、38、1043−1049(1992)]が最近提唱されているが、▲1▼の方法については木材を予め飽水状態にする必要がありさらに2回の浸せき処理が必要であること、▲2▼については木材をpH12〜13の高アルカリ性の水ガラスの溶液に浸せきしなければならず、またこの場合にも2回の浸せき処理を必要とし処理操作が煩雑であった。これらに対し▲3▼の方法はかなり本発明の方法に近い。しかし、この▲3▼方法で用いるケイ素系化合物は非常に高価であり、この方法で用いることが提案されているテトラメトキシシラン、テトラエトキシシラン、あるいはテトラプロポキシシランの価格は、本発明で用いることができるケイ酸ナトリウムの価格の7〜10倍の価格の薬剤である。さらに、本発明の方法と比較して▲3▼の方法は、含浸溶液の調製にアルコール類を用いるなど、その実用上の操作あるいは取扱いが煩雑であるという欠点を有している。
【0009
磁シールド性能を有する材料には、例えば鉄、銅、鉛、あるいは木炭、黒鉛などの粉末や粒子あるいは板状物を、ある種の接着剤や塗料に混入して塗布したり、そのまま表面に張り付けあるいは数枚の表板間に挟んで製品としたものがほとんどである。
【0010】
【課題を解決するための手段】
発明者らは、かねてより木質系材料の難燃化、あるいは防腐、防虫性能の付与に大きな興味を持ってきた。また特に近年、高度情報機器の発達にともないそれらの機器から発生する電磁波の問題、あるいはそれらの情報機器を外部からの電磁波から守る問題がクローズアップされてきたことから、オフィスや一般家庭の壁、衝立、間仕切りなどに使用できる美観に優れ、しかも難燃性でありながら電磁シールド性能を有する木質材料を開発することの必要性を感じてきた。また、本発明者(申請人)は、人類や動物の健康、ひいては地球環境の保全を考慮にいれた無害・無毒な薬剤での処理を、安価にしかも処理操作が容易であることなどを前提条件として検討を重ねてきた。
【0011】
その結果、無機元素の酸化物の塩類の溶液を陽イオン交換すると、常温で放置してもゲル化することを見いだした。さらにすでにゲル化した溶液を水などの媒体中にコロイド状に分散せしめたコロイド溶液も、その溶液のpHを変化させると大きなグルの塊になることを見いたした。そこで、無機元素の酸化物の塩類の溶液あるいはゲルをコロイド状に分散した溶液のpHを変化させた後、その溶液が液状を保った状態で木質系材料中に含浸あるいはその材料表面に塗布し、その後木質系材料中あるいはその表面で水不溶性の固化物(ゲル)とする方法が操作が簡便で安価に木質材料へ難燃性能、防腐性能、防虫性能、電磁シールド性能の一つないし数種を付与する方法であることを見いだした。
【0012】
ここで言う無機元素の酸化物の塩類とは、タングステン酸、アルミン酸、モリブデン酸、チタン酸、レニウム酸、およびケイ酸、ホウ酸、リン酸などに代表される金属類あるいは亜金属類を含む無機元素の酸化物の塩類のうちの一つあるいは数種の混合物を意味する。
【0013】
また、酸類とはホウ酸、リン酸、塩酸、硫酸、硝酸、酢酸、ギ酸、炭酸などの鉱酸類および有機酸類のうちの一つあるいは数種の混合物を意味する。
【0014】
溶液とは、水のほか、アルコール類、芳香族類を含む媒体中に溶解した溶液を意味する。
【0015】
ゲルをコロイド状に分散させた溶液とは、いわゆるコロイダルシリカとして市販されているケイ酸ゲルのコロイド溶液を含めて、上記無機元素の酸化物の塩類から調製したゲルを、ゲルの直径が木質系材料の細胞壁孔中のピットメンブランの空隙直径の約0.1μmより小さくして溶媒に分散せしめた溶液を意味する。
【0016】
pHの変化とは、無機元素の酸化物の塩類の溶液の初期pHから、pHの値で酸性側に1から12の範囲で低下させることを意味し、このpH変化の大きさの程度は、陽イオン交換の場合にも酸類の添加の場合にも適用できる。
【0017】
陽イオン交換の場合変化後のpHはpH約2程度にまで及ぶこともあり、酸類添加の場合にはpH約10.5でゲルを生成することも可能であるが、木質系材料に処理を施すことを考慮すればこれらの陽イオン交換あるいは酸類添加後の溶液のpHはできるだけ中性付近にすることが望ましい。またこの場合、pHが低くなるほど、また塩類溶液が高濃度であるほど生成するゲルの密度は大きく、ゲルの硬度は大きくなる。
【0018】
さらに、このpHを変化させた溶液を木質系材料中に含浸あるいは表面に塗布しその溶液をゲル化させた後、必要ならば遊離のイオン類を除くために水中浸せき法あるいは流水での洗浄など通常広く用いられる方法によって水洗を行い、乾燥する。
【0019】
この乾燥方法は、具体的には特に限定されず通常広く用いられている方法のいずれであってもかまわない。
【0020】
この方法で調製した木質系材料の外観は、ほとんど処理前と変化ないが、処理の用いた無機元素の種類によってやや白色あるいは黄色、あるいは赤みがかった色などになる。
