JP3633407B2 - Unconstrained damping material - Google Patents

Unconstrained damping material Download PDF

Info

Publication number
JP3633407B2
JP3633407B2 JP32085599A JP32085599A JP3633407B2 JP 3633407 B2 JP3633407 B2 JP 3633407B2 JP 32085599 A JP32085599 A JP 32085599A JP 32085599 A JP32085599 A JP 32085599A JP 3633407 B2 JP3633407 B2 JP 3633407B2
Authority
JP
Japan
Prior art keywords
component
damping material
rubber
unconstrained
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32085599A
Other languages
Japanese (ja)
Other versions
JP2001142466A (en
Inventor
武史 野村
和信 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP32085599A priority Critical patent/JP3633407B2/en
Publication of JP2001142466A publication Critical patent/JP2001142466A/en
Application granted granted Critical
Publication of JP3633407B2 publication Critical patent/JP3633407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板の片面に粘弾性層が形成されてなる非拘束型制振材に関するものである。
【0002】
【従来の技術】
音響ルーム用の遮音壁,建築構造体用の遮音間仕切り,車両用の防音壁等に適用され、振動や騒音を吸収する制振材としては、拘束型制振材や非拘束型制振材が用いられている。上記拘束型制振材は、基板の片面に粘弾性層を形成し、さらにその上に拘束層を形成した構成であり、上記非拘束型制振材は、基板の片面に粘弾性層のみを形成し、その上に拘束層を形成していない構成である。最近では、コストが安く、取り扱いが容易である等の理由から、上記非拘束型制振材が主流となっている。
【0003】
上記非拘束型制振材の粘弾性層としては、一般に、高分子系材料からなる高減衰材料組成物が用いられている。上記高分子系材料は、典型的な粘弾性挙動を呈するものであり、その材料部が何等かの原因で振動すると、それぞれの材料部に、複素正弦歪(ε)が発生し、これにより複素正弦応力(σ)が発生する。複素弾性係数(E)は、次式に示すように、これらの比をとったものである。
複素弾性係数(E)=複素正弦応力(σ)/複素正弦歪(ε
【0004】
上記複素弾性係数(E)の実数部は、高分子系材料の弾性的な性質に係る貯蔵弾性率(E′)と定義され、上記複素弾性係数(E)の虚数部は、高分子系材料の粘性的な性質に係る損失弾性率(E″)と定義される。損失正接(tanδ)は、次式に示すように、これらの比をとったものである。
損失正接(tanδ)=損失弾性率(E″)/貯蔵弾性率(E′)
【0005】
上記損失正接(tanδ)は、防音・制振特性を決定する因子の一つであり、この値が高いほど力学的エネルギーを電気あるいは熱エネルギーとして吸収・放出して、優れた吸音性や制振性等の機械特性を示すことが知られている。従来、高減衰材料組成物の損失正接(tanδ)として求められる値は0.5以上であり、tanδ≧0.5を満たした材料としては、例えば、ポリ塩化ビニル(PVC)等の単一ポリマーに、マイカ,炭酸カルシウム等の充填剤や、可塑剤等を配合した高分子系材料が用いられている。
【0006】
【発明が解決しようとする課題】
上記高分子系材料は、従来の要求特性(tanδ≧0.5)に応えているとはいえ、これを非拘束型制振材の粘弾性層に適用した場合、つぎのような問題がある。すなわち、非拘束型制振材においては、その制振特性は、損失係数(η)が重要な因子となり、充分な高減衰性を発現するためには、損失係数(η)>0.1が要求される。そして、この損失係数(η)は温度に依存し、従来の非拘束型制振材では、低温側および高温側の損失係数(η)が0.1未満となり、非拘束型制振材の使用環境が変化した場合に、その環境温度の変化に適応することができず、温度依存性に劣るという難点がある。
【0007】
本発明は、このような事情に鑑みなされたもので、温度依存性に優れた非拘束型制振材の提供をその目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の非拘束型制振材は、基板の片面に粘弾性層が形成された非拘束型制振材であって、上記粘弾性層が、下記の(A)および(B)成分を母材とし、これに下記の(C)成分が配合されて形成されているという構成をとる。
(A)ガラス転移温度(Tg)が35〜60℃の範囲にある樹脂。
(B)ガラス転移温度(Tg)が−10〜20℃の範囲にあるゴム。
(C)制振フィラー。
【0009】
すなわち、本発明者らは、非拘束型制振材の損失係数(η)の温度依存性について研究を重ねた結果、非拘束型制振材の損失係数(η)は、損失正接(tanδ)よりも損失弾性率(E″)が重要な因子となり、この損失弾性率(E″)の温度依存性を改良すると、損失係数(η)の温度依存性も向上することを突き止めた。そして、さらに研究開発を続けた結果、上記非拘束型制振材の粘弾性層を、ガラス転移温度(Tg)が高温側にある樹脂(A成分)と、ガラス転移温度(Tg)が低温側にあるゴム(B成分)の2成分を母材とした非相溶系組み合わせに、制振フィラー(C成分)を配合して形成すると、A成分とB成分の相溶状態が微粉分散となる部分相溶状態になり、損失弾性率(E″)がブロードとなり、損失弾性率(E″)の温度依存性が向上することを突き止めた。その結果、低温側および高温側の損失係数(η)が0.1を超え、損失係数(η)>0.1の温度範囲が0〜60℃程度の広範囲となり、幅広い温度範囲での使用に適し、温度依存性に優れた非拘束型制振材が得られることを見出し、本発明に到達した。
【0010】
なお、本発明において、上記B成分であるゴムは、広義のゴムを意味し、エラストマーも含む趣旨である。
【0011】
また、本発明において、特定の樹脂(A成分)および特定のゴム(B成分)を母材とするとは、A成分とB成分がいわゆる海−島構造をとることを意味し、両者のどちらが「海」,「島」であるかは特に限定するものではない。
【0012】
さらに、本発明において、上記A成分のガラス転移温度(Tg)とは、粘弾性の損失正接(tanδ)〔tanδ=E″/E′〕のピーク温度を意味する。そして、上記tanδは、周波数10Hz、歪み10μm、昇温速度3℃/分の条件で、粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製のDMA2980)を用いて測定した時の値である。なお、上記B成分のガラス転移温度(Tg)も、上記A成分のガラス転移温度(Tg)と同様の意味である。
【0013】
【発明の実施の形態】
つぎに、本発明の実施の形態を詳しく説明する。
【0014】
本発明の非拘束型制振材は、基板の片面に粘弾性層が形成されて構成されており、上記粘弾性層が、特定の樹脂(A成分)および特定のゴム(B成分)の2成分を母材とした非相溶系組み合わせに、制振フィラー(C成分)が配合されて形成されていることが最大の特徴である。
【0015】
上記基板としては、制振材の分野で用いられるものであれば特に限定はなく、例えば、鋼板、アルミニウム板、銅板、各種プラスチック板、木板、合板、コンクリート等があげられる。
【0016】
上記粘弾性層の母材となる特定の樹脂(A成分)としては、ガラス転移温度(Tg)が35〜60℃の範囲にあれば特に限定はなく、例えば、塩素化ポリプロピレン(CPP)、ポリ酢酸ビニル(PVAc)、エチレン−酢酸ビニル共重合体(EVA)、ハイスチレン樹脂等があげられ、これらの中のいずれか一つが用いられる。
【0017】
上記特定の樹脂(A成分)は、ガラス転移温度(Tg)が35〜60℃の範囲にある必要があり、好ましくは40〜55℃である。すなわち、ガラス転移温度(Tg)が35℃未満であると、上記特定のゴム(B成分)とのTg差(ΔTg)が小さくなりすぎ、広範囲な温度での高減衰性が得られず、逆に60℃を超えると、上記特定のゴム(B成分)とのTg差(ΔTg)が大きくなりすぎ、tanδピークが鞍型となり、減衰性の低い温度域が現れるからである。
【0018】
上記特定の樹脂(A成分)とともに用いられる特定のゴム(B成分)は、前述のように、広義のゴムを意味し、エラストマーも含む趣旨である。このようなゴム(B成分)としては、ガラス転移温度(Tg)が−10〜20℃の範囲にあれば特に限定はなく、例えば、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリルゴム(ACM)、エチレン−アクリルゴム、塩素化ポリエチレン(CPE)、ウレタン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ポリブタジエンゴム(RB)等があげられ、これらの中のいずれか一つが用いられる。
【0019】
上記特定のゴム(B成分)は、ガラス転移温度(Tg)が−10〜20℃の範囲にある必要があり、好ましくは0〜15℃である。すなわち、ガラス転移温度(Tg)が−10℃未満であると、上記特定の樹脂(A成分)とのTg差(ΔTg)が大きくなりすぎ、tanδピークが鞍型となり、減衰性の低い温度域が現れ、逆に20℃を超えると、上記特定の樹脂(A成分)とのTg差(ΔTg)が小さくなりすぎ、広範囲な温度での高減衰性が得られないからである。
【0020】
上記特定の樹脂(A成分)のガラス転移温度(Tg)と、特定のゴム(B成分)のガラス転移温度(Tg)のガラス転移温度の差(ΔTg)は、30〜60℃の範囲が好ましく、特に好ましくは30〜40℃である。
【0021】
上記特定の樹脂(A成分)と特定のゴム(B成分)の組み合わせは、両者の相溶状態が微粉分散となる部分相溶状態になるように組み合わされ、具体的には、両者の配合割合は、重量比で、A成分/B成分=1/9〜9/1の範囲が好ましく、特に好ましくはA成分/B成分=3/7〜7/3である。
【0022】
上記A成分,B成分とともに用いられる制振フィラー(C成分)としては、特に限定はなく、例えば、タルク、マイカ、黒鉛、炭酸カルシウム、チタン酸カルシウム、ウォラストナイト、ゾイトライト、炭素繊維、フェライト等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、母材中にある程度パラレルに分散した構造をとり、制振性に優れる点で、板状または針状のものが好適に用いられる。
【0023】
上記制振フィラー(C成分)の配合割合は、上記A成分とB成分の合計重量100重量部(以下「部」と略す)に対して、10〜1000部の範囲が好ましく、特に好ましくは100〜400部である。すなわち、10部未満であると、充分な制振特性が得られず、逆に1000部を超えると、加工性が悪化するからである。
【0024】
上記制振フィラー(C成分)の平均径(直径)は、通常、0.1〜500μmの範囲に設定され、好ましくは0.5〜100μmである。なお、上記制振フィラー(C成分)は、平均径の異なる2種以上のものを混合したものであってもよい。
【0025】
なお、上記粘弾性層は、上記A〜C成分とともに他の成分を用いて構成しても差し支えなく、他の成分としては、例えば、粘着付与剤、架橋剤、架橋促進剤、架橋助剤、酸化防止剤、老化防止剤、可塑剤、加工助剤、着色剤(顔料、染料)、光沢剤、難燃剤、発泡剤、発泡助剤、オゾン劣化防止剤、ブロッキング防止剤、耐候剤、耐熱剤、分散剤、相溶化剤、界面活性剤、帯電防止剤、滑剤等があげられる。
【0026】
上記粘着付与剤としては、特に限定はなく、例えば、石油系炭化水素樹脂、ロジン、クマロン樹脂、フェノール樹脂、ケトン樹脂、ジシクロペンタジエン樹脂、マレイン酸樹脂、エステル化ロジン、エポキシ樹脂、尿素樹脂、メラミン樹脂等が好適に用いられる。これらは単独でもしくは2種以上併せて用いられる。
【0027】
上記架橋剤としては、例えば、硫黄系架橋剤、トリアジン系架橋剤、金属石鹸系架橋剤、アミン系架橋剤、カルバメート塩系架橋剤、イミダゾール系架橋剤等があげられる。上記架橋促進剤としては、例えば、チウラム系,チアゾール系等の架橋促進剤が好適に用いられる。上記架橋助剤としては、例えば、ZnO(酸化亜鉛2種)等があげられる。
【0028】
上記可塑剤としては、例えば、フタル酸ジオクチル(DOP)、パラフィン系オイル等があげられる。上記加工助剤としては、例えば、ステアリン酸等があげられる。
【0029】
本発明の非拘束型制振材は、例えば、つぎのようにして製造することができる。すなわち、まず、A〜C成分および必要に応じて他の成分を加圧蓋付きニーダー(インターミキサー)等の混練装置を用いて混練して、粘弾性層形成材料を調製する。そして、この粘弾性層形成材料を所望の方法によりシート状に成形した後、これを基板上に貼り合わせることにより、基板の片面に粘弾性層が形成されてなる非拘束型制振材を作製することができる。
【0030】
なお、上記粘弾性層の形成方法としては、上記方法に限定するものでななく、従来公知の方法が適用できる。
【0031】
このようにして得られた非拘束型制振材において、粘弾性層の厚みは、通常、0.1〜8mmの範囲に設定され、好ましくは0.5〜2mmである。なお、基板の厚みは、用いる材料に応じて適宜の範囲に設定される。
【0032】
つぎに、実施例について比較例と併せて説明する。
【0033】
【実施例1〜8、比較例1〜3】
後記の表1および表2に示す各成分を同表に示す割合で配合し、これを加圧蓋付きニーダー(インターミキサー)を用いて60℃で10分間混練した。ついで、厚み0.8mmの基板(SPCC鋼板)上に、上記混練物からなる粘弾性層(厚み2mm)を形成し、目的とする非拘束型制振材(大きさ:200mm×10mm)を作製した。
【0034】
このようにして得られた実施例品および比較例品の非拘束型制振材を用いて、下記の基準に従い、各特性の比較評価を行った。これらの結果を後記の表1および表2に併せて示した。
【0035】
〔損失係数〕
片持梁法損失係数測定機(松下インターテクノ社製)を用いて、測定周波数250Hzで、損失係数(η)を測定した。そして、損失係数(ηMAX )およびη>0.1の温度範囲を求めた。
【0036】
【表1】

Figure 0003633407
【0037】
【表2】
Figure 0003633407
【0038】
上記表1および表2の結果から、実施例品の非拘束型制振材は、いずれも損失係数(η)>0.1の温度範囲が0〜60℃程度の広範囲となり、幅広い温度範囲での使用に適し、温度依存性に優れていることがわかる。
【0039】
これに対して、比較例品の非拘束型制振材は、いずれも低温側および高温側の損失係数(η)が0.1以下で、損失係数(η)>0.1の温度範囲が狭く、温度依存性に劣ることがわかる。
【0040】
【発明の効果】
以上のように、本発明の非拘束型制振材は、粘弾性層が、ガラス転移温度(Tg)が高温側にある樹脂(A成分)と、ガラス転移温度(Tg)が低温側にあるゴム(B成分)の2成分を母材とした非相溶系組み合わせに、制振フィラー(C成分)が配合されて形成されているため、A成分とB成分の相溶状態が、微粉分散となる部分相溶状態になり、損失弾性率(E″)がブロードとなり、損失弾性率(E″)の温度依存性が向上する。その結果、本発明の非拘束型制振材は、低温側および高温側の損失係数(η)が0.1を超え、損失係数(η)>0.1の温度範囲が0〜60℃程度の広範囲となり、幅広い温度範囲での使用に適し、温度依存性に優れている。
【0041】
このように優れた本発明の非拘束型制振材は、その応用範囲が極めて広く、音響ルーム用の遮音壁、建築構造体用の遮音間仕切り、車両用の防音壁等に適用される他、免震材、靴底、テニスラケット,卓球ラケット,野球バット,ゴルフクラブ,ホッケークラブ等のグリップ部の制振材、電気機器等のCD読取部用制振材、パソコン落下時等の緩衝材、蛇口ハンマーリング用制振材等にも適用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an unconstrained vibration damping material in which a viscoelastic layer is formed on one side of a substrate.
[0002]
[Prior art]
Used as sound insulation walls for acoustic rooms, sound insulation partitions for building structures, sound insulation walls for vehicles, etc., as vibration damping materials to absorb vibrations and noise, constrained damping materials and unconstrained damping materials are used. It has been. The constrained vibration damping material has a configuration in which a viscoelastic layer is formed on one side of a substrate and a constraining layer is further formed thereon, and the unconstrained vibration damping material has only a viscoelastic layer on one side of the substrate. This is a configuration in which a constraining layer is not formed thereon. Recently, the above-mentioned non-restraining type damping material has become mainstream because of its low cost and easy handling.
[0003]
As the viscoelastic layer of the unconstrained damping material, a high damping material composition made of a polymer material is generally used. The above polymer materials exhibit typical viscoelastic behavior. When the material portion vibrates for some reason, complex sine distortion (ε * ) is generated in each material portion. Complex sinusoidal stress (σ * ) is generated. The complex elastic modulus (E * ) takes these ratios as shown in the following equation.
Complex elastic modulus (E * ) = complex sine stress (σ * ) / complex sine strain (ε * )
[0004]
The real part of the complex elastic modulus (E * ) is defined as the storage elastic modulus (E ′) related to the elastic properties of the polymer material, and the imaginary part of the complex elastic modulus (E * ) is the polymer. It is defined as the loss elastic modulus (E ″) related to the viscous properties of the system material. The loss tangent (tan δ) is a ratio of these as shown in the following equation.
Loss tangent (tan δ) = loss elastic modulus (E ″) / storage elastic modulus (E ′)
[0005]
The loss tangent (tan δ) is one of the factors that determine the soundproofing / damping characteristics. The higher the value, the more the mechanical energy is absorbed or released as electric or thermal energy, and the better the sound absorption and vibration damping. It is known to exhibit mechanical properties such as properties. Conventionally, a value obtained as a loss tangent (tan δ) of a highly damped material composition is 0.5 or more. As a material satisfying tan δ ≧ 0.5, for example, a single polymer such as polyvinyl chloride (PVC) is used. In addition, polymer materials containing fillers such as mica and calcium carbonate, plasticizers and the like are used.
[0006]
[Problems to be solved by the invention]
Although the above-mentioned polymer material meets the conventional required characteristics (tan δ ≧ 0.5), there are the following problems when this is applied to the viscoelastic layer of an unconstrained vibration damping material. . That is, in an unconstrained damping material, the loss factor (η) is an important factor for the damping characteristics. In order to exhibit sufficient high damping, the loss factor (η)> 0.1 Required. And this loss factor (η) depends on the temperature, and in the conventional unconstrained damping material, the loss factor (η) on the low temperature side and the high temperature side is less than 0.1, and the use of the unconstrained damping material When the environment changes, it is difficult to adapt to the change in the environmental temperature, and there is a problem that it is inferior in temperature dependency.
[0007]
The present invention has been made in view of such circumstances, and an object thereof is to provide an unconstrained vibration damping material having excellent temperature dependency.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an unconstrained vibration damping material of the present invention is a non-restrained vibration damping material in which a viscoelastic layer is formed on one side of a substrate, and the viscoelastic layer is formed by the following (A ) And (B) components are used as a base material, and the following (C) component is blended therein.
(A) A resin having a glass transition temperature (Tg) in the range of 35 to 60 ° C.
(B) Rubber having a glass transition temperature (Tg) in the range of -10 to 20 ° C.
(C) Damping filler.
[0009]
That is, as a result of repeated studies on the temperature dependence of the loss factor (η) of the unconstrained damping material, the inventors have determined that the loss factor (η) of the unconstrained damping material is a loss tangent (tan δ). It was found that the loss modulus (E ″) is an important factor, and that the temperature dependency of the loss coefficient (η) is improved by improving the temperature dependency of the loss modulus (E ″). As a result of further research and development, as a result of the viscoelastic layer of the above-mentioned unconstrained damping material, a resin (A component) having a glass transition temperature (Tg) on the high temperature side and a glass transition temperature (Tg) on the low temperature side A part where the compatible state of the A component and the B component becomes finely dispersed when formed by blending a vibration-damping filler (C component) with an incompatible combination of the two components of the rubber (B component) in It was found that a compatible state was reached, the loss elastic modulus (E ″) became broad, and the temperature dependency of the loss elastic modulus (E ″) was improved. As a result, the loss coefficient (η) on the low temperature side and the high temperature side exceeds 0.1, and the temperature range of the loss coefficient (η)> 0.1 becomes a wide range of about 0 to 60 ° C., and is used in a wide temperature range. The present inventors have found that an unconstrained vibration damping material that is suitable and excellent in temperature dependency can be obtained, and has reached the present invention.
[0010]
In addition, in this invention, the rubber | gum which is the said B component means the rubber of a broad sense, and is the meaning containing an elastomer.
[0011]
Further, in the present invention, using a specific resin (component A) and a specific rubber (component B) as a base material means that the component A and the component B have a so-called sea-island structure. There is no particular limitation on whether it is “the sea” or “the island”.
[0012]
Further, in the present invention, the glass transition temperature (Tg) of the A component means a peak temperature of a loss tangent (tan δ) [tan δ = E ″ / E ′] of viscoelasticity. It is a value when measured using a viscoelasticity measuring device (DMA 2980 manufactured by TA Instruments Japan Co., Ltd.) under the conditions of 10 Hz, strain of 10 μm, and heating rate of 3 ° C./min. The glass transition temperature (Tg) of the component has the same meaning as the glass transition temperature (Tg) of the component A.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0014]
The unconstrained vibration damping material of the present invention is configured by forming a viscoelastic layer on one side of a substrate, and the viscoelastic layer is composed of a specific resin (component A) and a specific rubber (component B). The greatest feature is that it is formed by blending a vibration-damping filler (component C) with an incompatible combination having components as base materials.
[0015]
The substrate is not particularly limited as long as it is used in the field of damping material, and examples thereof include a steel plate, an aluminum plate, a copper plate, various plastic plates, a wooden plate, a plywood, and concrete.
[0016]
The specific resin (component A) serving as the base material of the viscoelastic layer is not particularly limited as long as the glass transition temperature (Tg) is in the range of 35 to 60 ° C. For example, chlorinated polypropylene (CPP), poly Examples thereof include vinyl acetate (PVAc), ethylene-vinyl acetate copolymer (EVA), and high styrene resin, and any one of these is used.
[0017]
The specific resin (component A) needs to have a glass transition temperature (Tg) in the range of 35 to 60 ° C, preferably 40 to 55 ° C. That is, if the glass transition temperature (Tg) is less than 35 ° C., the Tg difference (ΔTg) from the specific rubber (component B) becomes too small, and high attenuation at a wide range of temperatures cannot be obtained. When the temperature exceeds 60 ° C., the Tg difference (ΔTg) from the specific rubber (component B) becomes too large, the tan δ peak becomes saddle-shaped, and a temperature range with low attenuation appears.
[0018]
As described above, the specific rubber (B component) used together with the specific resin (A component) means a rubber in a broad sense and includes an elastomer. Such a rubber (B component) is not particularly limited as long as the glass transition temperature (Tg) is in the range of −10 to 20 ° C., for example, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR). , Acrylic rubber (ACM), ethylene-acrylic rubber, chlorinated polyethylene (CPE), urethane thermoplastic elastomer, styrene thermoplastic elastomer, polybutadiene rubber (RB), etc., any one of which is used It is done.
[0019]
The specific rubber (component B) needs to have a glass transition temperature (Tg) in the range of −10 to 20 ° C., preferably 0 to 15 ° C. That is, when the glass transition temperature (Tg) is less than −10 ° C., the Tg difference (ΔTg) from the specific resin (component A) becomes too large, the tan δ peak becomes a saddle shape, and the temperature range is low in attenuation. On the other hand, if the temperature exceeds 20 ° C., the Tg difference (ΔTg) from the specific resin (component A) becomes too small, and high attenuation in a wide range of temperatures cannot be obtained.
[0020]
The difference (ΔTg) between the glass transition temperature (Tg) of the specific resin (component A) and the glass transition temperature (Tg) of the specific rubber (component B) is preferably in the range of 30 to 60 ° C. Especially preferably, it is 30-40 degreeC.
[0021]
The combination of the specific resin (component A) and the specific rubber (component B) is combined so that the compatible state of both is a partially compatible state in which fine powder dispersion is achieved. Is preferably in the range of A component / B component = 1/9 to 9/1, particularly preferably A component / B component = 3/7 to 7/3.
[0022]
The damping filler (C component) used together with the A component and the B component is not particularly limited. For example, talc, mica, graphite, calcium carbonate, calcium titanate, wollastonite, zoitelite, carbon fiber, ferrite, etc. Can be given. These may be used alone or in combination of two or more. Among these, a plate-like or needle-like structure is preferably used in that it has a structure dispersed in parallel to some extent in the base material and is excellent in vibration damping properties.
[0023]
The blending ratio of the damping filler (C component) is preferably in the range of 10 to 1000 parts, particularly preferably 100 parts per 100 parts by weight (hereinafter abbreviated as “part”) of the total weight of the A component and B component. ~ 400 parts. That is, if the amount is less than 10 parts, sufficient vibration damping characteristics cannot be obtained. Conversely, if the amount exceeds 1000 parts, the workability deteriorates.
[0024]
The average diameter (diameter) of the damping filler (C component) is usually set in the range of 0.1 to 500 μm, preferably 0.5 to 100 μm. The vibration-damping filler (C component) may be a mixture of two or more types having different average diameters.
[0025]
The viscoelastic layer may be constituted by using other components together with the components A to C. Examples of other components include a tackifier, a crosslinking agent, a crosslinking accelerator, a crosslinking aid, Antioxidants, anti-aging agents, plasticizers, processing aids, colorants (pigments, dyes), brighteners, flame retardants, foaming agents, foaming aids, ozone degradation inhibitors, antiblocking agents, weathering agents, heat resistance agents , Dispersants, compatibilizers, surfactants, antistatic agents, lubricants and the like.
[0026]
The tackifier is not particularly limited, for example, petroleum hydrocarbon resin, rosin, coumarone resin, phenol resin, ketone resin, dicyclopentadiene resin, maleic acid resin, esterified rosin, epoxy resin, urea resin, A melamine resin or the like is preferably used. These may be used alone or in combination of two or more.
[0027]
Examples of the crosslinking agent include sulfur-based crosslinking agents, triazine-based crosslinking agents, metal soap-based crosslinking agents, amine-based crosslinking agents, carbamate salt-based crosslinking agents, and imidazole-based crosslinking agents. As the crosslinking accelerator, for example, a thiuram-based or thiazole-based crosslinking accelerator is preferably used. Examples of the crosslinking aid include ZnO (two types of zinc oxide).
[0028]
Examples of the plasticizer include dioctyl phthalate (DOP) and paraffinic oil. Examples of the processing aid include stearic acid.
[0029]
The unconstrained vibration damping material of the present invention can be manufactured, for example, as follows. That is, first, a viscoelastic layer forming material is prepared by kneading components A to C and other components as necessary using a kneader such as a kneader with a pressure lid (intermixer). Then, after forming this viscoelastic layer forming material into a sheet shape by a desired method, the viscoelastic layer is formed on one side of the substrate by pasting it onto the substrate to produce an unconstrained vibration damping material. can do.
[0030]
In addition, as a formation method of the said viscoelastic layer, it is not limited to the said method, A conventionally well-known method is applicable.
[0031]
In the unconstrained vibration damping material thus obtained, the thickness of the viscoelastic layer is usually set in the range of 0.1 to 8 mm, preferably 0.5 to 2 mm. Note that the thickness of the substrate is set in an appropriate range depending on the material used.
[0032]
Next, examples will be described together with comparative examples.
[0033]
Examples 1-8, Comparative Examples 1-3
The components shown in Table 1 and Table 2 below were blended in the proportions shown in the same table, and this was kneaded at 60 ° C. for 10 minutes using a kneader with a pressure lid (intermixer). Next, a viscoelastic layer (thickness 2 mm) made of the kneaded material is formed on a substrate (SPCC steel plate) having a thickness of 0.8 mm, and a target unconstrained vibration damping material (size: 200 mm × 10 mm) is produced. did.
[0034]
Using the non-restrained vibration damping materials of the example product and the comparative example product thus obtained, each characteristic was comparatively evaluated according to the following criteria. These results are shown together in Tables 1 and 2 below.
[0035]
[Loss factor]
The loss factor (η) was measured at a measurement frequency of 250 Hz using a cantilever beam loss factor measuring machine (manufactured by Matsushita Intertechno Co., Ltd.). And the loss coefficient ((eta) MAX ) and the temperature range of (eta)> 0.1 were calculated | required.
[0036]
[Table 1]
Figure 0003633407
[0037]
[Table 2]
Figure 0003633407
[0038]
From the results shown in Tables 1 and 2, the unconstrained damping material of the example product has a wide temperature range of about 0 to 60 ° C. with a loss coefficient (η)> 0.1, and in a wide temperature range. It can be seen that it is suitable for use and has excellent temperature dependence.
[0039]
In contrast, the unconstrained damping material of the comparative example product has a low temperature side and high temperature side loss coefficient (η) of 0.1 or less and a temperature range of loss coefficient (η)> 0.1. It is narrow and inferior in temperature dependence.
[0040]
【The invention's effect】
As described above, in the unconstrained vibration damping material of the present invention, the viscoelastic layer is such that the glass transition temperature (Tg) is on the high temperature side and the glass transition temperature (Tg) is on the low temperature side. Since the vibration-inhibiting filler (C component) is blended and formed in an incompatible combination using two components of rubber (B component) as a base material, the compatibility state of the A component and the B component is fine powder dispersion and As a result, the loss elastic modulus (E ″) becomes broad, and the temperature dependency of the loss elastic modulus (E ″) is improved. As a result, the unconstrained damping material of the present invention has a low temperature side and high temperature side loss coefficient (η) exceeding 0.1, and the temperature range of loss coefficient (η)> 0.1 is about 0 to 60 ° C. It is suitable for use in a wide temperature range and has excellent temperature dependence.
[0041]
The excellent non-restraining type damping material of the present invention has such a wide application range that it can be applied to sound insulation walls for acoustic rooms, sound insulation partitions for building structures, sound insulation walls for vehicles, etc. Seismic materials, shoe soles, tennis rackets, table tennis rackets, baseball bats, golf clubs, hockey clubs and other grip parts damping materials, electrical equipment and other CD reading parts damping materials, shock absorbers when a PC falls, faucets It can also be applied to a damping material for hammer rings.

Claims (3)

基板の片面に粘弾性層が形成された非拘束型制振材であって、上記粘弾性層が、下記の(A)および(B)成分を母材とし、これに下記の(C)成分が配合されて形成されていることを特徴とする非拘束型制振材。
(A)ガラス転移温度(Tg)が35〜60℃の範囲にある樹脂。
(B)ガラス転移温度(Tg)が−10〜20℃の範囲にあるゴム。
(C)制振フィラー。
An unconstrained vibration damping material having a viscoelastic layer formed on one side of a substrate, wherein the viscoelastic layer has the following components (A) and (B) as a base material, and the following (C) component: A non-restraining type vibration damping material characterized in that it is formed by blending.
(A) A resin having a glass transition temperature (Tg) in the range of 35 to 60 ° C.
(B) Rubber having a glass transition temperature (Tg) in the range of -10 to 20 ° C.
(C) Damping filler.
(A)成分が、塩素化ポリプロピレン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体およびハイスチレン樹脂からなる群から選ばれたいずれか一つである請求項1記載の非拘束型制振材。The unconstrained vibration damping material according to claim 1, wherein the component (A) is any one selected from the group consisting of chlorinated polypropylene, polyvinyl acetate, ethylene-vinyl acetate copolymer and high styrene resin. (B)成分が、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、アクリルゴム、エチレン−アクリルゴム、塩素化ポリエチレン、ウレタン系熱可塑性エラストマー、スチレン系熱可塑性エラストマーおよびポリブタジエンゴムからなる群から選ばれたいずれか一つである請求項1または2記載の非拘束型制振材。The component (B) is selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylic rubber, ethylene-acrylic rubber, chlorinated polyethylene, urethane thermoplastic elastomer, styrene thermoplastic elastomer, and polybutadiene rubber. The non-restraining type damping material according to claim 1 or 2, wherein the damping material is one.
JP32085599A 1999-11-11 1999-11-11 Unconstrained damping material Expired - Fee Related JP3633407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32085599A JP3633407B2 (en) 1999-11-11 1999-11-11 Unconstrained damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32085599A JP3633407B2 (en) 1999-11-11 1999-11-11 Unconstrained damping material

Publications (2)

Publication Number Publication Date
JP2001142466A JP2001142466A (en) 2001-05-25
JP3633407B2 true JP3633407B2 (en) 2005-03-30

Family

ID=18126012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32085599A Expired - Fee Related JP3633407B2 (en) 1999-11-11 1999-11-11 Unconstrained damping material

Country Status (1)

Country Link
JP (1) JP3633407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608752A (en) * 2018-12-21 2019-04-12 宁鹏 A kind of backing plate and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005233209B2 (en) * 2004-04-15 2006-06-29 Acoustic Space Pty Limited Construction elements
EP1747329A4 (en) * 2004-04-15 2010-10-27 Doneux Philippe Pierre Marie J Construction elements
CN106030695B (en) * 2014-03-27 2019-11-01 三井化学株式会社 Acoustic material
KR101512384B1 (en) * 2014-07-29 2015-04-16 (주) 성화테크 Sound insulation composite improved noise-barrier properties and manufacturing method thereof
CN108503938B (en) * 2018-03-20 2021-02-19 华南理工大学 Wide-temperature-range rubber-plastic co-crosslinking damping material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608752A (en) * 2018-12-21 2019-04-12 宁鹏 A kind of backing plate and preparation method thereof

Also Published As

Publication number Publication date
JP2001142466A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3675216B2 (en) High damping material composition
JP3633407B2 (en) Unconstrained damping material
JP5143605B2 (en) High damping rubber composition and vibration control damper using the same
ES2295972T3 (en) HYDROFLUOROCARBON POLYMER COMPOSITIONS.
JP5549445B2 (en) Flooring
WO2018180319A1 (en) Thermally conductive foam sheet
JPH02209936A (en) Composition for vibration-damping and sound-insulating material
WO2007114062A1 (en) Rubber composition and crosslinked rubber product
JP2005248076A (en) Polymer composition and molding of the same
JP2000044818A (en) Highly damping material composition
JP2004035648A (en) Vibration damping elastomer composition for building
JP5113575B2 (en) Damping composition
JPWO2002053647A1 (en) Damping material
JP5801537B2 (en) Adhesive rubber sheet damping material
JP3664210B2 (en) High damping material composition
JP2001200103A (en) Vibration damping vtscoelastic material for building
JP3724233B2 (en) High damping material composition
WO2016144851A1 (en) Improved floor mats
JP3517776B2 (en) High damping rubber composition
JP3815106B2 (en) Vibration damping sheet manufacturing method
JP2000169614A (en) Highly damping foam material composition
JPH0441542A (en) Vibration energy absorbing material
JP7255682B2 (en) Composition for acoustic member and acoustic member
JP3044753B2 (en) Vibration shock absorption foam
JP3610613B2 (en) Composition for vibration impact energy absorbing material and vibration shock energy absorbing foam obtained therefrom

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees