JP3632927B2 - Electro-hydraulic control device - Google Patents

Electro-hydraulic control device Download PDF

Info

Publication number
JP3632927B2
JP3632927B2 JP51169994A JP51169994A JP3632927B2 JP 3632927 B2 JP3632927 B2 JP 3632927B2 JP 51169994 A JP51169994 A JP 51169994A JP 51169994 A JP51169994 A JP 51169994A JP 3632927 B2 JP3632927 B2 JP 3632927B2
Authority
JP
Japan
Prior art keywords
pressure
control
piston
valve
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51169994A
Other languages
Japanese (ja)
Other versions
JPH07502936A (en
Inventor
ノイマイヤー,ゲオルク
Original Assignee
エッチエーダヴリュイー ハイドロウリック ゲーエムベーハー アンド コ.ケージー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エッチエーダヴリュイー ハイドロウリック ゲーエムベーハー アンド コ.ケージー filed Critical エッチエーダヴリュイー ハイドロウリック ゲーエムベーハー アンド コ.ケージー
Publication of JPH07502936A publication Critical patent/JPH07502936A/en
Application granted granted Critical
Publication of JP3632927B2 publication Critical patent/JP3632927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3138Directional control characterised by the positions of the valve element the positions being discrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/55Pressure control for limiting a pressure up to a maximum pressure, e.g. by using a pressure relief valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/615Filtering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Pressure (AREA)
  • Servomotors (AREA)
  • Multiple-Way Valves (AREA)

Abstract

An electro-hydraulic control device (S) for a clamping device of an automatic lathe, with a pressure reducing valve (V) connected to a pressure source (1), the output of which can be connected via a directional control valve (W) to two user lines (11, 12) operable alternately, with a pressure switching device (D) fitted in the pressure reducing valve (V) and with a regulating input (20) to which control pressure can be applied, whereby in the directional control valve (W) there is a user pressure tapping (Z) at which the control pressure exists only in the control position (a and/or b) of the multi-way valve where the output (6) of the pressure reducing valve (V) is properly connected to a user line (11, 12), and in which the pressure tapping (Z) is connected to the control input (20). In the pressure reducing valve (V), between the control piston (14) and the pressure switching device (D) there is a mechanical, motion-transmitting link with which the pressure switching device (D) is actuatable directly by the control piston (14) once the monitoring pressure set via the force of the spring (22) has been reached.

Description

本発明は、電気流体圧式制御装置に関する。
工作機械たとえば自動旋盤の保持取付具内の加工品の固定を確実にするように、工作機械の制御システムは、所要の締付け圧力が得られると肯定応答信号を又は締付け圧力が所要の値より低いと誤り信号をこの工作機械に送る。締付け圧力に達しないと、肯定応答信号は現われない。締付け圧力は、先ず調整し次いで供給圧力に関係なく減圧弁を介し自動的に保持する。この締付け圧力の圧力値は減圧弁における各要求に合うように調整する。互いに異なる加工品又はこれ等の加工品を構成する互いに異なる材料は、互いに異なる締付け圧力を必要とする。
ドイツ国ファルバッファ市D−7012のヘリオン・ベルケ(Herion Werke)KGの86年5月2日付刊行の出版物7501614号には、保持取付具に通ずる各機器管路には、締付け圧力の変るときに新たな締付け圧力に再調整しなければならない別個の調整できる圧力スイッチを協働させてある。このことは安全上の危険がある。その理由は、圧力スイッチの正しい調整は時に無視され又は不正確に実施されることが多いからである。前記の同じ刊行物には、この安全上の危険をなくすように圧力スイッチを減圧弁に一体化する手段を記載してある。この圧力スイッチの調整は、減圧弁の調整を変えたときに自動的に適応できる。問題の減圧弁は、両方の機器管路に共通のシャトル弁を介し、作用を受けた各機器管路からパイロット圧力を供給した間接制御減圧弁である。
DE−C−353259号明細書には、自体のばねの作用を受け計測ピストンとして作用し圧力に無関係に圧力スイッチを作動する別個のポット形ピストンを制御ピストンのほかに設けた直接制御減圧弁について記載してある。
DE−C−3039002号明細書には、この場合別個の絞りピストンを2個の圧力スイッチを作動する計測ピストンとして制御ピストンのほかに設けた電気流体圧式制御装置内の直接制御減圧弁について記載してある。絞りピストンは2個のばねにより中央に位置させる。パイロット圧力は、この減圧弁の出口から誘導する。DE−C−3204055号明細書から知られている工作機械部品用の電気流体圧式制御装置に設けた間接制御減圧弁では、圧力スイッチは減圧弁の制御ピストンのパイロット弁により作動する。制御ピストンとパイロット弁の閉鎖部材とに対するパイロット圧力は、両機器管路に共通のシャトル弁を介し直接制御弁を経て作用を受ける機器管路から誘導される。
DE−C−2310193号明細書から知られている工作機械部品用の電気流体圧式制御装置に設けた減圧弁では、制御ばね及びパイロット圧力の作用を受ける制御ピストンは、受ける圧力に応答して制御ばねの力に無関係に調整され計測ピストンとして作用し圧力スイッチを作動する補助ピストンの内部に配置してある。この制御ピストンに対するパイロット圧力は減圧弁の下流側に配置した方向制御弁の上流側で誘導されるが、補助ピストン及び圧力スイッチに対する切換え圧力は作用を受ける機器圧力管路からパイロット管路及び予備張力を加えた逆止め弁を介して誘導する。安全に機能するために、逆止め弁を備えた2本のパイロット管路と放出穴を持つ1本の共通の漏れ管路とが必要である。これ等の付加的部品により一方では構造上の費用が増し、又他方ではこれ等の部品は安全機能に関して付加的な潜在的な誤差の源になる。この減圧弁は、複雑であり多くの部品から成る。
本発明の目的は、前記したような電気流体圧式制御装置と共に、その他の制御装置のうちでこのような制御装置に使うようにした直接制御減圧弁を提供しようとすることにある。前記の電気流体圧制御装置及び減圧弁は、構造的に簡単であるが、なお目標とする安全機能に関して信頼性が極めて高く少数の個別部品だけから成り、潜在的な誤差の源の数を低減できる。この減圧弁は又、圧力スイッチ手段により圧力を監視する他の制御装置と組合せて普遍的に使用できるようにしてある。
この目的は、本願の発明の構成により達成できる。
本願の明細書に記載する電気流体圧式制御装置では、パイロット圧力は方向制御弁内で直接構造的に簡単に取出され、方向制御弁により機器管路を所期のように減圧弁の出口に連結するだけでこのようになる。方向制御弁はその正しい機能に関してもはや別個に監視する必要がなくなり、そして各別のパイロット管路、シャトル弁又は逆止め弁も同様に設けないで済ませることができる。この制御弁は、簡単で少数の部品から成っている。この方向制御弁が所期のように機能すれば圧力スイッチ手段を作動するだけであるから、安全機能の信頼性が高い。減圧弁の調整を変えるときは、この圧力スイッチ手段はすぐに減圧弁と共に新たな要求に調整することができる。方向制御弁が作動過程に固着し監視された制御位置を正確に占めることができなくなると、減圧弁のためのパイロット圧力は生ぜず、したがって圧力スイッチ手段も応答しない。圧力スイッチ手段は、肯定応答信号を供給しないか又は誤り信号を供給し、警報が与えられ又は損傷を防ぐ手段が取られる。パイロット圧力は、保持取付具の適当な供給が高い信頼性のもとに保証されるような程度に方向制御弁が変位するまでは圧力取出部Zから誘導されない。この場合方向制御弁の残りの変位はなお生ずる。保持取付具の締付け圧力は最も重要な安全基準であるから、保持取付具の緊張用の機器管路に作用するだけで供給圧力の低減のためのパイロット圧力を誘導するのがよい。しかし保持取付具を解放するには圧力低減を行わないで供給圧力を使う。このために他の機器管路をパイロット圧力は誘導しないで方向制御弁を介し減圧弁の出口に連結し、この場合この減圧弁が完全に開き制御作用は行わないようにする。
本願の明細書に記載する方向制御減圧弁は、タペットを介し制御ピストンにより直接作動されるから、少数の個別の部品、コンパクトな構造及び高い信頼性を特徴とする。減圧弁の制御ばねの調整を変えるときは、圧力スイッチ手段を別個に再調整する必要がない。安全機能に必要な圧力スイッチ手段の応答がパイロット圧力により制御ピストンを変位させる方式に関係なく又制御ピストンを変位させるパイロット圧力の性質に関係なく保証されるので、圧力スイッチ手段によって監視する圧力としてパイロット・圧力を利用できる場合に流体圧制御装置に対し減圧弁を普遍的に使用することができる。
制御ピストン及び圧力スイッチ手段の間の運動伝達連結に基づいて、圧力スイッチ手段が制御ピストンの運動又は位置に直接応答するので、安全機能は信頼性の高いままになっている。
本願の方向制御弁では、その方向制御弁の所定の制御位置において、パイロット圧力が発生しないでこれに反し潜在的に存在する圧力の低下も生ずることを保証する。圧力を逃がす最も簡単な方法は戻し管路への連結である。
本願の明細書に記載する実施例では、ケーシング内に制御通路を設けた低価格の4/2方又は4/3方滑り弁を使う。前記制御通路の口は圧力取出部Zの一部を形成する。この圧力取出部Zに適応するのに、方向制御弁の基本的な考え方を変更する必要はない。必要に応じ圧力取出部Zは一方の機器管路だけに又は両方の機器管路に対し使うことができる。前者の場合に機器管路は栓により非作動とすることができる。
本願の明細書に記載する実施例では滑りピストンに、各制御位置において又は1個所の制御位置だけで圧力を取出すように切削により形成した縦方向通路を設けてある。この縦方向通路の構造及び配置により、パイロット圧力は中間部分では誘導されなくて又方向制御弁を所期のように開いた場合に圧力スイッチ手段が信号を生ずるだけであることが保証される。機器管路の付加的監視は行わなくて済む。
本願の明細書に記載する実施例では、溜め連結部に通ずる横方向溝穴を介し直接圧力逃がしを保証できる。圧力取出部Zを使わない場合は溜め連結部を閉じる。前記した3つの実施例の場合に方向制御弁及び減圧弁は、空間を節約し短い低損失の流路を形成するようにスイッチ手段と共に共通のコンパクトなケーシング内に配置すればよい。
本願の明細書に記載する戻り止め手段は、各流路が常に所定の方式で開き又閉じることを保証するのに重要である。戻り止め手段は、電流の供給が途絶えた場合に滑りピストンを制御位置に保持し、保持取付具がすぐには解放されないようにする。戻り止め手段が所期のように鎖錠したかどうかを2つの検知装置によって監視し方向制御弁の正しい切換えを表わす信号を取出すようにすることが考えられる。このことは、パイロット圧力を圧力取出部Zを介してではなく減圧弁の若干の他の部分で取出す場合の実施例に適している。作動磁石又は滑りピストンは変位ピックアップ装置により交互に監視できる。
本願の明細書に記載する減圧弁の実施例は、圧力スイッチを制御ピストンにより直接作動するという利点がある。減圧弁は少数の各別の部品だけから成り密実な構造を持つ。
本願の明細書に記載する実施例では、制御ピストンの運動又は位置はタペットを介し圧力スイッチタペットに機械的に伝える。まわりの圧力に応答しないで制御ピストンの各変位に従って、タペットは制御ピストンにより変位する。圧力スイッチは横方向に配置することができ、この場合減圧弁はコンパクトな構造寸法にすることができ圧力スイッチは正確に調整することができる。
ばね又はばね構造の累進的特性によって、本願の明細書に記載する実施例では、圧力スイッチの切換え点において、たとえば減圧弁の出口で圧力が生成するとき又は供給割合を変えるときに最小許容圧力鎖が得られる。
本願の明細書に記載する実施例では、運動を伝える構造的に簡単なモードが得られる。ばねによる衝合によって結合が行われるから普通の制御ピストンを使うことができる。
本願の明細書に記載する実施例では、作用を及ぼす各機器管路から直接又は減圧弁で直接パイロット圧力を誘導する。減圧弁は又、パイロット圧力が機器管路に通ずる作用路から誘導されない場合に他の作動モードに使うことができる。
本願の明細書に記載する実施例は、所要の各通路を連結し又他の通路を閉じることにより種々の作動モードに普遍的に適合させることができる。
以下、本発明の主題の各実施例を添付図面により説明する。
第1図は本発明による電気流体圧式制御装置のブロック図である。
第2図及び第3図はそれぞれ本発明による減圧弁を示す第3図のII−II線及び第2図のIII−III線に沿う断面図である。
第4図、第5図及び第6図はそれぞれ本発明による方向制御弁を示しIV−IV線、V−V線及びVI−VI線に沿う断面図である。
第7図は本発明減圧弁の一変形の断面図である。
第8図は本発明減圧弁の他の変形の断面図である。
第1図による電気流体圧式制御装置Sは、工作機械部品Kたとえば自動旋盤の保持取付具の複動流体圧シリンダの安全監視作動を行うのに使う。伝動機Mにより駆動する空気冷却の定容量形ポンプ1は、溜め2から流体媒体を吸引し、圧力貯蔵手段4に圧力管路3を経て圧力制限弁を介し充填する。減圧弁Vに通ずる管路3aは圧力管路3から枝分かれする。戻し管路5aは減圧弁Vから戻し管路5に又溜め2に通ずる。圧力スイッチ手段Dは減圧弁Vに構造的に連結してある。減圧弁Vの出口側は、管路6を介し方向制御弁Wにすなわち4/2方滑り弁に連結してある。この制御弁から戻し管路5bが戻し管路5に通ずる(方向制御弁Wの連結P、T)。方向制御弁Wの出口側は機器管路11、12を介し工作機械部品Kに連結してある(連結部A、B)。方向制御弁Wには圧力取出部Z(方向制御弁Wの標識内に概略的に示してある)を設けてある。圧力取出部Zは、パイロット管路7を介し減圧弁Vの制御入力20に連結してある。方向制御弁Wは、2個の作動磁石9、10により2つの制御位置a、bの間で切換えるようにしてある滑りピストン8を有する。2つの制御位置の間の中間部分で圧力取出部Zは戻し管路5bに連結され、パイロット管路7の圧力が零となる。
減圧弁Vの構造は第2図及び第3図(第1実施例)に詳細に説明してある。減圧弁Vは、出口を連結する2つの制御縁部15を持つ制御ピストン14をケーシング穴13内に含む。出口は管路6に連結され、この出口の開口18は、ケーシング穴13を出口6内の特定の圧力を調整するように圧力連結部19(戻し管路3aに連結してある)と溜め連結部17(戻し管路5aに連結してある)とに交互に交差させる。制御ピストン14は、制御入口20で送給されるパイロット圧力により作用を受けるようにしたピストン端部16を持つ。ピストン端部16は、圧力から解放される室28内に配置したばね22の力に対向する作用を受ける。ばね22の付勢力は調整されるようにしてある。ばね22は、ばね衝合体23を介し制御ピストン14に作用する。ばね衝合体23には、タペット26の頭部27に能動的にはまり合う溝24を設けてある。タペット26は、ケーシング穴13に平行に延びる穴25内で変位するようにしてある。タペット26は運動伝達自在にばね衝合体23を介し制御ピストン14に機械的に連結してある。タペット26は、押圧タペット28に整合する。タペット28は穴25を越えて突出し、穴25に対し密封され圧力スイッチ手段Dの圧力スイッチ29を作動するのに使うようにしてある。
2条の通路30、32は、連結通路33を介し制御入口20に連結してある。通路30は、開口18に引続いて通路33に交差する。通路32は、減圧弁Vの外側に設けられパイロット管路7を連結するようにした連結部7'に通じている。図示の実施例では通路30は、開口18及び通路33間の栓によりふさがれねじ栓31により外側に対し密封してある。しかし連結部7'は開いておりパイロット管路7に連結してある。連結部7'を閉じると、開口18に通ずる連結部が開かれ、出口6からのパイロット圧力が制御入口20に加わる。連結部7'には又、2本の機器管路11、12の高い方の機器圧力をシャツトル弁を介し受けるパイロット管路を連結してある。
ばね22は累進的(非線形)特性を持つばね構造を持つ。このために段階的に有効になる複数個のばね又は互いに異なる巻き区間を備えた1個のばねを設けることができる。累進的ばね特性は、増大する供給割合又はむしろ増大する作用圧力によって圧力スイッチ29の切換え圧力が作用圧力に近づくという利点がある。
第4図、第5図及び第6図によれば方向制御弁は、滑りピストン用穴34内で移動できるように案内され、穴34に対し密封した滑りピストン8を備えている。滑りピストン8はタペット37により交互に移動するようにしてある。タペット37は作動磁石9、10により移動する。戻り止め手段36は滑りピストン35の2つの制御位置を機械的に確保する。減圧弁Vの出口6に連結した入口38は、滑りピストン用穴34の中央に位置させてある。旋削により形成した溝の形の出口39、40は、入口38の両側に配置してある。溜め連結部43、Tは、入口38から遠ざかる方に向いた各出口39、40の側に設けてある。戻し管路5b(第1図)は溜め連結部43、Tに連結してある。円筒形密封区間42を設けた滑りピストン8には、直径に沿い互いに対向する流れポケット41を形成してある。各ポケット41は、滑りピストン8の内部に連結され入口38を各制御位置で出口39又は出口40に連結するが、他方の出口40、39は隣接する溜め連結部43に滑りピストン8の狭めた部分35を介し連結される。滑りピストン8の一方の側に1つの流れポケット41を設ければ十分である。圧力補正により又滑りピストン8の平滑走行によって、直径に沿い互いに対向する流れポケット41が役立つ。
直径に沿い互いに対向する2条の縦方向通路44(切削により密封区間42に形成した溝)は円周方向に形成してある。縦方向通路44は、流れポケット41に対して移動、斜めの貫通穴48より相互に連結してある。滑りピストン用穴34の制御通路口45は、縦方向通路44のうちの1つ(第5図の低い方の通路)に連通している。制御通路口45は制御通路51の一部(パイロット管路7に連結した)を形成する。反対側の縦方向通路44は横方向溝穴49に交差する。溝穴49は、滑りピストン8の運動中に溜め通路50の溜め連結部46を横切るように穿設され、次いで縦方向通路44及び戻し管路5b(第1図)の間に流れ連結部を生成する。パイロット管路7は、前記流れ連結部を介し圧力から解放される。溜め連結部46は縦方向通路44に対し側方に移動し、横方向溝穴49だけが溜め連結部46を越えるようにする。
第4図ないし第6図は、制御位置bにおける滑りピストン8の状態を示す。この制御位置bにおける滑りピストン8の状態では、出口40は入口38に連結されるが、出口39は溜め連結部43に連結される。機器管路12内の圧力は、パイロット圧力として中央通路口45に加わり、この圧力がパイロット管路7を介し減圧弁(第1図)の制御入力路20に送られるようにする。溜め連結部46への連結部は、横方向溝穴49(第5図)が溜め連結部のそばにその右側に位置するために存在しない。又一方では機器管路12間の正しい圧力はこのようにしてパイロット圧力として伝達され、他方では又滑りピストン8が実際上その正しい制御位置bに達していることが保証される。滑りピストン8がたとえば戻り止め手段36に対しはまらないで中間部分に固着すると、制御通路口45は溜めに横方向溝穴49を介し連結され、パイロット圧力が伝えられない。
特に重要な態様は、減圧弁の全部の実施例の場合に、減圧弁及び圧力スイッチ手段Dの調整はばね又はばね構造22の付勢力に対し、信号制御部材すなわち調整ねじにより同期的に変えることができる。
減圧弁Vの制御ピストンたとえば第2図のピストン14は、圧力スイッチ29の計測ピストンとして同時に便宜的に使われる。その理由は、まわりの圧力に応答して変位できる部材を制御ピストン及び圧力スイッチの間にもはや設けていないからである。
第7図による実施例では、減圧弁V'の制御ピストン14'に軸線方向タペット54を設けてある。タペット54は、制御ピストンに取付けられ制御入口20に隣接して位置し、圧力スイッチ29に整合し、この圧力スイッチ29を作動するのに使う。タペット54はケーシング穴の密封構造を貫いて延びている。この場合パイロット圧力は出口6から一通路30、33を介して誘導する。この通路を閉じると、制御入口20は図示のように又第1図の圧力取出部Zに、または直接シャトル弁を介し2本の機器管路11、12に連結してある。
第8図による減圧弁V''の実施例ではタペット26'は、第2図の場合と同様にばね衝合体を介し制御ピストン14に運動を伝達するように結合してある。タペット26'には、圧力スイッチ29'のカムフォロアアームが衝合するカム面56を設けてある。このカムフォロアアームは減圧弁V"の一方側で外部に配置され、圧力スイッチ手段Dの一部を構成する。
4/2方滑り弁の代りに4/3方弁を方向制御弁W(第1図に示してある)として設けることができる。圧力取出部Zは、これが溜め連結部に連通することによって、又はこれが戻し管路に連結した機器管路に連通することによって、正しい制御位置(a及び又はb)を除いて解放される。4/3方滑り弁を使うときは、パイロット圧力用のパイロット管路は中央位置で戻し管路に直接連結されるが、両機器管路は閉塞され又は戻し管路に連結される。パイロット圧力を一方の制御位置だけで誘導すると、パイロット管路は他方の制御位置で戻し管路に対しちょうど開口した機器管路に連結され、このパイロット管路が解放する。各別に又は組合せて取ったこれ等の手段は、固定取付具の優れた制御システムが他の点で応答する圧力スイッチ手段の正しくない肯定応答信号を除外する作用をする。
The present invention relates to an electrohydraulic control device.
In order to ensure that the work piece in the holding fixture of a machine tool, for example an automatic lathe, is secured, the machine tool control system gives an acknowledgment signal when the required clamping pressure is obtained or the clamping pressure is lower than the required value. And send an error signal to this machine tool. If the clamping pressure is not reached, no acknowledgment signal will appear. The clamping pressure is first adjusted and then automatically maintained via the pressure reducing valve regardless of the supply pressure. The pressure value of the tightening pressure is adjusted to meet each requirement of the pressure reducing valve. Different workpieces or different materials that make up these workpieces require different clamping pressures.
Publication 7501614, published on May 2, 1986, by Herion Werke KG, D-7012, Falbuffer, Germany, states that each equipment line leading to the holding fixture has a variable clamping pressure. Are associated with a separate adjustable pressure switch which must be readjusted to the new clamping pressure. This is a safety hazard. The reason is that correct adjustment of the pressure switch is often ignored or performed incorrectly. The same publication describes means for integrating a pressure switch with a pressure reducing valve to eliminate this safety hazard. This adjustment of the pressure switch can be automatically adapted when the adjustment of the pressure reducing valve is changed. The pressure reducing valve in question is an indirect control pressure reducing valve in which pilot pressure is supplied from each affected equipment line via a shuttle valve common to both equipment lines.
DE-C-353259 discloses a direct control pressure reducing valve provided with a separate pot type piston in addition to the control piston that acts as a measuring piston under the action of its own spring and operates the pressure switch regardless of the pressure. It is described.
DE-C-3039002 describes a direct control pressure reducing valve in an electrohydraulic control device, in which a separate throttle piston is provided in addition to the control piston as a measuring piston for operating two pressure switches. It is. The throttle piston is centered by two springs. Pilot pressure is derived from the outlet of this pressure reducing valve. In the indirect control pressure reducing valve provided in the electrohydraulic control device for machine tool parts known from DE-C-3204055, the pressure switch is actuated by a pilot valve of the control piston of the pressure reducing valve. The pilot pressure for the control piston and the pilot valve closing member is derived from the instrument line which is acted directly on via the control valve via a shuttle valve common to both instrument lines.
In the pressure reducing valve provided in the electrohydraulic control device for machine tool parts known from DE-C-2310193, the control piston subjected to the action of the control spring and the pilot pressure is controlled in response to the received pressure. It is arranged inside the auxiliary piston which is adjusted independently of the spring force and acts as a measuring piston to actuate the pressure switch. The pilot pressure for this control piston is induced upstream of the directional control valve located downstream of the pressure reducing valve, but the switching pressure for the auxiliary piston and pressure switch is changed from the affected equipment pressure line to the pilot line and pretension. It is guided through a check valve added with. To function safely, two pilot lines with check valves and one common leak line with discharge holes are required. On the one hand, these additional parts increase the construction costs, and on the other hand, these parts are a source of additional potential errors with regard to safety functions. This pressure reducing valve is complicated and consists of many parts.
An object of the present invention is to provide a direct control pressure reducing valve which is used for such a control device among other control devices in addition to the above electrohydraulic control device. The electrohydraulic pressure control device and pressure reducing valve are structurally simple but still very reliable with respect to the targeted safety function and consist of only a few individual parts, reducing the number of potential error sources. it can. This pressure reducing valve can also be used universally in combination with other control devices that monitor the pressure by means of a pressure switch.
This object can be achieved by the configuration of the present invention.
In the electrohydraulic control device described in the specification of the present application, the pilot pressure is simply and structurally taken directly in the directional control valve, and the equipment line is connected to the outlet of the pressure reducing valve as expected by the directional control valve Just do this. The directional control valve no longer needs to be monitored separately for its correct function, and each separate pilot line, shuttle valve or check valve can be dispensed with as well. This control valve is simple and consists of a few parts. If this directional control valve functions as expected, it only activates the pressure switch means, so the reliability of the safety function is high. When changing the adjustment of the pressure reducing valve, this pressure switch means can be adjusted to the new requirements immediately with the pressure reducing valve. If the directional control valve becomes stuck in the operating process and cannot accurately occupy the monitored control position, pilot pressure for the pressure reducing valve will not be generated and therefore the pressure switch means will not respond. The pressure switch means does not provide an acknowledge signal or provides an error signal and an alarm is provided or measures are taken to prevent damage. The pilot pressure is not induced from the pressure outlet Z until the directional control valve is displaced to such an extent that a proper supply of the holding fixture is ensured with high reliability. In this case, the remaining displacement of the directional control valve still occurs. Since the clamping pressure of the holding fixture is the most important safety criterion, it is better to induce a pilot pressure for reducing the supply pressure simply by acting on the instrument line for tensioning the holding fixture. However, to release the holding fixture, supply pressure is used without pressure reduction. For this purpose, the other equipment line is connected to the outlet of the pressure reducing valve via a directional control valve without inducing pilot pressure, in which case the pressure reducing valve is completely opened and no control action is performed.
The directional control pressure reducing valve described in the specification of the present application is directly actuated by a control piston via a tappet, and thus features a small number of individual parts, a compact structure and high reliability. When changing the adjustment of the control spring of the pressure reducing valve, it is not necessary to readjust the pressure switch means separately. Since the response of the pressure switch means necessary for the safety function is guaranteed regardless of the method of displacing the control piston by the pilot pressure and regardless of the nature of the pilot pressure displacing the control piston, the pilot pressure is monitored as the pressure switch means. • When pressure is available, pressure reducing valves can be universally used for fluid pressure control devices.
The safety function remains reliable because the pressure switch means responds directly to the movement or position of the control piston based on the motion transmission connection between the control piston and the pressure switch means.
In the directional control valve of the present application, it is ensured that, at a predetermined control position of the directional control valve, a pilot pressure is not generated and, on the contrary, a potential pressure drop also occurs. The simplest way to relieve pressure is to connect to the return line.
In the embodiment described in the specification of the present application, a low-cost 4 / 2-way or 4 / 3-way slide valve having a control passage in the casing is used. The mouth of the control passage forms part of the pressure outlet Z. In order to adapt to this pressure extraction part Z, it is not necessary to change the basic concept of the directional control valve. If necessary, the pressure outlet Z can be used for only one instrument line or for both instrument lines. In the former case, the instrument line can be deactivated by a plug.
In the embodiment described in the specification of the present application, the sliding piston is provided with a longitudinal passage formed by cutting so as to extract the pressure at each control position or only at one control position. This longitudinal passage structure and arrangement ensures that pilot pressure is not induced in the middle section and that the pressure switch means only generates a signal when the directional control valve is opened as intended. There is no need for additional monitoring of the equipment pipeline.
In the embodiment described in the specification of the present application, pressure relief can be ensured directly through a lateral slot leading to the reservoir connection. When the pressure extraction part Z is not used, the reservoir connection part is closed. In the case of the three embodiments described above, the directional control valve and the pressure reducing valve may be arranged in a common compact casing together with the switch means so as to save space and form a short low-loss flow path.
The detent means described in the specification of the present application is important to ensure that each flow path always opens and closes in a predetermined manner. The detent means holds the sliding piston in the control position when the supply of current is interrupted and prevents the holding fixture from being released immediately. It is conceivable to monitor by means of two detectors whether the detent means is locked as intended and to obtain a signal representing the correct switching of the directional control valve. This is suitable for the embodiment in which the pilot pressure is taken out not through the pressure take-out part Z but at some other part of the pressure reducing valve. The working magnet or sliding piston can be monitored alternately by means of a displacement pick-up device.
The embodiment of the pressure reducing valve described herein has the advantage that the pressure switch is actuated directly by the control piston. The pressure reducing valve consists of only a few separate parts and has a solid structure.
In the embodiments described herein, the movement or position of the control piston is mechanically transmitted to the pressure switch tappet via the tappet. According to each displacement of the control piston without responding to the surrounding pressure, the tappet is displaced by the control piston. The pressure switch can be arranged laterally, in which case the pressure reducing valve can be of compact construction size and the pressure switch can be adjusted precisely.
Due to the progressive nature of the spring or spring structure, in the embodiments described herein, the minimum allowable pressure chain at the switch point of the pressure switch, for example when pressure is generated at the outlet of the pressure reducing valve or when the supply rate is changed. Is obtained.
In the embodiment described in the specification of the present application, a structurally simple mode of transmitting movement is obtained. Since the coupling is performed by a spring collision, an ordinary control piston can be used.
In the embodiment described in the specification of the present application, the pilot pressure is derived directly from each acting instrument line or directly with a pressure reducing valve. The pressure reducing valve can also be used for other modes of operation when pilot pressure is not derived from the working path leading to the instrument line.
The embodiments described herein can be universally adapted to various modes of operation by connecting each required passage and closing the other passages.
Hereinafter, embodiments of the subject of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram of an electrohydraulic control device according to the present invention.
2 and 3 are sectional views taken along line II-II in FIG. 3 and line III-III in FIG. 2, respectively, showing a pressure reducing valve according to the present invention.
4, 5 and 6 are sectional views showing the directional control valve according to the present invention and taken along lines IV-IV, VV and VI-VI, respectively.
FIG. 7 is a sectional view of a modification of the pressure reducing valve of the present invention.
FIG. 8 is a sectional view of another modification of the pressure reducing valve of the present invention.
The electrohydraulic control device S according to FIG. 1 is used to perform a safety monitoring operation of a double-acting hydraulic cylinder of a machine tool part K, for example, a holding fixture of an automatic lathe. An air-cooled constant displacement pump 1 driven by a transmission M sucks a fluid medium from a reservoir 2 and fills the pressure storage means 4 via a pressure line 3 via a pressure limiting valve. A pipe line 3 a communicating with the pressure reducing valve V branches off from the pressure pipe line 3. The return line 5a leads from the pressure reducing valve V to the return line 5 and to the reservoir 2. The pressure switch means D is structurally connected to the pressure reducing valve V. The outlet side of the pressure reducing valve V is connected to the direction control valve W, that is, to the 4 / 2-way slip valve via the pipe 6. From this control valve, the return line 5b communicates with the return line 5 (connections P and T of the direction control valve W). The outlet side of the directional control valve W is connected to the machine tool part K via the equipment pipelines 11 and 12 (connecting portions A and B). The direction control valve W is provided with a pressure take-out part Z (shown schematically in the sign of the direction control valve W). The pressure take-out part Z is connected to the control input 20 of the pressure reducing valve V via the pilot line 7. The directional control valve W has a sliding piston 8 which is adapted to be switched between two control positions a and b by two actuating magnets 9 and 10. In the middle part between the two control positions, the pressure take-out part Z is connected to the return line 5b, and the pressure in the pilot line 7 becomes zero.
The structure of the pressure reducing valve V is described in detail in FIGS. 2 and 3 (first embodiment). The pressure reducing valve V includes a control piston 14 in the casing hole 13 having two control edges 15 connecting the outlets. The outlet is connected to the line 6 and this outlet opening 18 is connected to the reservoir hole 13 and the pressure connection 19 (connected to the return line 3a) so as to regulate a specific pressure in the outlet 6. Crossed alternately with section 17 (connected to return line 5a). The control piston 14 has a piston end 16 adapted to be acted upon by a pilot pressure delivered at the control inlet 20. The piston end 16 is subjected to an action opposite to the force of the spring 22 arranged in the chamber 28 which is released from pressure. The biasing force of the spring 22 is adjusted. The spring 22 acts on the control piston 14 via a spring abutting body 23. The spring abutting body 23 is provided with a groove 24 that fits into the head 27 of the tappet 26. The tappet 26 is adapted to be displaced in a hole 25 extending parallel to the casing hole 13. The tappet 26 is mechanically connected to the control piston 14 via a spring abutting body 23 so as to be able to transmit motion. The tappet 26 is aligned with the pressing tappet 28. The tappet 28 protrudes beyond the hole 25 and is sealed to the hole 25 so that it can be used to actuate the pressure switch 29 of the pressure switch means D.
The two passages 30 and 32 are connected to the control inlet 20 via a connection passage 33. The passage 30 intersects the passage 33 following the opening 18. The passage 32 communicates with a connecting portion 7 ′ provided outside the pressure reducing valve V and connecting the pilot pipe line 7. In the illustrated embodiment, the passage 30 is blocked by a plug between the opening 18 and the passage 33 and sealed to the outside by a screw plug 31. However, the connecting part 7 ′ is open and connected to the pilot line 7. When the connecting part 7 ′ is closed, the connecting part leading to the opening 18 is opened, and the pilot pressure from the outlet 6 is applied to the control inlet 20. Also connected to the connecting part 7 'is a pilot line that receives the higher equipment pressure of the two equipment lines 11 and 12 via the Stottle valve.
The spring 22 has a spring structure having a progressive (non-linear) characteristic. For this purpose, it is possible to provide a plurality of springs which become effective in stages or one spring with different winding sections. The progressive spring characteristic has the advantage that the switching pressure of the pressure switch 29 approaches the working pressure with an increasing supply rate or rather an increasing working pressure.
According to FIGS. 4, 5 and 6, the directional control valve is provided with a sliding piston 8 which is guided so as to be able to move in the sliding piston hole 34 and is sealed against the hole 34. The sliding piston 8 is moved alternately by the tappet 37. The tappet 37 is moved by the operating magnets 9 and 10. The detent means 36 mechanically secures two control positions of the sliding piston 35. An inlet 38 connected to the outlet 6 of the pressure reducing valve V is located at the center of the sliding piston hole 34. The outlets 39, 40 in the form of grooves formed by turning are arranged on both sides of the inlet 38. The reservoir connecting portions 43 and T are provided on the side of each outlet 39 and 40 facing away from the inlet 38. The return line 5b (FIG. 1) is connected to the reservoir connecting portions 43 and T. The sliding piston 8 provided with the cylindrical sealing section 42 is formed with flow pockets 41 facing each other along the diameter. Each pocket 41 is connected to the inside of the sliding piston 8 to connect the inlet 38 to the outlet 39 or the outlet 40 at each control position, while the other outlet 40, 39 is narrowed to the adjacent reservoir connecting portion 43. They are connected via part 35. It is sufficient to provide one flow pocket 41 on one side of the sliding piston 8. The flow pockets 41 facing each other along the diameter serve by pressure compensation and by the smooth running of the sliding piston 8.
Two longitudinal passages 44 (grooves formed in the sealing section 42 by cutting) facing each other along the diameter are formed in the circumferential direction. The longitudinal passages 44 move relative to the flow pocket 41 and are connected to each other through oblique through holes 48. The control passage opening 45 of the sliding piston hole 34 communicates with one of the longitudinal passages 44 (the lower passage in FIG. 5). The control passage port 45 forms a part of the control passage 51 (connected to the pilot pipe line 7). The opposite longitudinal passage 44 intersects the transverse slot 49. The slot 49 is drilled across the reservoir connection 46 of the reservoir passage 50 during the movement of the sliding piston 8, and then the flow connection between the longitudinal passage 44 and the return line 5b (FIG. 1). Generate. The pilot line 7 is released from pressure via the flow connection. The reservoir connection 46 moves laterally relative to the longitudinal passage 44 so that only the lateral slots 49 exceed the reservoir connection 46.
4 to 6 show the state of the sliding piston 8 at the control position b. In the state of the sliding piston 8 at the control position b, the outlet 40 is connected to the inlet 38, but the outlet 39 is connected to the reservoir connecting portion 43. The pressure in the equipment line 12 is applied to the central passage port 45 as a pilot pressure, and this pressure is sent to the control input path 20 of the pressure reducing valve (FIG. 1) via the pilot line 7. There is no connection to the reservoir connection 46 because the lateral slot 49 (FIG. 5) is located on the right side of the reservoir connection. On the one hand, the correct pressure between the instrument lines 12 is thus transmitted as pilot pressure, and on the other hand, it is also ensured that the sliding piston 8 has actually reached its correct control position b. For example, when the sliding piston 8 is fixed to the intermediate portion without being fitted to the detent means 36, the control passage port 45 is connected to the reservoir via the lateral slot 49, and the pilot pressure is not transmitted.
A particularly important aspect is that in the case of all embodiments of the pressure reducing valve, the adjustment of the pressure reducing valve and the pressure switch means D is changed synchronously with the signal control member, ie the adjusting screw, against the biasing force of the spring or spring structure 22. Can do.
The control piston of the pressure reducing valve V, for example, the piston 14 in FIG. 2 is simultaneously used as a measuring piston of the pressure switch 29 for convenience. This is because there is no longer a member between the control piston and the pressure switch that can be displaced in response to the surrounding pressure.
In the embodiment according to FIG. 7, an axial tappet 54 is provided on the control piston 14 ′ of the pressure reducing valve V ′. The tappet 54 is attached to the control piston and located adjacent to the control inlet 20 and is aligned with the pressure switch 29 and used to actuate the pressure switch 29. The tappet 54 extends through the casing hole sealing structure. In this case, the pilot pressure is guided from the outlet 6 through one passage 30, 33. When this passage is closed, the control inlet 20 is connected, as shown, to the pressure outlet Z in FIG. 1 or directly to the two instrument lines 11, 12 via a shuttle valve.
In the embodiment of the pressure-reducing valve V ″ according to FIG. 8, the tappet 26 ′ is coupled to transmit movement to the control piston 14 via a spring abutting body as in the case of FIG. The tappet 26 'is provided with a cam surface 56 with which the cam follower arm of the pressure switch 29' abuts. This cam follower arm is arranged outside on one side of the pressure reducing valve V ″ and constitutes a part of the pressure switch means D.
Instead of a 4 / 2-way slip valve, a 4 / 3-way valve can be provided as a directional control valve W (shown in FIG. 1). The pressure outlet Z is released except for the correct control position (a and / or b) either by communicating with the reservoir connection or by communicating with the instrument line connected to the return line. When using a 4 / 3-way slip valve, the pilot line for pilot pressure is connected directly to the return line at the central position, while both instrument lines are closed or connected to the return line. When pilot pressure is induced only in one control position, the pilot line is connected to an instrument line that is just open to the return line in the other control position, and this pilot line is released. These measures, taken separately or in combination, serve to eliminate incorrect acknowledgment signals of the pressure switch means to which the superior control system of the stationary fixture responds otherwise.

Claims (10)

工作機械の保持取付具用の電気流体圧式制御装置(S)であって、該電気流体圧式制御装置(S)は、
溜め(2)に接続される滑りピストン穴(34)と所定の制御位置(a,b)間で該滑りピストン穴(34)内を摺動する滑りピストン(35)とを有する方向制御弁(W)と、
圧力源(1)に接続され、該方向制御弁(W)を介して保持取付具の二本の機器管路(11、12)の一方に交互に連結された出力口(18)を有する減圧弁(V、V'、V")とを備え、
該減圧弁はさらに、該機器管路(11、12)の一方において、前記方向制御弁(W)を介して該減圧弁(V、V'、V")により設定された監視圧力に調整された圧力スイッチ手段(D)を有し、
該減圧弁は該出力口と該機器管路(11、12)との内部の圧力から誘導されるパイロット圧力を受けるための制御入力口(20)を有し、
該方向制御弁(W)には該制御入力口(20)に連通し該パイロット圧力を前記所定の制御位置に誘導するための機器圧力取出部(Z)が設けられており、
前記圧力取出部(Z)は、該滑りピストン穴(34)内に配設される機器圧力取出し制御通路口(45)と該滑りピストン(35)の密閉部分(42)に軸方向に延在する縦方向通路(44)とを有し、
該縦方向通路(44)は機器圧力取出し制御通路口(45)と該滑りピストンの所定の制御位置における方向制御弁の出口(39,40)との間を連結していることを特徴とする電気流体圧式制御装置(S)。
An electrohydraulic control device (S) for a holding fixture of a machine tool, the electrohydraulic control device (S)
Directional control valve having a sliding piston hole (34) connected to the reservoir (2) and a sliding piston (35) sliding in the sliding piston hole (34) between predetermined control positions (a, b) ( W) and
Depressurization connected to the pressure source (1) and having an output port (18) alternately connected to one of the two equipment lines (11, 12) of the holding fixture via the directional control valve (W) With valves (V, V ', V "),
The pressure reducing valve is further adjusted to a monitoring pressure set by the pressure reducing valve (V, V ′, V ″) via the direction control valve (W) in one of the equipment lines (11, 12). Pressure switch means (D)
The pressure reducing valve has a control input (20) for receiving a pilot pressure derived from the pressure inside the output and the equipment line (11, 12);
The directional control valve (W) is provided with an equipment pressure extraction portion (Z) that communicates with the control input port (20) and guides the pilot pressure to the predetermined control position.
The pressure take-out portion (Z) extends in the axial direction to an equipment pressure take-out control passage port (45) disposed in the sliding piston hole (34) and a sealed portion (42) of the sliding piston (35). A longitudinal passage (44) that
The longitudinal passage (44) is connected between the equipment pressure take-out control passage port (45) and the outlet (39, 40) of the directional control valve at a predetermined control position of the sliding piston. Electro-hydraulic control device (S).
請求項1に記載の電気流体圧式制御装置であって、前記圧力取出部(Z)は該所定の制御位置間の中間部分において該所定の制御位置間にかかる圧力から解放されていることを特徴とする電気流体圧式制御装置。2. The electrohydraulic control device according to claim 1, wherein the pressure extraction portion (Z) is released from the pressure applied between the predetermined control positions at an intermediate portion between the predetermined control positions. An electrohydraulic control device. 請求項1に記載の電気流体圧式制御装置であって、該方向制御弁(W)は4/2方または4/3方の滑り弁であって、該滑り弁は該滑りピストン(35)を移動させるための少なくとも一の作動磁石(9,10)を前記所定の制御位置の間に有し、
該滑りピストン(35)は前記所定の制御位置の各々において該方向制御弁(W)に設けられ該減圧弁の該出力口(18,6)に接続されている入口(38)と該機器管路(11、12)の一方に接続される出口(39,40)との間に流れによる接続をつくり、
それと同時に該滑りピストン(35)は該出口(39,40)の一方と該方向制御弁(W)の溜め連結部(T)との間に流れの接続をつくり、
それと同時に該滑りピストン(35)は、該パイロット圧力を発生させ該パイロット圧力を該減圧弁の制御入力口(20)に伝達させるための流れの接続を該機器管路(11、12)と該出口(39,40)の一方との間につくることを特徴とする電気流体圧式制御装置。
2. The electrohydraulic control device according to claim 1, wherein the directional control valve (W) is a 4 / 2-way or 4 / 3-way slide valve, and the slide valve controls the slide piston (35). Having at least one working magnet (9, 10) for movement between said predetermined control positions;
The sliding piston (35) is provided in the direction control valve (W) at each of the predetermined control positions, and is connected to the output port (18, 6) of the pressure reducing valve and the equipment pipe. Make a flow connection with the outlet (39, 40) connected to one of the paths (11, 12),
At the same time, the sliding piston (35) creates a flow connection between one of the outlets (39, 40) and the reservoir connection (T) of the directional control valve (W),
At the same time, the sliding piston (35) has a flow connection for generating the pilot pressure and transmitting the pilot pressure to the control input (20) of the pressure reducing valve and the equipment line (11, 12). An electrohydraulic control device formed between one of the outlets (39, 40).
請求項3に記載の電気流体圧式制御装置であって、該滑りピストンは該密閉部分(42)に少なくとも一方に軸方向かつ円周方向に仕切られた流れポケット(41)を備え、
該機器圧力取出し制御通路口(45)は該流れポケット(41)の外側であって該滑りピストン穴(34)の壁面に配置されていることを特徴とする電気流体圧式制御装置。
4. The electrohydraulic control device according to claim 3, wherein the sliding piston has a flow pocket (41) partitioned in an axial direction and a circumferential direction in at least one of the sealing portions (42),
The electrohydraulic control device according to claim 1, wherein the device pressure take-out control passage port (45) is disposed outside the flow pocket (41) and on the wall surface of the sliding piston hole (34).
請求項1に記載の電気流体圧式制御装置であって、該滑りピストン(35)の縦方向通路(44)は該滑りピストン(35)に形成される横方向溝穴(49)を介して該滑りピストン穴(34)の溜め連結部につながり、該横方向溝穴(49)は該滑りピストン(35)の前記所定の制御位置の間の中間部分において該流れポケット(41)の外側に向かって配置されることを特徴とする電気流体圧式制御装置。2. The electrohydraulic control device according to claim 1, wherein the longitudinal passage (44) of the sliding piston (35) is inserted into the sliding piston (35) via a lateral slot (49) formed in the sliding piston (35). Connected to the reservoir connection of the sliding piston hole (34), the lateral slot (49) faces the outside of the flow pocket (41) in the middle part between the predetermined control positions of the sliding piston (35). An electrohydraulic control device characterized by being arranged. 請求項1に記載の電気流体圧式制御装置であって、該減圧弁は、
内部に弁穴(13)と、
該弁穴内に可動に配置される制御ピストン(14,14')と、
該制御ピストンと圧力スイッチ手段(D)との間に配置されるタペット(54,26,26')とを備え、
該タペット(54,26,26')は該パイロット圧力に対抗して該制御ピストンに負荷を与えるばね(22)によって設定された値まで圧力が上昇した際すぐに、該制御ピストンに伴って一緒に移動し該制御ピストンの動きを伝達して該圧力スイッチ手段(D)を作動させるように該制御ピストンに固定されていることを特徴とする電気流体圧式制御装置。
The electrohydraulic control device according to claim 1, wherein the pressure reducing valve includes:
Inside the valve hole (13),
A control piston (14, 14 ') movably disposed within the valve hole;
A tappet (54, 26, 26 ') disposed between the control piston and the pressure switch means (D),
The tappet (54, 26, 26 ') is brought together with the control piston as soon as the pressure rises to the value set by the spring (22) that loads the control piston against the pilot pressure. The electrohydraulic control device is fixed to the control piston so that the pressure switch means (D) is actuated by transmitting the movement of the control piston.
請求項6に記載の電気流体圧式制御装置であって、該タペット(54)は該圧力スイッチ(D)の軸方向に該制御ピストンに沿って配置されていることを特徴とする電気流体圧式制御装置。The electrohydraulic control device according to claim 6, wherein the tappet (54) is disposed along the control piston in the axial direction of the pressure switch (D). apparatus. 請求項6に記載の電気流体圧式制御装置であって、該タペット(26,26')は該制御ピストン(14)と機械的に係合し、該制御ピストン(14)と平行に配置され、該タペット(26,26')は該圧力スイッチ(D)の軸方向に沿って配置されているか、または該圧力スイッチ(D)のカム従動節と接触するカム面(56)とを有することを特徴とする電気流体圧式制御装置。Electrohydraulic control device according to claim 6, wherein the tappet (26, 26 ') is mechanically engaged with the control piston (14) and is arranged in parallel with the control piston (14), The tappet (26, 26 ') is disposed along the axial direction of the pressure switch (D) or has a cam surface (56) that contacts the cam follower of the pressure switch (D). An electrohydrodynamic control device. 請求項6に記載の電気流体圧式制御装置であって、該減圧弁は該ばね(22)と該制御ピストン(14)との間に配置されるばね衝合体(23)を備え、該タペット(26,26')はばね衝合体(23)と機械的に係合していることを特徴とする電気流体圧式制御装置。The electrohydraulic control device according to claim 6, wherein the pressure reducing valve includes a spring abutting body (23) disposed between the spring (22) and the control piston (14), and the tappet ( 26, 26 ') is an electrohydraulic control device characterized in that it is mechanically engaged with the spring abutting body (23). 請求項1に記載の電気流体圧式制御装置であって、該減圧弁(V,V')は該出口(6)から該制御入力(20)までつながる通路(30)と、ケーシング連結部(7')から該制御入力(20)までつながる通路(32)とからなる二つの通路を備え、
該制御入力(20)は前記二つの通路(30,32)のいずれか一方と選択的に連通可能であることを特徴とする電気流体圧式制御装置。
The electrohydraulic control device according to claim 1, wherein the pressure reducing valve (V, V ') includes a passage (30) connected from the outlet (6) to the control input (20), and a casing connecting portion (7 ') And two passages consisting of a passage (32) leading from the control input (20),
The electrohydraulic control device characterized in that the control input (20) can selectively communicate with either one of the two passages (30, 32).
JP51169994A 1992-11-10 1993-11-09 Electro-hydraulic control device Expired - Lifetime JP3632927B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4237901.6 1992-11-10
DE4237901A DE4237901C2 (en) 1992-11-10 1992-11-10 Electro-hydraulic control device and pressure reducing valve
PCT/EP1993/003129 WO1994011797A1 (en) 1992-11-10 1993-11-09 Electro-hydraulic control device and pressure reducing valve

Publications (2)

Publication Number Publication Date
JPH07502936A JPH07502936A (en) 1995-03-30
JP3632927B2 true JP3632927B2 (en) 2005-03-30

Family

ID=6472511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51169994A Expired - Lifetime JP3632927B2 (en) 1992-11-10 1993-11-09 Electro-hydraulic control device

Country Status (8)

Country Link
EP (1) EP0620932B1 (en)
JP (1) JP3632927B2 (en)
KR (1) KR100238784B1 (en)
AT (1) ATE169132T1 (en)
DE (1) DE4237901C2 (en)
ES (1) ES2119145T3 (en)
TW (1) TW273588B (en)
WO (1) WO1994011797A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9413273U1 (en) 1994-08-17 1994-10-06 Heilmeier & Weinlein Fabrik für Oel-Hydraulik GmbH & Co KG, 81673 München Clamping module for machine tool clamping device
DE29518705U1 (en) 1995-11-24 1996-01-18 Heilmeier & Weinlein Fabrik für Oel-Hydraulik GmbH & Co KG, 81673 München Clamping module
DE29605911U1 (en) * 1996-03-29 1997-07-24 Heilmeier & Weinlein Fabrik für Oel-Hydraulik GmbH & Co KG, 81673 München Electro-hydraulic control device
DE19637256A1 (en) * 1996-09-13 1998-03-19 Index Werke Kg Hahn & Tessky Workpiece spindle device for a machine tool
DE29808295U1 (en) 1998-05-07 1998-08-13 Heilmeier & Weinlein Fabrik für Oel-Hydraulik GmbH & Co KG, 81673 München Seat valve
DE29808294U1 (en) 1998-05-07 1998-08-13 Heilmeier & Weinlein Fabrik für Oel-Hydraulik GmbH & Co KG, 81673 München Electro-hydraulic clamping module
DE19935473B4 (en) * 1999-07-13 2006-02-02 Bosch Rexroth Aktiengesellschaft Hydraulic pressure control valve
CN103437752B (en) * 2013-09-12 2015-10-21 中煤科工集团西安研究院有限公司 A kind of for the long-range hydraulic control system of coal mine gallery drilling rig

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2249743A1 (en) * 1972-10-11 1974-04-18 Kloeckner Humboldt Deutz Ag VALVE UNIT
DE2310193C2 (en) * 1973-03-01 1974-11-21 Index-Werke Kg Hahn & Tessky, 7300 Esslingen Safety pressure control valve for setting a constant working pressure
DE2602844B2 (en) * 1976-01-27 1978-08-17 Eisenwerk Weserhuette Ag, 4970 Bad Oeynhausen Electrically controlled pressure control valve
DE3039002C2 (en) * 1980-10-15 1983-02-10 Lutz 7306 Denkendorf Leupold Pressure control valve
DE3204055C2 (en) * 1982-02-06 1984-06-28 Lutz 7306 Denkendorf Leupold Pressure relief or control valve
DE3532592A1 (en) * 1985-09-12 1987-03-19 Rexroth Mannesmann Gmbh 3-WAY PRESSURE REDUCER VALVE WITH SECONDARY PRESSURE MONITORING
DE3918418A1 (en) * 1989-04-17 1990-10-18 Rexroth Mannesmann Gmbh Electrical measurement value acquisition for control valve - using pressure sensors interacting with chamber of holder body, enabling use of standard value
ES2027502A6 (en) * 1990-11-19 1992-06-01 Bendix Espana Fluid pressure regulating valve.

Also Published As

Publication number Publication date
ATE169132T1 (en) 1998-08-15
KR100238784B1 (en) 2000-01-15
DE4237901C2 (en) 1996-02-01
WO1994011797A1 (en) 1994-05-26
EP0620932A1 (en) 1994-10-26
TW273588B (en) 1996-04-01
DE4237901A1 (en) 1994-05-11
JPH07502936A (en) 1995-03-30
ES2119145T3 (en) 1998-10-01
EP0620932B1 (en) 1998-07-29

Similar Documents

Publication Publication Date Title
EP0900962B1 (en) Pilot solenoid control valve and hydraulic control system using same
US4075928A (en) Safety valve for fluid systems
US6164068A (en) Variable pressure hydraulic systems
CN101389869B (en) Control device and hydraulic pilot control
US6073652A (en) Pilot solenoid control valve with integral pressure sensing transducer
EP0559903B1 (en) Valve device
KR102646087B1 (en) Flow controller and driving device equipped with the same
US4089169A (en) Pressure actuated signal fluid control for load responsive systems
CA2120052C (en) Hydraulic system for open or closed-centered systems
KR20030092121A (en) Hydraulic system with three electrohydraulic valves for controlling fluid flow to a load
EP0953776B1 (en) Solenoid operated dual spool control valve
JP3632927B2 (en) Electro-hydraulic control device
JPH0333928B2 (en)
KR19990014702A (en) Hydraulic emergency controller with control valve for continuously variable transmission
JPH0251682A (en) Safety valve
US4748896A (en) Safety valve assembly
SE510508C2 (en) Device for controlling a hydraulic motor
USRE30403E (en) Safety valve for fluid systems
CA1301543C (en) Control device for a pump with adjustable flow
US20050199295A1 (en) Electrohydraulic control device
US6983926B2 (en) Valve arrangement for hydraulic consumer
GB2083927A (en) Change Over Valve
US3972189A (en) Control for hydrostatic transmissions
JPH0364722B2 (en)
EP0573090B1 (en) Closed loop control for shift fork position

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A72 Notification of change in name of applicant

Free format text: JAPANESE INTERMEDIATE CODE: A721

Effective date: 20040217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

EXPY Cancellation because of completion of term