【0021】
また処理後の重量増加の程度は、木質系材料の種類およびそれを構成する樹種、処理溶液の含浸量、塗布量および洗浄の有無、乾燥の程度などによって変化するが、
最大でも木材重量の約2倍程度である。
【0022】
また、例えば無機元素の酸化物の塩類としてケイ酸ナトリウムを取り上げその水溶液を陽イオン交換した後、これを木材に減圧常圧法で含浸させて調製した薄物木質系材料の難燃性能は、JIS A 1322−1966による測定の結果、加熱1分間で防炎2級に相当する難燃性を示した。
【0023】
さらに、上記の難燃性試験で用いた試料と同様にして調製した薄物木質系材料を用いて防腐性能を木材の耐朽性試験方法(JIS Z 2119−1977)に従いカワラタケ、オオウズラタケによる腐朽試験を行った結果、2カ月間の培養によってもこれら腐朽菌の木材表面への繁殖は無く、重量減少は測定されなかった。また、防虫性能、特にシロアリに対する防蟻性能は、イエシロアリによる食害は観察されず、約2週間で全てのシロアリが死滅した。
【0024】
また、例えばタングステン酸ナトリウム水溶液を陽イオン交換した後、これを木材中に減圧加圧法で含浸させて調製した薄物木質材料の電磁シールド性能は、近接電界法(ASTM ES 7−83)によって電磁波の透過損失を測定した結果、周波数30〜1000MHzの広い範囲にわたって約30〜85dBの電磁波透過損失を示した。
【0025】
【作用】
本発明によって、難燃性能、防腐・防虫性能、あるいは近年の高度情報機器の発達に伴って要求されてきた電磁はシールド性能の一つ以上を有する多機能木質系材料を製造することができる。
【0026】
また、本発明で使用する含浸薬剤は、従来用いられてきた薬剤と異なり、そのほとんどが天然に多量に存在する無機元素に由来する化合物で安価であるとともに、人類や動物あるいは植物にも害を及ぼすことがない地球に優しい薬剤である。
【0027】
さらに、本発明のこの多機能木質系材料の製造法は操作が極めて容易でしかも安全であり、また使用後の廃材料の処分に際してもその安全性に配慮する必要もない。
【0028】
【実施例】
本発明を、実施例によって次に説明する。
【0029】
【実施例1】
12.5%、10.5%、7.5%、および5.0%ケイ酸ナトリウム水溶液をアンバーライト IR 120Bを用いて陽イオン交換した。これらの溶液の20℃におけるゲル化までの時間、イオン交換前後のpH、生成したグルを洗浄のため透析膜中に入れ脱イオンした後のpHなどを表1に示す。なお、透析膜内容物のろ過液及び透析膜外液すなわちゲル洗浄液中にケイ素が存在するかどうかを熔球反応法で確認したが、これらの溶液中にはケイ素は存在しなかった。すなわち、ゲル化によってすべてのケイ素がゲル中に取り込まれ、しかも洗浄水によっても溶脱しない強固なゲルを生成した。
【0032】
【実施例2】
12.5%ケイ酸ナトリウム水溶液(初期pH1.66)に10%リン酸を15.95mL滴下してpHを10.42にした。この溶液は、約2時間でゲル化する。生成したゲルを実施例1の場合と同様にして洗浄のために透析膜中に入れ透析した結果、ゲルのpHは6.48となった。なお、透析膜内および外液中には、実施例1の場合と同様にケイ素の溶脱は認められず、この場合のゲルも水では溶脱しない強固なゲルとなっていることがわかった。
【0033】
【実施例3】
ケイ酸ゲルをコロイド状に分散させた溶液(コロイド濃度30%)に、10%リン酸を滴下し、pH4.5、5.0、5.5、6.0、6.5、7.0、および7.5の溶液を調製した。これらの試料は、それそれ図1に示すような挙動を示して大きなゲルの塊となり(ゲル化)、図2に示すようなゲル化までの時間とpHの関係を示した。生成したゲルを実施例1の場合と同様にして透析した結果、ゲルのpHは5.5〜6.5となり透析膜内および外液中には、実施例1および実施例2の場合と同様に生成したゲルの塊からのケイ素の溶脱は認められなかった。
【0034】
【実施例4】
0.8、0.4、0.27、0.16、0.08molの各濃度のタングステン酸ナトリウム水溶液をアンバーライトIR 120 Bを用いて陽イオン交換した。陽イオン交換後0.8molの溶液は約15分、0.4molの溶液は約60分、0.27molの溶液は約2時間、0.16molの溶液は約5時間、0.08molの溶液は約10時間でゲル化した。ゲルは黄色で高濃度ほど濃色である。また、透析して脱イオンしたゲルのpHは4.5〜5.5である。透析液は塩化スズ−塩酸溶液によって青色沈澱もまた青色の発色もせず、タングステンは生成したゲルからは溶脱しないことがわかった。
【0035】
【実施例5】
ケイ酸ナトリウム水溶液とホウ酸の水溶液を混合してゲル化物を得た。その混合比、混合後のpH、ゲル化までの時間、得られたゲルのpHを表2に示す。なお、得られたゲルを水で洗浄ろ過し、そのろ液について実施例1,2および3の場合と同様にしてケイ素の溶脱を調べたが、溶脱は認められなかった。
【0036】
【実施例6】
実施例1に示したと同じ条件で陽イオン交換した溶液を、容液が液状を保った状態で厚さ3mmのラジアータパイン単板に減圧加圧法で含浸した。この含浸した溶液をラジアータパイン単板中で23℃、R.H.65%恒温恒湿室でゲル化させた後、調湿した。その後、JIS A 1322−1966に従い難燃性試験を行った。その結果、加熱1分間で防炎2級に相当する難燃性が得られた。また、含浸溶液がゲル化したと思われる時間経過した後、材料を水に浸せきして脱イオンを行い、上記同様に調湿し、難燃性試験を行った。その結果、水洗しない場合より炭化長がわずかに大きくなったが防炎2級に相当する難燃性に変わりなかった。
【0037】
【実施例7】
実施例3と同様にして、10%リン酸を滴下してpH6.0に調整した30%濃度のケイ酸ゲルのコロイド溶液を、溶液が液状を保った状態でブナ材およびスギ材試験片に減圧加圧法で含浸し10時間放置して木材中で溶液をゲル化させた後、水に浸せきして脱イオンし、その後23℃、R.H.65%恒温恒湿室で調湿した。この試験片について、木材の耐朽性試験方法(JIS Z 2119−1977)に従い防腐試験を行った。すなわち、カワラタケをブナ材に、オオウズラタケをスギ材に植菌し2カ月間培養を行ったが、ブナ材、スギ材の両試験片共に重量減少は無く、この処理を行った木材が、木材腐朽菌に対して極めて顕著な防腐性能を有していることを示した。また、このリン酸でpH6.0に調整したコロイド溶液を含浸させた試験片を簡易的に実施例6の難燃性試験の火炎中に入れ加熱したが、加熱1分後残炎は見られず、難燃性も実施例6の場合と同様に得られたことがわかった。
【0039】
【実施例8】
実施例4と同様にして、0.27mol濃度のタングステン酸ナトリウム水溶液を陽イオン交換した。この溶液を溶液が液状を保った状態で実施例6と同じ単板に減圧加圧法で含浸し、1夜放置してゲル化させた。その後、3日間水に浸せきして脱イオンした後、23℃、R.H.65%恒温恒湿室で調湿した。この単板から3プライ合板をユリア樹脂接着剤を用いて製造し、23℃、R.H.65%恒温恒湿室で同様に調湿した。この合板の電磁シールド性能を、近接電界法(ASTM ES 7−83)によって電磁波の透過損失を測定した結果、周波数30〜1000MHzの広い範囲にわたって約30〜85dBの電磁波透過損失を示した。
【0040】
【発明の効果】
無機元素の酸化物の塩類の溶液を陽イオン交換するとその溶液はゲル状態となる。また、一度ゲル化した溶液をコロイド状態に分散させた溶液に、そのコロイド状態を壊すために酸類を添加するとその溶液は常温である時間後再びゲル化する。この反応を利用して、木質材料中あるいは木材表面にこのpHを変化させた溶液を含浸あるいは塗布した後にゲル化させることによって、木質材料−無機元素酸化物ゲル複合体を調製した。この材料は難燃性能、防腐性能、防虫性能、電磁シールド性能などの一つあるいは数種の機能を有する木質系材料となる。
【0041】
また、本発明で使用する含浸薬剤は、従来のこれら性能を木質系材料に付与するのに用いられた薬剤と違って、その多くが天然に多量に存在する元素に由来し、安価であるとともに人類を始めとする動物に害を及ぼすことがない地球に優しい薬剤である。
【0042】
さらに、本発明で提唱するこの多機能木質材料の製造法は極めて操作が容易であると共に安全であり、また使用後の廃材料の処分に際してその安全性に配慮する必要もない。
【0043】
これらの理由から、本発明が及ぼす産業上の利用価値には計り知れないものがある。
【0044】
【表1】

Figure 0003635354
【0045】
【表2】
Figure 0003635354
Figure 0003635354
【0046】
【図面の簡単な説明】
【図1】リン酸を滴下してpHを4.5〜7.5に調整した30%濃度のコロイド状ケイ酸溶液の粘度変化と時間の関係を示す。
【図2】図1に示した溶液のゲル化までの時間のpH依存性を示す。[0001]
[Industrial application fields]
The present invention, flame retardancy to wood-based materials, antiseptic performance, insect performance, to a method and imparting material for imparting one or several conductive magnetic shielding performance.
[0002]
[Prior art]
Conventionally, as a flame retardant treatment method for wood-based materials, in addition to those using inorganic hydraulic substances, generally phosphorus compounds, boron compounds, halogen compounds, etc. are mainly used. It is used by pouring, mixing, spreading, coating, etc. on wood-based materials and reacting with wood (reaction type) or simply mixing (addition type). These agents are used to delay the ignition timing by simply covering the wood-based material, for example, by foaming at a temperature lower than the thermal decomposition temperature of wood and covering the wood-based material and blocking combustion from the air. Many flame retardants are used.
[0003]
In addition, as an antiseptic and insecticidal agent, it can be used for animals and humans such as phenols, inorganic fluoride preservatives, or chromium, copper, arsenic compound preservatives (so-called C, C, A). Most treatments contain chemicals that are considered harmful.
[0004]
In order to simultaneously provide the above three performances, that is, flame retardancy, antiseptic performance, and insect repellent performance, saturated wood is first soaked in a barium chloride solution and then soaked in an ammonium hydrogen phosphate solution to phosphoric acid in the wood material. A method of producing barium and barium hydrogen phosphate [Kouichi Nishimoto: Kagaku Asahi, 1987 (10), 38-43], or first impregnating silicate with wood and then reacting barium chloride, boric acid, borax, etc. Report on the formation of insoluble silicate compounds in wood [Satoshi Furuno et al: Journal of the Wood Society, 37, 462-472 (1991) and Journal of the Wood Society, 38, 448-457 (1992)], or silica by the sol-gel method (SiO 2) gel reporting inorganic composite timber to be produced in the cell walls of the wood [Shiro Saka et al: wood Journal, 38,1043-1049 ( 992)], and the like.
[0005 ]
Conductive magnetic shield characteristics against electromagnetic waves such as the performance as a method of imparting a wood-based material, such as iron, copper, lead or graphite, as a powder or particles or plate-like material such as charcoal, or paper or wood-based products, In most cases, impregnation, coating, mixing, or pasting is performed by various methods.
[0006]
[Problems to be solved by the invention]
Conventionally, among methods that have been used as a flame retardant treatment method for wood-based materials, in the case of methods using inorganic hydraulic materials, there have been cases where the inorganic hydraulic materials do not harden depending on the wood species of the wood-based materials. Some phosphorous compounds and boron compounds are not easily dissolved in a medium such as water and are saturated at a few percent at room temperature. For this reason, when impregnating wood, it is difficult to achieve a high impregnation amount, and even if the impregnation can be performed satisfactorily, the water resistance is inferior and the leaching of the impregnating liquid from the wood-based material occurs.
[0007]
Antiseptic and insecticidal agents include phenols, inorganic fluoride preservatives, and chromium, copper, arsenic compound preservatives (so-called C, C, A), and animals, including humans. Most of the treatments contain chemicals that are considered harmful.
[0008]
In addition, three methods listed in the section of [Conventional Technology] for simultaneously imparting flame retardancy, antiseptic performance, and insect repellent performance, namely, (1) producing barium phosphate and barium hydrogen phosphate in woody materials. [Nishimoto Koichi: Science Asahi, 1987 (10), 38-43], (2) Method of forming an insoluble silicate compound in wood [Furuno, et al .: Journal of the Wood Society, 37, 462-472 ( 1991) and Journal of the Wood Society, 38, 448-457 (1992)], or (3) a method of inorganic composite wood that produces silica gel (SiO 2 ) in a wood material [Shiro Saka et al .: Wood Society Journal, 38, 1043-1049 (1992)] has recently been proposed. However, in the method (1), it is necessary to saturate the wood in advance and two more immersion treatments are required. In its must immersed in a solution of highly alkaline water glass pH12~13 wood, also required to process manipulate dipped twice in this case is complicated. On the other hand, the method (3) is quite close to the method of the present invention. However, the silicon compound used in the method (3) is very expensive, and the price of tetramethoxysilane, tetraethoxysilane, or tetrapropoxysilane proposed to be used in this method is used in the present invention. It is a drug that costs 7 to 10 times the price of sodium silicate. Furthermore, compared with the method of the present invention, the method (3) has the disadvantage that its practical operation or handling is complicated, such as using alcohols for the preparation of the impregnation solution.
[0009 ]
Materials having a conductivity magnetic shielding performance, such as iron, copper, lead or charcoal, a powder or particles or plate-like material such as graphite, or coating mixed in certain adhesives and paints, as a surface, Most of the products are pasted or sandwiched between several front plates.
[0010]
[Means for Solving the Problems]
The inventors have long been interested in making wood-based materials flame-retardant or providing antiseptic and insect-proofing performance. In particular, in recent years, with the development of advanced information devices, the problem of electromagnetic waves generated from these devices, or the problem of protecting those information devices from external electromagnetic waves has been highlighted, so the walls of offices and general households, We have felt the need to develop a wood material that has excellent aesthetics that can be used for partitions, partitions, etc., and is flame retardant, yet has electromagnetic shielding performance. Also, the present inventors (the applicant), the health of human beings and animals, the processing of harmless, non-toxic drug that was put in turn taking into account the preservation of the global environment, and that the low cost addition processing operation is easy It has been studied as a precondition.
[0011]
As a result, it was found that when a salt solution of an oxide of an inorganic element was subjected to cation exchange , it gelled even when left at room temperature . Furthermore, it has been found that a colloidal solution in which a solution that has already been gelled is colloidally dispersed in a medium such as water becomes a large globular mass when the pH of the solution is changed. Therefore, after changing the pH of a solution in which an inorganic element oxide salt or a gel is colloidally dispersed , the wood material is impregnated or applied to the surface of the material while the solution remains liquid. , then woody material or flame retardancy solid of the water-insoluble at the surface (gel) and a method of operation is to simply and inexpensively woody material, antiseptic performance, insect performance, conductive magnetic shield to no one performance I found out that it was a way to give several species.
[0012]
As used herein, the salt of an oxide of an inorganic element includes tungstic acid, aluminate, molybdic acid, titanic acid, rhenic acid, and metals or sub-metals represented by silicic acid, boric acid, phosphoric acid, and the like. It means one or a mixture of several inorganic oxide salts.
[0013]
Acids mean one or a mixture of mineral acids such as boric acid, phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, carbonic acid, and organic acids.
[0014]
The solution, in addition to water, means alcohol and dissolve aromatics in including medium body solution.
[0015]
The solution in which the gel is colloidally dispersed is a gel prepared from an inorganic element oxide salt, including a colloidal solution of silicate gel commercially available as so-called colloidal silica. It means a solution in which the pore diameter of the pit membrane in the cell wall pore of the material is smaller than about 0.1 μm and dispersed in a solvent.
[0016]
The change in pH means a decrease from the initial pH of the salt solution of the oxide of the inorganic element in the range of 1 to 12 on the acidic side with the pH value. The present invention is applicable to both cation exchange and acid addition.
[0017]
In the case of cation exchange, the pH after change may reach up to about pH 2, and in the case of addition of acids, it is possible to form a gel at pH of about 10.5. In consideration of application, it is desirable that the pH of the solution after addition of these cation exchanges or acids is as close to neutral as possible. In this case, the lower the pH and the higher the concentration of the salt solution, the higher the density of the gel produced and the higher the hardness of the gel.
[0018]
Furthermore, after impregnating the solution with the changed pH into a wooden material or applying it to the surface and gelling the solution, if necessary, it is immersed in water or washed with running water to remove free ions. It is washed with water by a widely used method and dried.
[0019]
The drying method is not particularly limited and may be any method that is ordinarily widely used.
[0020]
The appearance of the wood-based material prepared by this method is almost the same as that before the treatment, but becomes slightly white, yellow, or a reddish color depending on the kind of inorganic element used in the treatment.
[0021]
In addition, the degree of weight increase after treatment varies depending on the type of wood-based material and the tree species constituting it, the amount of impregnation of the treatment solution, the amount applied and whether or not washed, the degree of drying, etc.
The maximum is about twice the weight of wood.
[0022]
Further, for example, the flame retardancy of a thin wood-based material prepared by taking sodium silicate as an inorganic oxide oxide salt and subjecting its aqueous solution to cation exchange and then impregnating it with wood by a reduced pressure and atmospheric pressure method is JIS A As a result of the measurement by 1322-1966, the flame retardancy corresponding to the second grade of flameproofing was shown in 1 minute of heating.
[0023]
Furthermore, using a thin wooden material prepared in the same manner as the sample used in the above flame retardancy test, the antiseptic performance was subjected to a decay test by Kawaratake and Ozuratake in accordance with the wood decay resistance test method (JIS Z 2119-1977). As a result, even after 2 months of culture, these decaying fungi did not propagate on the wood surface, and weight loss was not measured. Moreover, the insect-repellent performance, particularly the termite-proof performance against termites, was not observed by the termites, and all termites died in about two weeks.
[0024]
In addition, for example, an electromagnetic shielding performance of a thin wood material prepared by cation-exchange of an aqueous solution of sodium tungstate and then impregnating the same with wood by a reduced pressure method is used for electromagnetic shielding by the proximity electric field method (ASTM ES 7-83). As a result of measuring the transmission loss, an electromagnetic wave transmission loss of about 30 to 85 dB was shown over a wide range of frequencies of 30 to 1000 MHz.
[0025]
[Action]
According to the present invention, it is possible to produce a multifunctional wood-based material having one or more of shielding performance, which has been required with the development of advanced information equipment in recent years.
[0026]
In addition, the impregnating agent used in the present invention is different from conventionally used agents, most of them are compounds derived from inorganic elements that are naturally present in large quantities and are inexpensive, and are harmful to humans, animals and plants. It is an earth-friendly drug that does not affect.
[0027]
Furthermore, the method for producing the multifunctional wood-based material of the present invention is extremely easy to operate and safe, and it is not necessary to consider the safety when disposing of the used material after use.
[0028]
【Example】
The invention will now be described by way of example.
[0029]
[Example 1]
12.5%, 10.5%, 7.5%, and 5.0% aqueous sodium silicate solutions were cation exchanged using Amberlite IR 120B. Table 1 shows the time until gelation of these solutions at 20 ° C., the pH before and after ion exchange, the pH after deionizing the produced guru into a dialysis membrane for washing, and the like. The presence of silicon in the filtrate of the dialysis membrane contents and the outer fluid of the dialysis membrane, that is, the gel washing solution, was confirmed by the melt ball reaction method, but silicon was not present in these solutions. That is, all the silicon was incorporated into the gel by gelation, and a strong gel that did not leach out even with washing water was produced.
[0032]
[Example 2]
15.95 mL of 10% phosphoric acid was dropped into a 12.5% aqueous sodium silicate solution (initial pH 1.66) to adjust the pH to 10.42. This solution gels in about 2 hours. The resulting gel was put into a dialysis membrane for washing in the same manner as in Example 1, and as a result, the pH of the gel was 6.48. In the dialysis membrane and in the external liquid, silicon leaching was not observed as in Example 1, and it was found that the gel in this case was a strong gel that was not leached with water.
[0033]
[Example 3]
10% phosphoric acid was dropped into a solution in which a silica gel was dispersed in a colloidal form (colloid concentration: 30%), and the pH was 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. And 7.5 solutions were prepared. These samples each behaved as shown in FIG. 1 and became a large gel lump (gelation), and showed a relationship between time to gelation and pH as shown in FIG. The resulting gel was dialyzed in the same manner as in Example 1. As a result, the pH of the gel was 5.5 to 6.5, and in the dialysis membrane and in the external liquid, the same as in Example 1 and Example 2. No leaching of silicon from the gel mass formed was observed.
[0034]
[Example 4]
Aqueous sodium tungstate aqueous solutions having respective concentrations of 0.8, 0.4, 0.27, 0.16, and 0.08 mol were subjected to cation exchange using Amberlite IR 120 B. After cation exchange, 0.8 mol solution is about 15 minutes, 0.4 mol solution is about 60 minutes, 0.27 mol solution is about 2 hours, 0.16 mol solution is about 5 hours, 0.08 mol solution is about Gelation occurred in about 10 hours. The gel is yellow and the higher the concentration, the darker the color. The pH of the gel that has been dialyzed and deionized is 4.5 to 5.5. The dialysate was neither blue precipitated nor blue colored by the tin chloride-hydrochloric acid solution, indicating that tungsten was not leached from the resulting gel.
[0035]
[Example 5]
A gelled product was obtained by mixing an aqueous solution of sodium silicate and an aqueous solution of boric acid. The mixing ratio, pH after mixing, time until gelation, and pH of the obtained gel are shown in Table 2. The resulting gel was washed with water and filtered, and the filtrate was examined for leaching of silicon in the same manner as in Examples 1, 2 and 3, but no leaching was observed.
[0036]
[Example 6]
A solution obtained by cation exchange under the same conditions as shown in Example 1 was impregnated into a 3 mm-thick radiata pine veneer by a reduced pressure method while maintaining the liquid state . The impregnated solution was placed in a radiata pine veneer at 23 ° C., R.P. H. After gelation in a 65% constant temperature and humidity chamber, the humidity was adjusted. Then, the flame retardance test was done according to JIS A 1322-1966. As a result, flame retardancy corresponding to flameproof grade 2 was obtained in 1 minute of heating. In addition, after the time when the impregnation solution was considered to have gelled, the material was immersed in water for deionization, conditioned in the same manner as described above, and subjected to a flame retardancy test. As a result, although the carbonization length was slightly larger than when not washed with water, it did not change to flame retardancy corresponding to flameproof grade 2.
[0037]
[Example 7]
In the same manner as in Example 3, a colloidal solution of 30% silicate gel adjusted to pH 6.0 by dropwise addition of 10% phosphoric acid was applied to beech and cedar specimens while the solution remained liquid. The solution was impregnated by a reduced pressure method and allowed to stand for 10 hours to gel the solution in wood, and then immersed in water to deionize. H. The humidity was adjusted in a 65% constant temperature and humidity chamber. The test piece was subjected to an antiseptic test according to a wood decay resistance test method (JIS Z 2119-1977). In other words, Kawaratake was inoculated into beech wood, and Ozuuratake was inoculated into cedar wood, and cultured for 2 months, but both the beech wood and cedar wood specimens had no weight loss, and the wood treated with this treatment was rotted It was shown to have extremely remarkable antiseptic performance against bacteria. Further, the test piece impregnated with the colloidal solution adjusted to pH 6.0 with phosphoric acid was simply put in the flame of the flame retardancy test of Example 6 and heated, but after 1 minute of heating, a residual flame was observed. In addition, it was found that flame retardancy was also obtained in the same manner as in Example 6.
[0039]
[Example 8]
In the same manner as in Example 4, a 0.27 mol sodium tungstate aqueous solution was subjected to cation exchange. This solution was impregnated on the same veneer as in Example 6 by the reduced pressure method while keeping the solution in a liquid state, and allowed to stand overnight for gelation. Then, after being immersed in water for 3 days for deionization, 23 ° C., R.P. H. The humidity was adjusted in a 65% constant temperature and humidity chamber. A three-ply plywood was produced from this single plate using a urea resin adhesive, and the R.P. H. The humidity was similarly adjusted in a 65% constant temperature and humidity chamber. The electromagnetic shielding performance of this plywood was measured for electromagnetic wave transmission loss by the proximity electric field method (ASTM ES 7-83).
[0040]
【The invention's effect】
When a solution of salts of oxides of inorganic elements to cation exchange the solution becomes gel state. Moreover, when acids are added to a solution in which a solution once gelled is dispersed in a colloidal state in order to break the colloidal state, the solution gels again after a time at room temperature. Using this reaction, a woody material-inorganic element oxide gel composite was prepared by impregnating or applying a solution having a changed pH in the woody material or on the surface of the wood, followed by gelation. This material is a woody material having flame retardancy, antiseptic performance, insect performance, one or several functions, such as electric magnetic shielding performance.
[0041]
In addition, the impregnating agent used in the present invention is inexpensive because it is derived from elements that are naturally present in large quantities, unlike the agents used to impart these performances to woody materials. It is an earth-friendly drug that does not harm humans and other animals.
[0042]
Furthermore, the method for producing a multifunctional wood material proposed in the present invention is extremely easy to operate and safe, and it is not necessary to consider the safety when disposing of the waste material after use.
[0043]
For these reasons, the industrial utility value of the present invention is immeasurable.
[0044]
[Table 1]
Figure 0003635354
[0045]
[Table 2]
Figure 0003635354
Figure 0003635354
[0046]
[Brief description of the drawings]
FIG. 1 shows the relationship between the change in viscosity of a 30% colloidal silicic acid solution whose pH is adjusted to 4.5 to 7.5 by dropwise addition of phosphoric acid and time.
FIG. 2 shows the pH dependence of the time until gelation of the solution shown in FIG.

Claims (2)

無機元素の酸化物の塩類の一種あるいは数種の混合物の溶液を陽イオン交換することによってその溶液のpHをその溶液が示す初期pHよりも低い値に変化させた後、あるいは無機元素の酸化物の塩類の溶液のpHを変化させて調製したゲル化物を水などの媒体中にコロイド状に分散させた溶液に鉱酸あるいは有機酸類のうちの一つあるいは数種の混合物を添加することによってコロイド状分散液のpHをその分散液の初期のpHから変化させた後、これらのpHを低下させた溶液を単独あるいは混合して木材あるいは木材から調製した木質系材料に含浸あるいは塗布し、その後塗布あるいは含浸させた溶液を木質材料中やその表面でゲル化させた難燃性能、防腐性能、防虫性能、電磁シールド性能等の木質系材料が本来有しない特性の一つあるいは数種を有する多機能木質系材料。After the pH of the solution was changed to a value lower than the initial pH indicated the solution by solvent solution of oxide mixture one or several salts of the inorganic elements to be cation exchange, or oxidation of the inorganic elements By adding one or a mixture of mineral acids or organic acids to a solution in which a gelled product prepared by changing the pH of a salt solution is dispersed in a colloidal form in a medium such as water. after changing the pH of the colloidal dispersion from an initial pH of the dispersion, wood Zire Rui a solution having a reduced these pH alone or in combination is impregnated or applied to the wood-based materials prepared from wood one was subsequently coated or impregnated solution flame retardancy was ized gel woody material and its surface, antiseptic performance, insect performance, woody material originally having no properties such as electromagnetic shielding performance Multifunctional woody material Rui having several. 無機元素の酸化物の塩類の一種あるいは数種の混合物の溶液を陽イオン交換することによってその溶液のpHをその溶液が示す初期pHよりも低い値に変化させた後、あるいは無機元素の酸化物の塩類の溶液のpHを変化させて調製したゲル化物を水などの媒体中にコロイド状に分散させた溶液に鉱酸あるいは有機酸類のうちの一つあるいは数種の混合物を添加することによってコロイド状分散液のpHをその分散液の初期のpHから変化させた後、これらのpHを低下させた溶液を単独あるいは混合して木材あるいは木材から調製した木質系材料に含浸あるいは塗布し、その後塗布あるいは含浸させた溶液を木質材料中やその表面でゲル化させた難燃性能、防腐性能、防虫性能、電磁シールド性能等の木質系材料が本来有しない特性の一つあるいは数種を有する多機能木質系材料の製造法。After the pH of the solution was changed to a value lower than the initial pH indicated the solution by solvent solution of oxide mixture one or several salts of the inorganic elements to be cation exchange, or oxidation of the inorganic elements By adding one or a mixture of mineral acids or organic acids to a solution in which a gelled product prepared by changing the pH of a salt solution is dispersed in a colloidal form in a medium such as water. after changing the pH of the colloidal dispersion from an initial pH of the dispersion, wood Zire Rui a solution having a reduced these pH alone or in combination is impregnated or applied to the wood-based materials prepared from wood one was subsequently coated or impregnated solution flame retardancy was ized gel woody material and its surface, antiseptic performance, insect performance, woody material originally having no properties such as electromagnetic shielding performance Preparation of multifunctional woody material having several Rui.
JP09480693A 1993-03-16 1993-03-16 Multifunctional wood-based material and its manufacturing method Expired - Fee Related JP3635354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09480693A JP3635354B2 (en) 1993-03-16 1993-03-16 Multifunctional wood-based material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09480693A JP3635354B2 (en) 1993-03-16 1993-03-16 Multifunctional wood-based material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH08174512A JPH08174512A (en) 1996-07-09
JP3635354B2 true JP3635354B2 (en) 2005-04-06

Family

ID=14120306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09480693A Expired - Fee Related JP3635354B2 (en) 1993-03-16 1993-03-16 Multifunctional wood-based material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3635354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005006966U1 (en) * 2004-11-23 2005-07-14 Glunz Ag Electrically conductive plate consisting of a wood material comprises a bonding agent based on polyisocyanates, and has a residual moisture with a specified minimum pH value
CN1297377C (en) * 2005-11-08 2007-01-31 东北林业大学 Making process of electromagnetically shielding composite wooden material

Also Published As

Publication number Publication date
JPH08174512A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP4071825B2 (en) Compositions and methods for protecting wood products
Mai et al. Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review
US5549739A (en) Wood modifier composition
CA1151359A (en) Fire retardants
Moya et al. Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species
JP3635354B2 (en) Multifunctional wood-based material and its manufacturing method
JP2000141316A (en) Modified wood and its manufacture
KR101997641B1 (en) Antibacterial, antifungal binder compositions for making eco-friendly functional particle board, antibacterial, antifungal binder using the same, and manufacturing method thereof
CN107030818B (en) A kind of preparation method of mildew-proof flame retarded composite wood modifying agent and improved wood
KR101997644B1 (en) Smoke inhibiting binder compositions for making eco-friendly functional particle board, smoke inhibiting binder using the same, and manufacturing method thereof
CN110561578B (en) Multifunctional wood protective agent based on nano silica sol and preparation method thereof
US3629055A (en) Process for making fire retardant hardboard containing ammonium borate
JP2645801B2 (en) Wood improver
JP6271928B2 (en) Method for producing functional wood material
EP2173526B1 (en) Production of acidic polysilicate products and their application to strengthen wooden structures
JP4320636B2 (en) Modified wood and method for producing the same
CN110549443B (en) Multifunctional wood protective agent prepared from multi-element composite nano silica sol and preparation method thereof
JPH09314512A (en) Functional woody material and its manufacture
WO2005012638A1 (en) Fire retardant paper
JP3945765B2 (en) Multifunctional wood material and method for producing the same
CN113459231B (en) Preparation method and application of reactive anti-loss multifunctional wood protective agent
JPH06297409A (en) Wood modifier and modified wood treated therewith
JP6490184B2 (en) Method for producing functional wood material, and functional wood material
CN107099158A (en) A kind of preparation method of the plain plate of multifunctional fibre
KR20220063421A (en) Fire retardant and coatable silver nano colloid and method of manufacturing the silver nano colloid

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees