JP3632298B2 - Spontaneous ignition test equipment - Google Patents

Spontaneous ignition test equipment Download PDF

Info

Publication number
JP3632298B2
JP3632298B2 JP14081296A JP14081296A JP3632298B2 JP 3632298 B2 JP3632298 B2 JP 3632298B2 JP 14081296 A JP14081296 A JP 14081296A JP 14081296 A JP14081296 A JP 14081296A JP 3632298 B2 JP3632298 B2 JP 3632298B2
Authority
JP
Japan
Prior art keywords
sample
temperature
spontaneous ignition
time
differential value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14081296A
Other languages
Japanese (ja)
Other versions
JPH09304310A (en
Inventor
夏江 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14081296A priority Critical patent/JP3632298B2/en
Publication of JPH09304310A publication Critical patent/JPH09304310A/en
Application granted granted Critical
Publication of JP3632298B2 publication Critical patent/JP3632298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の自然発火の条件を測定する自然発火試験装置に関する。
【0002】
【従来の技術】
化学物質の製造工程では、製造の途中の段階で生成される中間生成物を一時的に保管しておく必要が生じる場合がある。そして、このような中間生成物の中には、ある程度以上の温度環境で長時間放置すると自然発火を起こすものがあり、しかも、この自然発火に至る温度や時間の条件が未知のものがある。自然発火試験装置は、このような中間生成物の試料を一定の設定温度に長時間保持して自然発火が始まるまでの時間を測定することにより、安全に保管を行うための温度環境や保管可能時間を事前に調べるためのものである。
【0003】
上記自然発火試験装置は、図3に示すように、装置本体11と操作ボックス12とで構成される。装置本体11は、下端に試料を収納するための試料保持容器14が設けられた試料ホルダ13を上部から挿入して内部に装着することができるようになっている。また、この装置本体11には、温度制御装置が設けられ、装置内部の試料保持容器14に収納した試料の試料温度を一定の設定温度に保持できるようになっている。さらに、この装置本体11の正面には、窒素ガス等の不活性ガスの供給を受ける第1ポート15と、酸素ガスや空気等の供給を受ける第2ポート16が設けられている。これらのポート15,16は、それぞれ電磁弁を介して装置内部にガスを流入させるためのものである。操作ボックス12は、温度制御装置の設定温度を設定する操作や、電磁弁を動作させて装置本体11の内部に流入させるガスを切り替える操作等を行うものである。
【0004】
上記自然発火試験装置は、まず自然発火の条件を調べる試料を試料保持容器14に収納して試料ホルダ13を装置本体11に装着する。次に、操作ボックス12を操作して、装置本体11の内部に第1ポート15からの不活性ガスを流入させると共に、温度制御装置の設定温度を設定して温度制御を開始させる。すると、図4に示すように、時刻t11に温度制御が開始されることにより、試料温度Tが徐々に上昇し、時刻t12にほぼ設定温度Tsetに達して安定する。そして、この試料温度Tが安定すると、装置本体11の内部に供給するガスを第2ポート16からの酸素ガス等に切り替えて、試料保持容器14の試料が自然発火を始めるまでの時間の測定を開始する。
【0005】
ここで、試料が設定温度Tsetに長時間保持されることにより自然発火を起こす場合には、その少し前の時刻t13の頃から試料温度Tが上昇し始める。そして、この試料温度Tが急激に上昇する時刻t14に測定を終了し、測定を開始した時刻t12からこの時刻t14までの時間を、試料が自然発火を始めるまでの時間とする。
【0006】
ところで、試料が実際に自然発火を起こすと、装置本体11の内部が極めて高温になるので、試料ホルダ13が損傷を受けたり装置が破損するなどの不都合が生じる。そこで、この自然発火試験装置には、試料が自然発火を始める直前の温度上昇を検出することにより、実際に発火が発生するのを事前に防止する安全装置が従来から設けられている。
【0007】
安全装置は、図5に示すように、試料温度検出器2と温度比較判定回路3と電磁弁駆動回路5を備えている。試料温度検出器2は、装置本体11内部の試料保持容器14内に配置された熱電対1により、この試料保持容器14に収納された試料Sの試料温度Tを検出するものである。温度比較判定回路3は、この試料温度検出器2が検出した試料温度Tを所定温度Tthと比較するものである。所定温度Tthは、予め操作ボックス12の操作により、設定温度Tset よりも十分に高い温度に設定されたものである。電磁弁駆動回路5は、装置本体11の内部に設けられた電磁弁6,7の開閉を制御する駆動回路である。電磁弁6は、図3に示した不活性ガスの供給を受ける第1ポート15に繋がり、電磁弁7は、酸素ガス等の供給を受ける第2ポート16に繋がっている。そして、この電磁弁駆動回路5は、測定時には、電磁弁7を開いて酸素ガス等を装置本体11の内部に流入させているが、温度比較判定回路3によって試料温度Tが所定温度Tthを超えたと判定された場合には、この電磁弁7を閉じて電磁弁6を開くことにより、大量の不活性ガスを装置本体11の内部に流入させるようになっている。
【0008】
この安全装置は、図4に示したように、試料温度Tが自然発火の直前になって急激に上昇し、時刻t14に所定温度Tthを超えると、温度比較判定回路3がこれを判定して、電磁弁駆動回路5が大量の不活性ガスを装置本体11の内部に流入させる。従って、この不活性ガスの流入による酸素供給のしゃ断と試料温度Tの低下により試料Sが実際に発火するのを未然に防止できるので、装置の破損等を回避することができる。
【0009】
【発明が解決しようとする課題】
ところが、上記所定温度Tthは、試料Sの設定温度Tset に応じて測定の度に設定し直さなければならず、操作ミス等により誤った温度に設定される可能性を完全になくすことができない。そして、この所定温度Tthの設定誤りは、設定温度Tset の設定誤りの場合と異なり、測定が始まってからも見過ごされ易い。このため、従来の自然発火試験装置では、所定温度Tthの設定の誤りにより試料Sの発火を事前に防止できずに装置を破損するおそれがあるという問題があった。
しかも、この所定温度Tthは、外乱等による温度変動やノイズの影響を避けて確実に検出を行うために設定温度Tset よりも十分に高くなければならないが、実際に発火が始まるまでに不活性ガスを確実に流入できるようにできるだけ低い温度に設定する必要もある。このため、従来の自然発火試験装置では、所定温度Tthを的確な温度に設定することが困難になる場合があり、設定した所定温度Tthが高すぎるときには、不活性ガスの流入が間に合わずに試料Sが発火を始めて装置の破損等が生じ、設定した所定温度Tthが低すぎるときには、誤動作によって測定が無関係の時期に終了し信頼のおける測定結果が得られなくなるという問題も生じていた。
【0010】
また、試料Sが自然発火を起こす場合には、酸化反応が連鎖的に増大するので、試料温度Tが急激に上昇するだけでなく、この温度の上昇率も急激に増加する。従って、この試料温度Tが実際に所定温度Tthに達した時には、温度の上昇率も既に極めて高くなっているので、この時点から電磁弁駆動回路5が電磁弁6,7の切り換え動作を開始したのでは間に合わずに、不活性ガスが流入される前に試料Sが発火を始めるというおそれがある。このため、従来の自然発火試験装置では、試料Sの発火を事前に確実に防止することができない場合が生じ、不活性ガスの流入により消火されるまでの間に装置内部が高温に曝されることがあるという問題もあった。
【0011】
本発明は、かかる事情に鑑みてなされたものであり、試料温度の微分値が所定値を超えた場合に不活性ガスを流入させて発火防止措置を講じることにより、試料の発火を事前に確実に防止することができる自然発火試験装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
即ち、本発明は、上記課題を解決するために、試料温度検出手段が試料温度を検出すると共に、微分手段がこの試料温度を時間で微分し、判定手段がこの微分値を随時所定値と比較して所定値を超えたかどうかを判定する。そして、試料が自然発火を開始する直前に試料温度が上昇し、この試料温度の上昇率、即ち微分値が常時とは異なる高い値になると、判定手段によって微分値が所定値を超えたと判断され、発火防止手段が大量の不活性ガスを流入するなどの発火防止措置を講じる。従って、試料の自然発火を事前に正確に判定し、この試料の発火を確実に防止することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
図1及び図2は本発明の一実施形態を示すものであって、図1は自然発火試験装置の安全装置の構成を示すブロック図、図2は自然発火試験装置の動作を示すタイムチャートである。なお、図3〜図5に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0014】
本実施形態の自然発火試験装置は、図3に示したものと同様の装置本体11と操作ボックス12とで構成され、この装置本体11に試料ホルダ13が装着されることにより、試料保持容器14が装置内部に配置される。試料保持容器14は、図1に示すように、底部に通気孔が設けられた容器であり、この容器内に試料Sが収納される。また、試料保持容器14内には、熱電対1が配置されている。熱電対1は、安全装置の試料温度検出器2に接続され、この試料温度検出器2が熱電対1の起電力を計測することにより、試料S又は試料S近傍の温度である試料温度Tを検出するようになっている。なお、これら熱電対1と試料温度検出器2は、試料温度Tを設定温度Tset に保持するための温度制御を行う温度制御装置で用いられるものと共用することもできる。
【0015】
試料温度検出器2で検出された試料温度Tは、温度比較判定回路3と微分演算回路4に送られるようになっている。温度比較判定回路3は、図5に示した従来例と同様に、試料温度検出器2が検出した試料温度Tを予め設定された所定温度Tthと比較するものである。そして、この温度比較判定回路3の判定結果は、電磁弁駆動回路5に送られる。電磁弁駆動回路5も、図5に示した従来例と同様に、上記装置本体11の内部に設けられた電磁弁6,7の開閉を制御する駆動回路である。この電磁弁駆動回路5は、測定中は電磁弁7のみを開いて酸素ガス等を装置本体11の内部に流入させているが、温度比較判定回路3によって試料温度Tが設定温度Tsetを超えたと判定された場合には、この電磁弁7を閉じると共に電磁弁6を開くようになっている。このため、本実施形態の安全装置の場合にも、従来と同様に、測定時に試料Sの自然発火により試料温度検出器2が検出した試料温度Tが上昇して所定温度Tthを超えると、温度比較判定回路3がこれを判定して電磁弁駆動回路5が大量の不活性ガスを装置本体11の内部に流入させるので、この試料Sが実際に発火するのを未然に防止することができる。
【0016】
上記微分演算回路4は、試料温度検出器2が検出した試料温度Tを時間tで微分することにより微分値D(D=dT/dt)を得る回路である。従って、この微分演算回路4は、試料温度Tがアナログデータである場合には、RC回路やこれにオペアンプ(演算増幅器)を加えたアナログ微分回路によって構成することができ、試料温度Tがディジタルデータである場合には、試料温度Tのサンプリングデータとその直前のサンプリングデータとの差を演算する回路によって構成することができる。また、これらの回路は、一種のHPF(高域通過フィルタ)であり、他の構成のアナログフィルタやディジタルフィルタの場合にも、実質的に微分演算を行うものがある。しかも、例えばノイズ等の影響を避けるためには、より高次のフィルタを用いた方が好ましいこともある。従って、dT/dtの微分成分を主に含む出力を得るものであれば、任意の回路構成のものを用いることができる。
【0017】
微分演算回路4で演算された微分値Dは、微分値比較判定回路8に送られる。微分値比較判定回路8は、この微分値Dを所定値Dthと比較するものであり、オペアンプによる比較回路やディジタルデータの大小を比較演算する回路によって構成することができる。また、ノイズ等の影響を避けるために、例えばシュミット回路のように所定値Dthを高低の2値とし比較動作にヒステリシス特性を持たせるようにしたり、微分値Dが一定時間以上又は所定サンプリング数以上にわたって実際に所定値Dthを超えた場合にのみ、所定値Dthを超えたと判定させるようにすることもできる。この微分値比較判定回路8の所定値Dthは、温度比較判定回路3の所定温度Tthと同様に、操作ボックス12の操作により設定するようにしてもよいし、予め定めた固定値を用いることもできる。所定温度Tthは、測定時の設定温度よりも十分に高い温度に設定されるものであり、この設定温度に応じて測定の度に設定し直す必要がある。しかし、自然発火時の試料温度Tの変化の程度を示す微分値Dは、試料Sや設定温度が変わってもほぼ同様の変化特性を示すので、所定値Dthは、これら試料Sや設定温度にかかわりなく固定値とすることが可能となる。
【0018】
上記微分値比較判定回路8の判定結果も、上記温度比較判定回路3の判定結果と同様に、電磁弁駆動回路5に送られるようになっている。電磁弁駆動回路5は、温度比較判定回路3から試料温度Tが所定温度Tthを超えた旨の判定結果が送られて来た場合だけでなく、この微分値比較判定回路8から微分値Dが所定値Dthを超えた旨の判定結果が送られて来た場合にも、電磁弁6,7を切り替えて装置本体11の内部に大量の不活性ガスを流入させるようになっている。
【0019】
上記構成の自然発火試験装置を用いて試料Sが自然発火を始めるまでの時間を測定する場合の動作を図2に基づいて説明する。時刻t1に試料保持容器14内の温度制御を始めることにより、時刻t2に試料温度Tが設定温度Tsetに達し
安定すると、測定を開始する。この際、試料温度Tが設定温度Tsetまで上昇するときの温度変化により、微分演算回路4が演算する微分値Dがある程度大きな値となる。しかし、温度制御による温度上昇は、自然発火による温度上昇に比べて緩やかであるため、通常は、このときの微分値Dが所定値Dthを超えることはない。ただし、時刻t2に測定が開始されるまでは微分値Dが所定値Dthを超えても微分値比較判定回路8がこの旨の判定結果を出力しないようにして、電磁弁駆動回路5が誤動作を生じるのを防止することもできる。
【0020】
上記測定の開始後に試料Sが自然発火を起こす場合には、その少し前の時刻t3の頃から試料温度Tが上昇を始め、その上昇率も次第に高くなる。すると、微分演算回路4が演算する微分値Dもこれに伴って高くなり、自然発火の直前には、試料Sの酸化反応が連鎖的に増大するために試料温度Tの上昇率が極めて高くなって、微分値Dも急激に上昇する。従って、自然発火の直前の時刻t4には、この微分値Dが所定値Dthを超え、微分値比較判定回路8がこの旨の判定結果を出力するので、電磁弁駆動回路5が電磁弁6,7を切り替える。すると、大量の不活性ガスが装置本体11の内部に流入されるので、試料Sの発火を事前に確実に防止することができる。
【0021】
ここで、微分値比較判定回路8がこの判定結果を出力しなかったと仮定すると、時刻t5に試料温度Tが所定温度Tthを超えて温度比較判定回路3がこの旨の判定結果を出力することになる。しかし、試料温度Tは微分値Dを積分したものであるため、この微分値Dが急激に大きくなったとしても、実際に温度が十分に高くなるまでには多少の時間遅れが生じる。従って、所定温度Tthと所定値Dthをいずれも最適な値に設定した場合には、図2に示したように、時刻t4が時刻t5よりも早い時期となり、試料温度Tで判定するよりもその微分値Dで判定する方が、試料Sの自然発火をより早い段階で検出できる可能性が高くなる。
【0022】
以上説明したように、本実施形態の自然発火試験装置によれば、試料Sが自然発火を始める直前の微分値Dの上昇を検出することにより、この試料Sの自然発火を事前に的確に検出することができる。しかも、試料温度Tの上昇率を示す微分値Dによって判定するので、従来からの試料温度Tによる判定よりも早期に試料Sの自然発火の徴候を検出し、この試料Sが実際に発火するのを確実に防止することができる。また、本実施形態のように、この微分値Dによる判定を従来からの試料温度Tによる判定と組み合わせて安全装置を構成すれば、二重の安全を図ることができる。なお、本発明は、このように従来からの試料温度Tによる判定と組み合わせて実施することが好ましく、測定時間が所定時間を超えた場合にも測定を中止するようにして、この時間による判定を組み合わせることもできる。ただし、微分値Dによる判定のみで安全装置を構成することも可能である。
【0023】
さらに、本実施形態の自然発火試験装置によれば、微分値比較判定回路8で微分値Dと比較する所定値Dthは、測定を行う試料Sや設定温度Tsetに依存することが少ないために、必ずしも測定の度に設定し直す必要がなく、固定値とすることも可能となるので、設定を誤るおそれがほとんどなくなる。
なお、本実施形態では、試料温度検出手段を熱電対1と試料温度検出器2によって構成したが、試料温度Tを検出できるものであれば、他の構成のものであってもよい。また、本実施形態では、発火防止手段を電磁弁駆動回路5と電磁弁6,7によって構成し、試料Sの周囲に大量の不活性ガスを流入させる発火防止措置を講じる場合について説明した。しかし、試料Sの発火を防止するには、この試料Sを酸素からしゃ断するか、試料温度Tを強制的に低下させれば足りるので、本発明の発火防止手段は、少なくともこれらのいずれか一方を実行するものであれば他の措置であってもよい。
【0024】
さらに、本実施形態では、微分手段と判定手段を微分演算回路4と微分値比較判定回路8によって構成し、アナログ回路又はディジタル回路によって実現するものとしているが、これをコンピュータのプログラムとこれを実行するハードウエアによって構成することもできる。
【0025】
さらに、本実施形態では、試料を設定温度に保ち自然発火が始まるまでの時間を測定するための自然発火試験装置について説明したが、本発明はこれに限らず、例えば温度制御により試料温度Tを徐々に変化させるようなものや、時間ではなく試料温度Tのみを測定するようなものに実施することも可能である。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明の自然発火試験装置によれば、試料の自然発火に至る直前の温度上昇を迅速かつ的確に検出し発火防止措置を講じることができるので、この試料の発火を確実に防止し装置の安全性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、自然発火試験装置の安全装置の構成を示すブロック図である。
【図2】本発明の一実施形態を示すものであって、自然発火試験装置の動作を示すタイムチャートである。
【図3】自然発火試験装置の外観を示す図である。
【図4】従来例を示すものであって、自然発火試験装置の動作を示すタイムチャートである。
【図5】従来例を示すものであって、自然発火試験装置の安全装置の構成を示すブロック図である。
【符号の説明】
1 熱電対
2 試料温度検出器
4 微分演算回路
5 電磁弁駆動回路
6 電磁弁
7 電磁弁
8 微分値比較判定回路
S 試料
T 試料温度
D 微分値
Dth 所定値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spontaneous ignition test apparatus that measures conditions for spontaneous ignition of a sample.
[0002]
[Prior art]
In the manufacturing process of chemical substances, it may be necessary to temporarily store intermediate products generated in the middle of manufacturing. Among such intermediate products, there are those that spontaneously ignite when left for a long time in a temperature environment of a certain level or more, and there are those whose temperature and time conditions leading to this spontaneous ignition are unknown. The auto-ignition test equipment keeps the intermediate product sample at a constant set temperature for a long time and measures the time until the auto-ignition starts. It is for checking time beforehand.
[0003]
As shown in FIG. 3, the spontaneous ignition test apparatus includes an apparatus main body 11 and an operation box 12. The apparatus main body 11 is configured such that a sample holder 13 provided with a sample holding container 14 for storing a sample at the lower end can be inserted from the upper part and mounted therein. The apparatus main body 11 is provided with a temperature control device so that the sample temperature of the sample stored in the sample holding container 14 inside the apparatus can be held at a constant set temperature. Further, a front port of the apparatus main body 11 is provided with a first port 15 that receives supply of an inert gas such as nitrogen gas, and a second port 16 that receives supply of oxygen gas, air, or the like. These ports 15 and 16 are for allowing gas to flow into the inside of the apparatus via electromagnetic valves, respectively. The operation box 12 performs an operation of setting a set temperature of the temperature control device, an operation of switching a gas flowing into the apparatus main body 11 by operating a solenoid valve, and the like.
[0004]
In the spontaneous ignition test apparatus, first, a sample to be examined for spontaneous ignition conditions is stored in the sample holding container 14, and the sample holder 13 is attached to the apparatus main body 11. Next, the operation box 12 is operated to allow the inert gas from the first port 15 to flow into the apparatus main body 11 and to set the set temperature of the temperature control device to start the temperature control. Then, as shown in FIG. 4, the temperature control is started at time t11, whereby the sample temperature T gradually rises, reaches the set temperature Tset at time t12, and becomes stable. When the sample temperature T is stabilized, the gas supplied to the inside of the apparatus main body 11 is switched to oxygen gas or the like from the second port 16 to measure the time until the sample in the sample holding container 14 starts spontaneous ignition. Start.
[0005]
Here, when the sample is spontaneously ignited by being held at the set temperature Tset for a long time, the sample temperature T starts to rise from about time t13. Then, the measurement is finished at time t14 when the sample temperature T rapidly increases, and the time from the time t12 when the measurement is started to this time t14 is defined as the time until the sample starts spontaneous ignition.
[0006]
By the way, when the sample actually spontaneously ignites, the inside of the apparatus main body 11 becomes extremely hot, which causes inconveniences such as the sample holder 13 being damaged or the apparatus being broken. In view of this, this spontaneous ignition test device has conventionally been provided with a safety device that detects in advance the occurrence of actual ignition by detecting a temperature rise immediately before the sample starts spontaneous ignition.
[0007]
As shown in FIG. 5, the safety device includes a sample temperature detector 2, a temperature comparison / determination circuit 3, and an electromagnetic valve drive circuit 5. The sample temperature detector 2 detects the sample temperature T of the sample S stored in the sample holding container 14 by the thermocouple 1 disposed in the sample holding container 14 inside the apparatus main body 11. The temperature comparison / determination circuit 3 compares the sample temperature T detected by the sample temperature detector 2 with a predetermined temperature Tth. The predetermined temperature Tth is set to a temperature sufficiently higher than the set temperature Tset by operating the operation box 12 in advance. The solenoid valve drive circuit 5 is a drive circuit that controls opening and closing of the solenoid valves 6 and 7 provided in the apparatus main body 11. The electromagnetic valve 6 is connected to the first port 15 that receives the supply of the inert gas shown in FIG. 3, and the electromagnetic valve 7 is connected to the second port 16 that receives the supply of oxygen gas or the like. The electromagnetic valve drive circuit 5 opens the electromagnetic valve 7 and causes oxygen gas or the like to flow into the apparatus main body 11 during measurement. However, the temperature comparison determination circuit 3 causes the sample temperature T to exceed the predetermined temperature Tth. When it is determined that the electromagnetic valve 7 is closed, the electromagnetic valve 7 is closed and the electromagnetic valve 6 is opened, so that a large amount of inert gas flows into the apparatus main body 11.
[0008]
As shown in FIG. 4, in this safety device, when the sample temperature T suddenly rises immediately before spontaneous ignition and exceeds a predetermined temperature Tth at time t14, the temperature comparison determination circuit 3 determines this. The solenoid valve drive circuit 5 causes a large amount of inert gas to flow into the apparatus main body 11. Therefore, since the sample S can be prevented from actually igniting due to the interruption of the oxygen supply due to the inflow of the inert gas and the decrease in the sample temperature T, damage to the apparatus and the like can be avoided.
[0009]
[Problems to be solved by the invention]
However, the predetermined temperature Tth must be reset every measurement according to the set temperature Tset of the sample S, and the possibility of being set to an incorrect temperature due to an operation error or the like cannot be completely eliminated. The setting error of the predetermined temperature Tth is easily overlooked even after the measurement is started unlike the setting error of the setting temperature Tset. For this reason, the conventional spontaneous ignition test apparatus has a problem that the ignition of the sample S cannot be prevented in advance due to an error in setting the predetermined temperature Tth and the apparatus may be damaged.
In addition, the predetermined temperature Tth must be sufficiently higher than the set temperature Tset in order to reliably detect the influence of temperature fluctuations and noise due to disturbances, etc., but the inert gas is not activated until the actual ignition starts. It is also necessary to set the temperature as low as possible so that the air can flow in reliably. For this reason, in the conventional spontaneous ignition test apparatus, it may be difficult to set the predetermined temperature Tth to an appropriate temperature. When the predetermined temperature Tth is too high, the inflow of the inert gas is not in time, and the sample When S starts to ignite, the apparatus is damaged, and the set temperature Tth is too low, the measurement ends at an irrelevant time due to malfunction, and a reliable measurement result cannot be obtained.
[0010]
Further, when the sample S spontaneously ignites, the oxidation reaction increases in a chain, so that not only the sample temperature T increases rapidly but also the rate of increase of this temperature increases rapidly. Therefore, when the sample temperature T actually reaches the predetermined temperature Tth, the rate of temperature increase is already extremely high, so that the solenoid valve drive circuit 5 starts switching operation of the solenoid valves 6 and 7 from this point. In this case, the sample S may start firing before the inert gas is introduced. For this reason, in the conventional spontaneous combustion test apparatus, there is a case where the ignition of the sample S cannot be reliably prevented in advance, and the inside of the apparatus is exposed to a high temperature until the fire is extinguished by the inflow of the inert gas. There was also a problem that there was something.
[0011]
The present invention has been made in view of such circumstances. When the differential value of the sample temperature exceeds a predetermined value, the sample is reliably ignited in advance by introducing an inert gas and taking measures to prevent ignition. An object of the present invention is to provide a self-ignition test apparatus that can be prevented.
[0012]
[Means for Solving the Problems]
That is, according to the present invention, in order to solve the above problems, the sample temperature detecting means detects the sample temperature, the differentiating means differentiates the sample temperature with time, and the judging means compares the differential value with a predetermined value as needed. It is then determined whether a predetermined value has been exceeded. When the sample temperature rises immediately before the sample starts spontaneous ignition, and the rate of increase of the sample temperature, that is, when the differential value becomes a high value different from usual, the determination means determines that the differential value has exceeded a predetermined value. Take measures to prevent ignition, such as inflow of a large amount of inert gas. Therefore, the spontaneous ignition of the sample can be accurately determined in advance, and the ignition of the sample can be reliably prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 show an embodiment of the present invention. FIG. 1 is a block diagram showing the configuration of a safety device of a spontaneous ignition test device, and FIG. 2 is a time chart showing the operation of the spontaneous ignition test device. is there. In addition, the same number is attached | subjected to the structural member which has a function similar to the prior art example shown in FIGS.
[0014]
The spontaneous ignition test apparatus according to the present embodiment includes an apparatus main body 11 and an operation box 12 similar to those shown in FIG. 3, and a sample holder 13 is attached to the apparatus main body 11, whereby a sample holding container 14. Is placed inside the device. As shown in FIG. 1, the sample holding container 14 is a container having a vent hole at the bottom, and the sample S is stored in the container. A thermocouple 1 is disposed in the sample holding container 14. The thermocouple 1 is connected to the sample temperature detector 2 of the safety device, and the sample temperature detector 2 measures the electromotive force of the thermocouple 1 to thereby obtain the sample temperature T which is the temperature of the sample S or the vicinity of the sample S. It comes to detect. The thermocouple 1 and the sample temperature detector 2 can be shared with those used in a temperature control device that performs temperature control for maintaining the sample temperature T at the set temperature Tset.
[0015]
The sample temperature T detected by the sample temperature detector 2 is sent to the temperature comparison / judgment circuit 3 and the differential operation circuit 4. The temperature comparison / determination circuit 3 compares the sample temperature T detected by the sample temperature detector 2 with a predetermined temperature Tth set in advance, as in the conventional example shown in FIG. Then, the determination result of the temperature comparison determination circuit 3 is sent to the electromagnetic valve drive circuit 5. The solenoid valve drive circuit 5 is also a drive circuit that controls the opening and closing of the solenoid valves 6 and 7 provided in the apparatus main body 11 as in the conventional example shown in FIG. During the measurement, the electromagnetic valve drive circuit 5 opens only the electromagnetic valve 7 and allows oxygen gas or the like to flow into the apparatus main body 11. However, the sample temperature T exceeds the set temperature Tset by the temperature comparison determination circuit 3. If it is determined, the electromagnetic valve 7 is closed and the electromagnetic valve 6 is opened. For this reason, also in the case of the safety device of the present embodiment, when the sample temperature T detected by the sample temperature detector 2 increases due to spontaneous ignition of the sample S during measurement and exceeds the predetermined temperature Tth, Since the comparison determination circuit 3 determines this and the electromagnetic valve drive circuit 5 causes a large amount of inert gas to flow into the apparatus main body 11, it is possible to prevent the sample S from actually igniting.
[0016]
The differential calculation circuit 4 is a circuit that obtains a differential value D (D = dT / dt) by differentiating the sample temperature T detected by the sample temperature detector 2 with respect to time t. Therefore, when the sample temperature T is analog data, the differential operation circuit 4 can be configured by an RC circuit or an analog differential circuit obtained by adding an operational amplifier (operational amplifier) to the sample temperature T. In this case, a circuit that calculates the difference between the sampling data of the sample temperature T and the immediately preceding sampling data can be used. In addition, these circuits are a kind of HPF (high-pass filter), and some analog filters and digital filters having other configurations substantially perform differentiation. Moreover, in order to avoid the influence of, for example, noise, it may be preferable to use a higher-order filter. Accordingly, any circuit configuration can be used as long as an output mainly including a differential component of dT / dt is obtained.
[0017]
The differential value D calculated by the differential calculation circuit 4 is sent to the differential value comparison determination circuit 8. The differential value comparison / determination circuit 8 compares the differential value D with a predetermined value Dth, and can be constituted by a comparison circuit using an operational amplifier or a circuit that compares and calculates the magnitude of digital data. Further, in order to avoid the influence of noise or the like, the predetermined value Dth is set to a high and low binary value, for example, as in a Schmitt circuit, so that the comparison operation has hysteresis characteristics, or the differential value D is equal to or longer than a predetermined time or a predetermined sampling number It is also possible to determine that the predetermined value Dth has been exceeded only when the predetermined value Dth is actually exceeded. The predetermined value Dth of the differential value comparison determination circuit 8 may be set by operating the operation box 12 in the same manner as the predetermined temperature Tth of the temperature comparison determination circuit 3, or a predetermined fixed value may be used. it can. The predetermined temperature Tth is set to a temperature sufficiently higher than the set temperature at the time of measurement, and needs to be reset every time measurement is performed according to the set temperature. However, the differential value D indicating the degree of change in the sample temperature T at the time of spontaneous ignition shows substantially the same change characteristics even if the sample S or the set temperature changes, so the predetermined value Dth is equal to the sample S or the set temperature. Regardless of this, it is possible to set a fixed value.
[0018]
Similar to the determination result of the temperature comparison determination circuit 3, the determination result of the differential value comparison determination circuit 8 is also sent to the solenoid valve drive circuit 5. The electromagnetic valve drive circuit 5 receives the differential value D from the differential value comparison / determination circuit 8 as well as when the determination result that the sample temperature T exceeds the predetermined temperature Tth is sent from the temperature comparison / determination circuit 3. Even when a determination result indicating that the predetermined value Dth has been exceeded is sent, the electromagnetic valves 6 and 7 are switched to allow a large amount of inert gas to flow into the apparatus main body 11.
[0019]
An operation in the case where the time until the sample S starts spontaneous ignition using the spontaneous ignition test apparatus having the above configuration will be described with reference to FIG. By starting temperature control in the sample holding container 14 at time t1, measurement starts when the sample temperature T reaches the set temperature Tset and stabilizes at time t2. At this time, the differential value D calculated by the differential calculation circuit 4 becomes a certain large value due to the temperature change when the sample temperature T rises to the set temperature Tset. However, since the temperature increase due to temperature control is more gradual than the temperature increase due to spontaneous ignition, the differential value D at this time does not normally exceed the predetermined value Dth. However, until the measurement is started at time t2, even if the differential value D exceeds the predetermined value Dth, the differential value comparison determination circuit 8 does not output the determination result to this effect, and the solenoid valve drive circuit 5 malfunctions. It can also be prevented from occurring.
[0020]
When the sample S spontaneously ignites after the start of the measurement, the sample temperature T starts to increase from about time t3, and the rate of increase gradually increases. Then, the differential value D calculated by the differential calculation circuit 4 also increases accordingly, and immediately before spontaneous ignition, the rate of increase in the sample temperature T becomes extremely high because the oxidation reaction of the sample S increases in a chain. Thus, the differential value D also increases rapidly. Accordingly, at time t4 immediately before spontaneous ignition, the differential value D exceeds the predetermined value Dth, and the differential value comparison / determination circuit 8 outputs a determination result to this effect. 7 is switched. Then, since a large amount of inert gas flows into the inside of the apparatus main body 11, the ignition of the sample S can be reliably prevented in advance.
[0021]
Assuming that the differential value comparison / determination circuit 8 does not output this determination result, the sample temperature T exceeds the predetermined temperature Tth at time t5, and the temperature comparison / determination circuit 3 outputs the determination result to that effect. Become. However, since the sample temperature T is obtained by integrating the differential value D, even if the differential value D increases rapidly, there is a slight time delay until the temperature actually becomes sufficiently high. Therefore, when both the predetermined temperature Tth and the predetermined value Dth are set to optimum values, the time t4 is earlier than the time t5 as shown in FIG. The determination by the differential value D increases the possibility that the spontaneous ignition of the sample S can be detected at an earlier stage.
[0022]
As described above, according to the spontaneous ignition test apparatus of the present embodiment, the spontaneous ignition of the sample S is accurately detected in advance by detecting an increase in the differential value D immediately before the sample S starts spontaneous ignition. can do. In addition, since the determination is based on the differential value D indicating the rate of increase in the sample temperature T, the sign of spontaneous ignition of the sample S is detected earlier than the determination based on the conventional sample temperature T, and the sample S actually ignites. Can be reliably prevented. In addition, as in the present embodiment, if the safety device is configured by combining the determination based on the differential value D with the conventional determination based on the sample temperature T, double safety can be achieved. Note that the present invention is preferably implemented in combination with the conventional determination based on the sample temperature T as described above, and the measurement is stopped even when the measurement time exceeds a predetermined time. It can also be combined. However, the safety device can be configured only by the determination based on the differential value D.
[0023]
Furthermore, according to the spontaneous ignition test apparatus of the present embodiment, the predetermined value Dth to be compared with the differential value D by the differential value comparison determination circuit 8 is less dependent on the sample S to be measured and the set temperature Tset. It is not always necessary to reset every measurement, and a fixed value can be set.
In the present embodiment, the sample temperature detection means is constituted by the thermocouple 1 and the sample temperature detector 2, but any other configuration may be used as long as the sample temperature T can be detected. Further, in the present embodiment, the case where the ignition preventing means is configured by the solenoid valve driving circuit 5 and the solenoid valves 6 and 7 and the ignition preventing measure for allowing a large amount of inert gas to flow around the sample S has been described. However, in order to prevent ignition of the sample S, it is sufficient to cut off the sample S from oxygen or forcibly lower the sample temperature T. Therefore, the ignition preventing means of the present invention is at least one of these. Other measures may be used as long as they are executed.
[0024]
Furthermore, in this embodiment, the differentiating means and the determining means are configured by the differential operation circuit 4 and the differential value comparison / determination circuit 8, and are realized by an analog circuit or a digital circuit. It can also be configured by hardware.
[0025]
Further, in the present embodiment, the spontaneous ignition test apparatus for measuring the time until the spontaneous ignition starts while keeping the sample at the set temperature has been described, but the present invention is not limited to this, and the sample temperature T is controlled by temperature control, for example. It is also possible to implement such a method that changes gradually or measures only the sample temperature T, not the time.
[0026]
【The invention's effect】
As is clear from the above description, according to the spontaneous ignition test apparatus of the present invention, it is possible to quickly and accurately detect the temperature rise immediately before the spontaneous ignition of the sample and take measures to prevent the ignition. It is possible to reliably prevent ignition and improve the safety of the device.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a safety device of a spontaneous ignition test device according to an embodiment of the present invention.
FIG. 2, showing an embodiment of the present invention, is a time chart showing the operation of a spontaneous ignition test apparatus.
FIG. 3 is a diagram showing an external appearance of a spontaneous ignition test apparatus.
FIG. 4 shows a conventional example and is a time chart showing the operation of the spontaneous ignition test apparatus.
FIG. 5 shows a conventional example and is a block diagram showing a configuration of a safety device of a spontaneous ignition test device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermocouple 2 Sample temperature detector 4 Differential operation circuit 5 Solenoid valve drive circuit 6 Solenoid valve 7 Solenoid valve 8 Differential value comparison judgment circuit S Sample T Sample temperature D Differential value Dth Predetermined value

Claims (1)

酸素を含むガスの雰囲気中で試料の自然発火の条件を測定する自然発火試験装置において、
試料又は試料近傍の温度を検出する試料温度検出手段と、
この試料温度検出手段が検出した試料温度を時間で微分する微分手段と、
この微分手段によって演算された微分値が所定値を超えたかどうかを判定する判定手段と、
この判定手段によって微分値が所定値を超えたと判定された場合に、試料の発火防止措置を講じる発火防止手段と
を備えたことを特徴とする自然発火試験装置。
In a spontaneous ignition test device that measures the conditions of spontaneous ignition of a sample in an atmosphere containing oxygen,
Sample temperature detecting means for detecting the temperature of the sample or the vicinity of the sample;
Differentiating means for differentiating the sample temperature detected by the sample temperature detecting means with time,
Determining means for determining whether the differential value calculated by the differentiating means exceeds a predetermined value;
A spontaneous ignition test apparatus comprising: an ignition prevention means for taking measures to prevent the ignition of a sample when the determination means determines that the differential value exceeds a predetermined value.
JP14081296A 1996-05-09 1996-05-09 Spontaneous ignition test equipment Expired - Fee Related JP3632298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14081296A JP3632298B2 (en) 1996-05-09 1996-05-09 Spontaneous ignition test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14081296A JP3632298B2 (en) 1996-05-09 1996-05-09 Spontaneous ignition test equipment

Publications (2)

Publication Number Publication Date
JPH09304310A JPH09304310A (en) 1997-11-28
JP3632298B2 true JP3632298B2 (en) 2005-03-23

Family

ID=15277320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14081296A Expired - Fee Related JP3632298B2 (en) 1996-05-09 1996-05-09 Spontaneous ignition test equipment

Country Status (1)

Country Link
JP (1) JP3632298B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012672A3 (en) * 1999-05-07 2001-02-06 Clers Bertrand Des Anticipation process and / or prevention of explosion and / or a mixture of ignition fuel / oxidizing agent.
US7005991B1 (en) 1999-05-07 2006-02-28 Bertrand Des Clers Method for anticipating, delaying and/or preventing the risk of spontaneous combustion and/or explosion of an explosive atmosphere
KR100446329B1 (en) * 2002-03-22 2004-09-01 주식회사 로템 Apparatus for testing response to a high pressure oxygen
JP2020201197A (en) * 2019-06-12 2020-12-17 株式会社島津製作所 Spontaneous ignition testing device

Also Published As

Publication number Publication date
JPH09304310A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
EP0668492B1 (en) Method for leak testing
KR100230508B1 (en) Tank-venting apparatus as well as a method and an arrangement for checking the same
US5490414A (en) Method for detecting leaks in a motor vehicle tank ventilation system
US9719399B2 (en) Method of operating an exhaust emission control device, and corresponding exhaust emission control device
EP0616121B1 (en) Exhaust gas oxygen sensor
US7818955B2 (en) Fuel injection system and purging method
JP3632298B2 (en) Spontaneous ignition test equipment
MX2008014076A (en) Leak inspection method and leak inspector.
GB2347221A (en) Temperature sensor for gas turbine engine control means
US5990798A (en) Atomic absorption photometer with a safety monitor
JPH04106311A (en) Safety device for heating apparatus
JP3632299B2 (en) Spontaneous ignition test equipment
JPH11166722A (en) Apparatus for preventing incomplete combustion
JPH11142360A (en) Unburnt-gas-concentration detecting sensor and burning apparatus provided with the sensor
JPS5831412A (en) Controlling method and its apparatus for multipoint sampling values
JPH09178176A (en) Safe combustion equipment
KR970070758A (en) Apparatus for detecting boiling point of gas range and method thereof
JPH08156574A (en) Exhaust gas back flow safety device for automobile
JP2813326B2 (en) Gas cooker with grill
JP2677478B2 (en) Combustion equipment
JPH06102068A (en) Flow rate abnormality checking system
JPH07119965A (en) Combustion device
KR100226289B1 (en) Error judgement method of oxygen sensor
JPH0960882A (en) Gas cooking device with grill
US20060155490A1 (en) Gas measuring device and method with compensation of disturbances

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees