JP3630602B2 - Reciprocating device - Google Patents

Reciprocating device Download PDF

Info

Publication number
JP3630602B2
JP3630602B2 JP2000006673A JP2000006673A JP3630602B2 JP 3630602 B2 JP3630602 B2 JP 3630602B2 JP 2000006673 A JP2000006673 A JP 2000006673A JP 2000006673 A JP2000006673 A JP 2000006673A JP 3630602 B2 JP3630602 B2 JP 3630602B2
Authority
JP
Japan
Prior art keywords
shaft member
feed shaft
spiral
strip
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000006673A
Other languages
Japanese (ja)
Other versions
JP2001200905A (en
Inventor
周吾 山本
浩也 小早川
孝治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority to JP2000006673A priority Critical patent/JP3630602B2/en
Publication of JP2001200905A publication Critical patent/JP2001200905A/en
Application granted granted Critical
Publication of JP3630602B2 publication Critical patent/JP3630602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H25/2427Elements essential to such mechanisms, e.g. screws, nuts one of the threads being replaced by a wire or stripmetal, e.g. spring

Description

【0001】
【発明の属する技術分野】
本発明は、OA機器における光学ヘッド等の往復送り装置や、精密工作機械における作業テーブル等の往復送り機構等に適用される往復移動装置に関する。
【0002】
【従来の技術】
前記往復移動装置としては、タイミングベルトとサーボモータ(ステッピングモータ)を使用したベルト式移動装置と、ボールネジとサーボモータを使用したボールネジ式移動装置が一般的である。ベルト式移動装置は、定区間で直線往復移動させる被移動物体にタイミングベルトを係止させ、タイミングベルトをサーボモータで定軌道を往復移動させることで被移動物体を往復移動させる。ボールネジ式移動装置は、前記被移動物体に固定したナット等をボールネジの等ピッチのネジ山或いはネジ溝に係合させ、ボールネジをサーボモータで正逆往復回転させることで被移動物体を往復移動させる。
【0003】
これら往復移動装置においては、サーボモータに内蔵された速度制御回路でタイミングベルトの移動速度やボールネジの回転速度を自動制御することにより、被移動物体の定区間における往復移動速度を調整するようにしている。例えば、定区間で往復移動する被移動物体は、定区間の一端まで移動して一旦停止してから反対方向に移動を開始するが、この移動方向の反転時に受ける慣性力の影響を小さくするために、被移動物体が定区間の端に近付くと移動速度が徐々に低下するようにサーボモータの速度制御回路で自動制御している。また、被移動物体を定区間内の一部の区間では高速移動させ、他の一部の区間では低速移動させる用途においては、この用途に対応するようにサーボモータの速度制御回路を構成するか、速度制御回路に速度変更等の指令信号を与えてるようにしている。
【0004】
【発明が解決しようとする課題】
以上のようなサーボモータを使用した往復移動装置は、定区間で往復移動する被移動物体の移動速度が任意に、高精度で調整できて、多様な用途に高性能装置として使用されているが、サーボモータが被移動物体の移動速度を可変調整するため必要としている速度制御回路のために高価となり、モータ全体が大型となっている。そのため、往復移動装置自体がサーボモータのために高価となり、往復移動装置を組込んだOA機器等の機器製品のコストダウン化を難しくしている。また、定区間での被移動物体の移動速度をサーボモータで可変調整する場合、定区間の全区間における被移動物体の位置を逐一に検知し、その検知信号をサーボモータの速度制御回路にフィードバックするようにして、速度制御の誤動作を防止するのが通常であるが、この場合、定区間における被移動物体の位置を逐一に検知するための光学センサ等の検知手段や、この検知手段の検知ミスによるトラブル発生を防止する保護回路等が必要となり、なおさらに往復移動装置が高価となり、大型化しているのが現状である。
【0005】
なお、前記サーボモータの代わりに、定速で往復回転だけする駆動モータを使用した往復移動装置もOA機器等に使用されている。この移動装置は、定速回転する駆動モータが速度制御回路を装備しないために安価で小型であることから、サーボモータに伴う前記問題を有しないが、被移動物体の定区間でのほぼ全区間での移動速度が同一となるために、被移動物体を定区間で往復移動させて行われる作業内容が狭く限られて、汎用性に欠ける問題がある。また、被移動物体を定区間で高速移動させると、定区間の端で一旦停止させる時に急停止させることになり、この急停止時に被移動物体に大きな慣性力が作用する不具合が生じる。
【0006】
それ故に、本発明の目的とするところは、サーボモータを使用しなくても被移動物体の往復移動速度が自在に調整可能となる安価で小型の往復移動装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は前記目的を達成するため、外周に凹凸状の螺旋体を有して軸心を中心に往復回転する送り軸部材と、送り軸部材を定位置で往復回転させる駆動モータと、送り軸部材と平行に配置されたガイド手段と、ガイド手段に送り軸部材の軸方向に往復移動可能に支持され、ガイド手段から送り軸部材の方向に延在する先端に送り軸部材の螺旋体にその螺旋方向に摺動可能に係合する係合手段を有する移動体を具備した往復移動装置において、送り軸部材の螺旋体のピッチを送り軸部材の軸方向で相違させ、送り軸部材の螺旋体が、芯棒の外周にピッチを相違させて凸状に巻回した条体であり、移動体の係合手段が前記条体を挟持する二股状の爪部材であることを特徴とする。
【0008】
ここで、送り軸部材の螺旋体は一定幅の螺旋突起であり、この螺旋体の360°で隣接する箇所間のピッチが相違させてある。送り軸部材を駆動モータで往復回転させると、螺旋体と移動体の係合手段を介して移動体がボールネジ方式で往復移動し、このときの移動速度は送り軸部材の螺旋体のピッチと送り軸部材の回転速度で決められる。送り軸部材を定速回転させると、移動体の移動速度は螺旋体のピッチだけで可変速的に決められ、この場合、送り軸部材を定速回転させる駆動モータに速度制御回路を装備しない安価で小型のモータが使用できる。
【0009】
また、前記送り軸部材の螺旋体に係合する移動体の係合手段を、螺旋体との摺動抵抗を軽減させる方向に移動体に対して首振り揺動可能に連結することが、送り軸部材のピッチを相違させた螺旋体と移動体の係合手段との摩擦係合状態を常に安定したものにする上で望ましい。
【0010】
また、前記送り軸部材の螺旋体が、芯棒の外周にピッチを相違させて凸状に巻回した条体であることが、ピッチを相違させた螺旋体を有する送り軸部材を低コストで製作する上に望ましい。
【0011】
さらに、前記送り軸部材の芯棒の外周に条体を送り軸部材の軸方向に移動可能に巻回するようにすれば、送り軸部材の螺旋体のピッチを任意に変更させて、移動体の移動速度を変更させることができる。
【0012】
【発明の実施の形態】
各種の実施形態について、図1乃至図10を参照して説明する。なお、全図を通じて同一、又は、相当部分には同一符号を付している。
【0013】
図1の一実施形態に示される往復移動装置は、直線状の送り軸部材1と、送り軸部材1をその軸心を中心に往復回転させる駆動モータ10と、送り軸部材1に平行に配置されたガイド手段20と、ガイド手段20に移動方向をガイドされて支持された移動体30を備える。移動体30に図示しない被移動物体が連結されて、定区間を直線的に往復移動制御される。
【0014】
送り軸部材1は、例えば1本の直線状の金属丸棒である芯棒3の外周に長尺な条体4aを螺旋状に巻回して、条体4aで芯棒3の外周に凸状の螺旋体2aを形成したもので、螺旋体2aのピッチPが後述するように相違させてある。条体4aは、例えば図2及び図3に示すような横幅wと板厚tが一定な帯状鋼板を幅方向に螺旋状に巻回した螺旋部品5である。このような螺旋部品5は、市販されているミニスパイラー(サンコール株式会社の商品名)等が適用でき、この適用で送り軸部材1が安価に製作できる。図3に示すように螺旋部品5の帯板状条体4aの軸方向で連続するピッチPは徐々に相違させてあり、この螺旋部品5の中に芯棒3が圧入されてピッチPが固定化される。芯棒3の螺旋体2aの無い両端部が軸受6、6で回転可能に支持され、軸受6、6が平板状の固定フレーム7に固定されて、送り軸部材1が固定フレーム7に平行に支持される。
【0015】
駆動モータ10は固定フレーム7に支持されて、送り軸部材1の芯棒3の片端部に減速機構11を介して連結される。駆動モータ10は、送り軸部材1を正逆いずれの方向にも定速回転させる、したがって、速度制御回路などを装備しない安価で小型のモータが適用される。なお、駆動モータ10に従来の往復移動装置のようなサーボモータを適用することも可能であるが、この適用は後述する理由で不必要であり不経済である。
【0016】
ガイド手段20は送り軸部材1と平行なガイドロッド、ガイド溝、ガイドレール等であり、図1では直線状の1本のガイドロッド20が示される。ガイドロッド20に移動体30が軸方向に摺動可能に嵌着される。ガイドロッド20の両端部が支持台21に固定され、支持台21が固定フレーム7に固定される。
【0017】
移動体30は、ガイドロッド20に摺動可能に嵌着される筒状のスライダー部31と、スライダー部31と一体でスライダー部31から送り軸部材1に向けて延在する連結部32と、連結部32の先端に連結された係合手段33を備える。係合手段33は、送り軸部材1の螺旋体2aの一部に螺旋体2aの螺旋方向に摺動可能に係合するもので、螺旋体2aが帯板状の条体4aの場合、係合手段33は帯板の条体4aをその板厚方向で挟持する二股状の爪部材である。係合手段33は送り軸部材1の螺旋体4aに、送り軸部材1の軸心の半径方向で、かつ、ガイドロッド20の在る定方向から係合する。送り軸部材1が回転すると、螺旋体4aが係合手段33に摩擦係合したまま回転して、係合手段33を送り軸部材1の軸方向に移動させ、この軸方向移動で移動体30がガイドロッド20にガイドされて直線移動する。
【0018】
送り軸部材1の螺旋体2aのピッチPは、例えば図1に示すように送り軸部材1の中央部のピッチPaが最大で、この中央部から両端部に至るほどピッチが徐々に小さくなり、両端部のピッチPbが最小となるように相違させてある。図1の実線で示すように、送り軸部材1の中央部の螺旋体2aに移動体30の係合手段33が係合している状態で、送り軸部材1を駆動モータ10で正方向(図1の実線矢印方向)に定速回転させると、移動体30は図1右方向に直線移動を開始する。この移動体30の移動開始時の移動速度は、送り軸部材1の回転速度が一定なので係合手段33が係合している螺旋体2aのピッチPaに比例し、したがって、移動開始時の移動速度が最大であり、移動するほどにピッチPが小さくなって移動速度が徐々に低下し、移動体30が送り軸部材1の片端部まで移動したところで最小ピッチPbによって最小移動速度となる。また、移動体30が図1実線の位置に在るときに送り軸部材1を逆方向(図1の破線矢印方向)に定速回転させると、移動体30は図1左方向に始め高速で徐々に低速となる速度変化パターンで直線移動する。
【0019】
以上のように送り軸部材1を駆動モータ10の定速回転でもって往復回転させると、移動体30が送り軸部材1の中央部で高速移動し、両端部で低速移動するように、移動体30の移動速度が任意に変えられる。なお、移動体30がガイドロッド20の両端近くの定位置まで移動すると、その位置を検知して電気信号を出力するリミットスイッチ等のスイッチ22,22を固定フレーム7に設置しておくことが望ましい。このスイッチ22,22の検知信号で送り軸部材1の回転を一時停止させ、移動体30の直線移動を一時停止させてから、移動方向を反転させるようにする。
【0020】
このような移動体30の一時停止は、停止する直前の移動速度が最小ピッチPbで最小の低速になっているので、大きな慣性力を受けることなくスムーズに行える。また、送り軸部材1の中央部で移動体30を高速で移動させることができるので、移動体30と共に直線往復移動する被移動物体による各種の作業が高速で行える。さらに、移動体30を速度を変化させて移動させる駆動源の駆動モータ10は定速回転するだけの、したがって、回転のオン・オフスイッチ回路を装備した程度の安価で小型のモータが使用できる。また、移動体30のガイドロッド20の両端間で決められた移動区間(一対のスイッチ22,22の間の定区間に相当)内での各位置における移動速度は、送り軸部材1の螺旋体2aのピッチPで決められているので、移動区間の全区間において移動体30の位置を逐一検知する必要無くして、移動体30の移動全区間での移動速度が高精度に制御できる。
【0021】
次に、本発明のより具体的な実施形態を図面に基づき順に説明する。
【0022】
図1の実施形態に示すように、送り軸部材1を丸棒状の芯棒3に帯板状の条体4aをピッチを相違させて螺旋状に巻回して構成した場合、図2の断面図に示すように芯棒3の外周に対して帯板状条体4aが傾斜し、その傾斜角度θは条体4aのピッチに比例する。そこで、条体4aに係合させる移動体30の係合手段33を移動体30の連結部32に対して送り軸部材1の軸方向に首振り揺動可能に連結して、係合手段33が係合する条体4aの傾斜角度θの変化に追従して傾斜させるようにする。このようにすると係合手段33は、条体4aの傾斜角度θが変化しても常に条体4aと平行する安定した状態で係合して、条体4aに拗れることなく低摩擦抵抗で摺動するようになる。また、このように係合手段33を首振り揺動可能に設置することで、送り軸部材1の螺旋体2aを帯板状の条体4aで、つまり、図3に示す市販品で安価な螺旋部品5で構成できる。
【0023】
図4(A)、(B)は前記係合手段33の変形例を示すもので、帯板状条体4aを挟持する二股状の係合手段33に一対のローラ34,34を回転自在に組み込んで、一対のローラ34,34を条体4aの両面に転動させるようにしている。このようにローラ34,34を介して係合手段33を条体4aに沿って摺動移動させることで、両者のより円滑な係合状態が確保できる。
【0024】
図5の実施形態は、送り軸部材1の芯棒3の外周に丸棒状線材の条体4bをピッチを変えて巻回して凸状の螺旋体2aを形成したものである。この場合も丸棒線材の条体4bに係合手段33を挟持させるようにして、両者を摺動可能に係合させればよい。このような丸棒線材の螺旋状条体4bは、市販品で安価なスパイラルスプリング線が適用できる。
【0025】
図6は、送り軸部材1の螺旋体2bの形状変更例を示す。この螺旋体2bは円柱状の芯棒3の外周に螺旋状に切削して形成された螺旋溝である。この螺旋溝2bの幅は一定で、溝間のピッチPが相違させてある。係合手段33は、螺旋溝2bに嵌入されて螺旋溝2bの両側壁面に摺動可能に摩擦係合する突起片33’を一体に有する。このような螺旋溝2bの形成は、通常のネジ溝切削の要領でNC制御して行えばよい。
【0026】
図7(A)(B)は、図2の実施形態の変形例である。すなわち、図2の実施形態の帯板状条体4aを芯棒3の外周にピッチPを相違させて巻回すると、そのまま芯棒3に固定化されるが、固定化せずに螺旋状の条体4aの弾力を利用して芯棒3の外周に軸方向移動可能に弾圧結合させたのが、図7である。図7(A)に示される条体4aは図2と同様なピッチ状態が示され、この条体4aを芯棒3に弾圧接触させたまま軸方向に移動させてピッチ変更させたのが図7(B)である。このように1つの送り軸部材1における螺旋体2aのピッチPを任意に変更可能とすることで、1つの送り軸部材1で移動体30をより多様な移動速度で往復移動させることが可能となり、また、往復移動装置の使用段階において移動体30の移動速度の変更が可能となる。
【0027】
図8乃至図10は、1つの送り軸部材1における螺旋体2aのピッチ形態の各変形例を示すものである。つまり、図1の送り軸部材1は中央部でピッチPaを最大に、両端部でピッチPbを最小にしたピッチ形態であるのに対して、図8は送り軸部材1の中央部のピッチPcを最小にし、両端部のピッチPdを最大にしている。また、図9の送り軸部材1は、その一端部のピッチPeを最小にし、他端部に至るほどピッチを拡大して他端部のピッチPfを最大にしている。このような図8と図9の送り軸部材1のピッチ形態は、移動体30の定区間における移動速度の要求に応じて決められる。また、このようなピッチ形態の選択は、図7の実施形態のように条体4aの芯棒3上でのピッチ変更を可能にしておけば、1つの送り軸部材1で実行可能である。
【0028】
図10の実施形態は、1本の芯棒3の長さ方向半分の外周に長尺な条体4aを螺旋状に巻回してから、そのまま条体4aを連続させて芯棒3の他の半分の外周に螺旋方向を逆にして巻回して、芯棒3の中央部から両側に螺旋方向が互いに逆の螺旋体2a’、2a”を形成し、それぞれの螺旋体2a’、2a”に独立した2つの移動体30’,30”を係合させたものである。各螺旋体2a’、2a”のピッチ形態は、送り軸部材1の中央側のピッチPgが小さく、両端側のピッチPhが大きく設定される。この送り軸部材1を往復回転させると、一対の移動体30’、30”が互いに反対方向に同様な速度変化をして同時移動する。
【0029】
【発明の効果】
本発明によれば、送り軸部材を駆動モータで定速で往復回転させると、送り軸部材の螺旋体の相違するピッチに応じた相違する速度で移動体が往復移動するので、移動体を所望の区間で高速移動させたり、移動体の所定の停止位置では低速移動させて停止させる等の移動速度の制御が送り軸部材の螺旋体のピッチだけで可能となり、移動体の様々な移動速度の設定が可能な高性能で、汎用性に優れた往復移動装置が提供できる。また、送り軸部材を定速回転させることで移動体の移動速度の制御が可能となるので、送り軸部材を往復回転させる駆動モータに速度制御回路を装備しない構造簡単で安価、小型のモータが適用できて、往復移動装置の低コスト化、小型化が容易となる。
【0030】
また、送り軸部材の螺旋体を凸状の条体で形成し、この条体に移動体の係合手段を首振り揺動可能に係合させることで、螺旋状の条体に係合手段が拗れること無く円滑に摺動して、移動体の往復移動の動作が安定する。
【0031】
また、芯棒の外周に条体を巻回して螺旋体を形成することで、ピッチを相違させた送り軸部材の製作が容易となり、製作費の低減化が可能となる。
【0032】
また、芯棒の外周に条体をピッチ変更可能に巻回することで、1つの送り軸部材で移動体の様々な移動速度の変更が可能となり、往復移動装置の汎用性の拡大と付加価値の増大化が可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す往復移動装置の要部の平面図。
【図2】図1装置の部分拡大断面図。
【図3】図1装置における送り軸部材の分解斜視図。
【図4】(A)は本発明の第2の実施形態を示す部分断面図、(B)は図4(A)のX−X線に沿う断面図。
【図5】本発明の第3の実施形態を示す部分断面を含む部分平面図。
【図6】本発明の第4の実施形態を示す部分断面を含む部分平面図。
【図7】(A)は本発明の第5の実施形態を示す部分断面図、(B)は図7(A)の条体を移動させてピッチ変更したときの部分断面図。
【図8】本発明の第6の実施形態を示す要部の部分平面図。
【図9】本発明の第7の実施形態を示す要部の部分平面図。
【図10】本発明の第8の実施形態を示す要部の部分平面図。
【符号の説明】
1 送り軸部材
2a 螺旋体
2b 螺旋体
P 螺旋体のピッチ
3 芯棒
4a 条体(帯板状)
4b 条体(丸棒状)
5 螺旋部品
10 駆動モータ
20 ガイド手段、ガイドロッド
30 移動体
33 係合手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reciprocating device applied to a reciprocating device such as an optical head in OA equipment, a reciprocating mechanism such as a work table in a precision machine tool, and the like.
[0002]
[Prior art]
As the reciprocating device, a belt type moving device using a timing belt and a servo motor (stepping motor) and a ball screw type moving device using a ball screw and a servo motor are generally used. The belt-type moving device engages a timing belt with a moving object that is linearly reciprocated in a fixed section, and reciprocates the moving object by reciprocating the timing belt on a fixed track with a servo motor. The ball screw type moving device reciprocates the moving object by engaging a nut or the like fixed to the moving object with a screw thread or a screw groove having an equal pitch of the ball screw and rotating the ball screw forward and backward by a servo motor. .
[0003]
In these reciprocating devices, the reciprocating speed of the moving object in a fixed section is adjusted by automatically controlling the moving speed of the timing belt and the rotating speed of the ball screw by the speed control circuit built in the servo motor. Yes. For example, a moving object that reciprocates in a fixed section moves to one end of the fixed section, stops once, and then starts moving in the opposite direction. In order to reduce the influence of the inertial force that is applied when the moving direction is reversed. In addition, the speed control circuit of the servo motor automatically controls so that the moving speed gradually decreases when the moving object approaches the end of the fixed section. Also, in applications where the moving object is moved at high speed in some sections of the fixed section and moved at low speeds in other sections, is the servo motor speed control circuit configured to support this application? A command signal for changing the speed is given to the speed control circuit.
[0004]
[Problems to be solved by the invention]
The reciprocating device using the servo motor as described above is used as a high-performance device for various applications because the moving speed of the moving object that reciprocates in a fixed section can be adjusted arbitrarily and with high accuracy. The servo motor is expensive because of the speed control circuit required to variably adjust the moving speed of the object to be moved, and the entire motor becomes large. For this reason, the reciprocating device itself is expensive because of the servo motor, making it difficult to reduce the cost of equipment products such as OA equipment incorporating the reciprocating device. Also, when the servo motor variably adjusts the moving speed of the moving object in the fixed section, the position of the moving object in all the fixed sections is detected one by one, and the detection signal is fed back to the speed control circuit of the servo motor. In this case, it is usual to prevent malfunction of speed control. In this case, the detection means such as an optical sensor for detecting the position of the moving object in a fixed section one by one, or the detection of this detection means A protection circuit for preventing troubles due to mistakes is required, and the reciprocating device is still more expensive and larger.
[0005]
Instead of the servo motor, a reciprocating device using a drive motor that only reciprocates at a constant speed is also used for OA equipment. This moving device is inexpensive and small because the drive motor that rotates at a constant speed is not equipped with a speed control circuit, so it does not have the problems associated with the servo motor, but almost all sections in the fixed section of the moving object. Since the movement speeds at the same time are the same, the content of work performed by reciprocating the object to be moved in a fixed section is limited and there is a problem of lack of versatility. Further, if the moving object is moved at a high speed in a fixed section, it is suddenly stopped when it is temporarily stopped at the end of the fixed section, and there is a problem that a large inertial force acts on the moving object during this sudden stop.
[0006]
Therefore, an object of the present invention is to provide an inexpensive and small reciprocating device capable of freely adjusting the reciprocating speed of a moving object without using a servo motor.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a feed shaft member that has an uneven spiral body on the outer periphery and reciprocates around an axis, a drive motor that reciprocates the feed shaft member at a fixed position, and a feed shaft member Guide means arranged in parallel with the guide means, supported by the guide means so as to be reciprocable in the axial direction of the feed shaft member, and extending in the direction of the feed shaft member from the guide means to the spiral body of the feed shaft member in its spiral direction In the reciprocating device having the moving body having the engaging means that slidably engages with the feed shaft member, the pitch of the spiral body of the feed shaft member is made different in the axial direction of the feed shaft member, and the spiral body of the feed shaft member is It is characterized in that it is a strip wound in a convex shape with a different pitch on its outer periphery, and the engaging means of the moving body is a bifurcated claw member that sandwiches the strip .
[0008]
Here, the spiral body of the feed shaft member is a spiral protrusion having a constant width, and the pitch between adjacent portions of the spiral body at 360 ° is different. When the feed shaft member is reciprocally rotated by the drive motor, the moving body is reciprocated by the ball screw method through the engagement means of the spiral body and the moving body, and the moving speed at this time depends on the pitch of the spiral body of the feed shaft member and the feed shaft member. Determined by the rotation speed. When the feed shaft member is rotated at a constant speed, the moving speed of the moving body can be determined at a variable speed only by the pitch of the spiral body. In this case, the drive motor that rotates the feed shaft member at a constant speed is not equipped with a speed control circuit. A small motor can be used.
[0009]
Further, it is possible to connect the engaging means of the moving body that engages with the spiral body of the feed shaft member so as to be able to swing and swing with respect to the mobile body in a direction that reduces sliding resistance with the spiral body. It is desirable to make the frictional engagement state between the helical body and the moving body engaging means having different pitches always stable.
[0010]
Further, the spiral body of the feed shaft member is a strip wound in a convex shape with a different pitch on the outer periphery of the core rod, so that a feed shaft member having a spiral body with a different pitch can be manufactured at low cost. Desirable above.
[0011]
Further, if the strip is wound around the outer periphery of the core rod of the feed shaft member so as to be movable in the axial direction of the feed shaft member, the pitch of the spiral body of the feed shaft member can be arbitrarily changed to The moving speed can be changed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Various embodiments will be described with reference to FIGS. Note that the same or corresponding parts are denoted by the same reference numerals throughout the drawings.
[0013]
A reciprocating device shown in one embodiment of FIG. 1 is arranged in parallel to a linear feed shaft member 1, a drive motor 10 that reciprocally rotates the feed shaft member 1 around its axis, and the feed shaft member 1. The guide means 20 is provided, and the moving body 30 is supported by the guide means 20 being guided in the moving direction. A moving object (not shown) is connected to the moving body 30, and the reciprocating movement is controlled linearly in a fixed section.
[0014]
The feed shaft member 1 is formed by, for example, winding a long strip 4a spirally around the outer periphery of a core rod 3, which is a single linear metal round bar, and projecting on the outer periphery of the core rod 3 with the strip 4a. The helical body 2a is formed, and the pitch P of the helical body 2a is made different as will be described later. The strip 4a is, for example, a spiral component 5 in which a strip-shaped steel plate having a constant lateral width w and thickness t as shown in FIGS. 2 and 3 is spirally wound in the width direction. Such a spiral component 5 can be applied to a commercially available mini-spirer (trade name of Suncor Co., Ltd.) and the like, and the feed shaft member 1 can be manufactured at low cost by this application. As shown in FIG. 3, the pitch P continuous in the axial direction of the strip-like strip 4a of the spiral component 5 is gradually different, and the core rod 3 is press-fitted into the spiral component 5 to fix the pitch P. It becomes. Both ends of the core rod 3 without the spiral body 2 a are rotatably supported by bearings 6, 6, the bearings 6, 6 are fixed to a flat plate-like fixed frame 7, and the feed shaft member 1 is supported in parallel to the fixed frame 7. Is done.
[0015]
The drive motor 10 is supported by the fixed frame 7 and is connected to one end of the core rod 3 of the feed shaft member 1 via the speed reduction mechanism 11. As the drive motor 10, an inexpensive and small motor that does not include a speed control circuit or the like is applied, which rotates the feed shaft member 1 at a constant speed in both forward and reverse directions. Although a servo motor such as a conventional reciprocating device can be applied to the drive motor 10, this application is unnecessary and uneconomical for the reason described later.
[0016]
The guide means 20 is a guide rod, a guide groove, a guide rail or the like parallel to the feed shaft member 1, and one linear guide rod 20 is shown in FIG. The moving body 30 is fitted to the guide rod 20 so as to be slidable in the axial direction. Both ends of the guide rod 20 are fixed to the support base 21, and the support base 21 is fixed to the fixed frame 7.
[0017]
The moving body 30 includes a cylindrical slider portion 31 that is slidably fitted to the guide rod 20, a connecting portion 32 that is integrated with the slider portion 31 and extends from the slider portion 31 toward the feed shaft member 1, The engaging means 33 is connected to the tip of the connecting portion 32. The engaging means 33 is engaged with a part of the spiral body 2a of the feed shaft member 1 so as to be slidable in the spiral direction of the spiral body 2a. When the spiral body 2a is a strip-like strip 4a, the engaging means 33 is engaged. Is a bifurcated claw member that clamps the strip 4a in the thickness direction. The engaging means 33 engages with the spiral body 4a of the feed shaft member 1 in the radial direction of the axis of the feed shaft member 1 and from a fixed direction in which the guide rod 20 is present. When the feed shaft member 1 rotates, the spiral body 4a rotates while being frictionally engaged with the engaging means 33, and the engaging means 33 is moved in the axial direction of the feed shaft member 1, and the moving body 30 is moved by this axial movement. It is guided by the guide rod 20 and moves linearly.
[0018]
As shown in FIG. 1, for example, the pitch P of the spiral body 2a of the feed shaft member 1 has a maximum pitch Pa at the center portion of the feed shaft member 1, and the pitch gradually decreases from the center portion to both end portions. The pitches Pb of the portions are different so as to be minimized. As shown by the solid line in FIG. 1, the feed shaft member 1 is moved in the forward direction by the drive motor 10 in a state where the engaging means 33 of the moving body 30 is engaged with the spiral body 2 a of the center portion of the feed shaft member 1 (FIG. 1 is rotated at a constant speed (in the direction of the solid line arrow 1), the moving body 30 starts linear movement in the right direction in FIG. The moving speed of the moving body 30 at the start of movement is proportional to the pitch Pa of the spiral body 2a with which the engaging means 33 is engaged because the rotation speed of the feed shaft member 1 is constant. Is the maximum, the pitch P becomes smaller as it moves, and the moving speed gradually decreases. When the moving body 30 moves to one end of the feed shaft member 1, the minimum moving speed is reached by the minimum pitch Pb. Further, if the feed shaft member 1 is rotated at a constant speed in the reverse direction (in the direction of the broken line arrow in FIG. 1) while the movable body 30 is at the position of the solid line in FIG. 1, the movable body 30 starts at the left direction in FIG. It moves linearly with a speed change pattern that gradually decreases.
[0019]
As described above, when the feed shaft member 1 is reciprocated by the constant speed rotation of the drive motor 10, the moving body 30 moves at a high speed at the center portion of the feed shaft member 1 and moves at a low speed at both ends. The moving speed of 30 can be arbitrarily changed. When the moving body 30 moves to a fixed position near both ends of the guide rod 20, it is desirable to install switches 22, 22 such as limit switches that detect the position and output an electrical signal on the fixed frame 7. . The rotation of the feed shaft member 1 is temporarily stopped by the detection signals of the switches 22 and 22, the linear movement of the moving body 30 is temporarily stopped, and then the moving direction is reversed.
[0020]
Such a temporary stop of the moving body 30 can be smoothly performed without receiving a large inertia force because the moving speed immediately before the stop is the minimum low speed with the minimum pitch Pb. Further, since the moving body 30 can be moved at a high speed in the central portion of the feed shaft member 1, various operations can be performed at a high speed by the moving object that reciprocates linearly with the moving body 30. Furthermore, the drive motor 10 of the drive source that moves the moving body 30 while changing the speed only rotates at a constant speed. Therefore, an inexpensive and small-sized motor equipped with a rotation on / off switch circuit can be used. Further, the moving speed at each position within a moving section (corresponding to a fixed section between the pair of switches 22 and 22) determined between both ends of the guide rod 20 of the moving body 30 is the helical body 2a of the feed shaft member 1. Therefore, it is not necessary to detect the position of the moving body 30 in every section of the moving section, and the moving speed in the entire moving section of the moving body 30 can be controlled with high accuracy.
[0021]
Next, more specific embodiments of the present invention will be described in order with reference to the drawings.
[0022]
As shown in the embodiment of FIG. 1, when the feed shaft member 1 is configured by winding a strip-like strip 4a around a round bar-shaped core bar 3 in a spiral manner with a different pitch, the cross-sectional view of FIG. As shown in FIG. 4, the strip-like strip 4a is inclined with respect to the outer periphery of the core rod 3, and the inclination angle θ is proportional to the pitch of the strip 4a. Therefore, the engaging means 33 of the moving body 30 to be engaged with the strip 4a is connected to the connecting portion 32 of the moving body 30 so as to be swingable in the axial direction of the feed shaft member 1, and the engaging means 33 is connected. Is inclined to follow the change of the inclination angle θ of the strip 4a with which the engagement is made. In this way, the engaging means 33 always engages in a stable state parallel to the strip 4a even if the inclination angle θ of the strip 4a changes, and has low friction resistance without falling into the strip 4a. It comes to slide. Further, by installing the engaging means 33 so as to be swingable in this manner, the spiral body 2a of the feed shaft member 1 is a strip-like strip 4a, that is, a commercially available and inexpensive spiral shown in FIG. The component 5 can be used.
[0023]
4 (A) and 4 (B) show a modification of the engaging means 33. A pair of rollers 34, 34 can be freely rotated by a bifurcated engaging means 33 that sandwiches the strip-like strip 4a. Incorporating, the pair of rollers 34 and 34 are caused to roll on both sides of the strip 4a. Thus, the smooth engagement state of both can be ensured by slidingly moving the engaging means 33 along the strip 4a via the rollers 34, 34.
[0024]
In the embodiment of FIG. 5, a round rod-shaped wire rod 4 b is wound around the outer periphery of the core rod 3 of the feed shaft member 1 at a different pitch to form a convex spiral body 2 a. In this case as well, the engaging means 33 may be sandwiched between the rods 4b of the round bar wire, and both may be slidably engaged. A spiral spring wire that is a commercially available product and is inexpensive can be applied to the spiral strip 4b of such a round bar wire.
[0025]
FIG. 6 shows an example of changing the shape of the spiral body 2 b of the feed shaft member 1. The spiral body 2b is a spiral groove formed by cutting the outer periphery of the cylindrical core rod 3 in a spiral manner. The width of the spiral groove 2b is constant, and the pitch P between the grooves is different. The engaging means 33 is integrally provided with a protruding piece 33 ′ that is fitted into the spiral groove 2b and frictionally engages with both side walls of the spiral groove 2b. The formation of the spiral groove 2b may be performed by NC control in the manner of normal thread groove cutting.
[0026]
7A and 7B are modifications of the embodiment of FIG. That is, when the strip-like strip 4a of the embodiment of FIG. 2 is wound around the outer periphery of the core rod 3 with a different pitch P, it is fixed to the core rod 3 as it is, but without being fixed, it is spiral. FIG. 7 shows that the elastic force of the strip 4a is elastically coupled to the outer periphery of the core rod 3 so as to be axially movable. The strip 4a shown in FIG. 7A shows a pitch state similar to that in FIG. 2, and the pitch is changed by moving the strip 4a in the axial direction while being in elastic contact with the core rod 3. 7 (B). Thus, by making it possible to arbitrarily change the pitch P of the spiral body 2a in one feed shaft member 1, it becomes possible to reciprocate the moving body 30 with more various movement speeds with one feed shaft member 1, In addition, the moving speed of the moving body 30 can be changed at the use stage of the reciprocating device.
[0027]
FIGS. 8 to 10 show modifications of the pitch form of the spiral body 2 a in one feed shaft member 1. That is, the feed shaft member 1 in FIG. 1 has a pitch configuration in which the pitch Pa is maximized at the center and the pitch Pb is minimized at both ends, whereas FIG. 8 is a pitch Pc at the center of the feed shaft member 1. Is minimized, and the pitch Pd at both ends is maximized. Further, the feed shaft member 1 shown in FIG. 9 minimizes the pitch Pe at one end, and expands the pitch toward the other end to maximize the pitch Pf at the other end. The pitch form of the feed shaft member 1 shown in FIGS. 8 and 9 is determined according to the request for the moving speed in the fixed section of the moving body 30. Further, such selection of the pitch form can be executed by one feed shaft member 1 if the pitch can be changed on the core rod 3 of the strip 4a as in the embodiment of FIG.
[0028]
In the embodiment of FIG. 10, a long strip 4 a is spirally wound around the outer periphery of one core rod 3 in the longitudinal direction, and then the strip 4 a is continued as it is. A spiral body 2a ′, 2a ″ having opposite spiral directions is formed on both sides from the central portion of the core rod 3 by winding it around the outer periphery of the half, and the spiral bodies 2a ′, 2a ″ are independent of each other. Two moving bodies 30 ′ and 30 ″ are engaged. The pitch form of each of the spiral bodies 2a ′ and 2a ″ is such that the pitch Pg on the center side of the feed shaft member 1 is small and the pitch Ph on both ends is large. Is set. When the feed shaft member 1 is reciprocally rotated, the pair of moving bodies 30 ′ and 30 ″ move at the same time with the same speed changes in opposite directions.
[0029]
【The invention's effect】
According to the present invention, when the feed shaft member is reciprocally rotated at a constant speed by the drive motor, the movable body reciprocates at different speeds according to different pitches of the spiral of the feed shaft member. Moving speed can be controlled only by the pitch of the spiral of the feed shaft member, such as moving at a high speed in the section or moving at a low speed at a predetermined stop position of the moving body, and setting of various moving speeds of the moving body is possible. It is possible to provide a reciprocating device with high performance and excellent versatility. Also, since the moving speed of the moving body can be controlled by rotating the feed shaft member at a constant speed, the drive motor for reciprocatingly rotating the feed shaft member is not equipped with a speed control circuit. It can be applied, and the cost and size of the reciprocating device can be easily reduced.
[0030]
Further, the spiral member of the feed shaft member is formed by a convex strip, and the engaging means of the moving member is engaged with the strip so as to be able to swing and swing, whereby the engaging means is provided on the spiral strip. Sliding smoothly without twisting, the reciprocating motion of the moving body is stabilized.
[0031]
Further, by forming a spiral body by winding a strip around the outer periphery of the core rod, it becomes easy to manufacture feed shaft members having different pitches, and it is possible to reduce manufacturing costs.
[0032]
In addition, by winding the strip around the outer periphery of the core bar so that the pitch can be changed, it is possible to change various moving speeds of the moving body with a single feed shaft member, increasing the versatility and added value of the reciprocating device. Can be increased.
[Brief description of the drawings]
FIG. 1 is a plan view of a main part of a reciprocating device showing a first embodiment of the present invention.
2 is a partial enlarged cross-sectional view of the apparatus of FIG.
3 is an exploded perspective view of a feed shaft member in the apparatus of FIG. 1. FIG.
4A is a partial cross-sectional view showing a second embodiment of the present invention, and FIG. 4B is a cross-sectional view taken along line XX of FIG. 4A.
FIG. 5 is a partial plan view including a partial cross section showing a third embodiment of the present invention.
FIG. 6 is a partial plan view including a partial cross section showing a fourth embodiment of the present invention.
7A is a partial cross-sectional view showing a fifth embodiment of the present invention, and FIG. 7B is a partial cross-sectional view when the pitch is changed by moving the strip of FIG. 7A.
FIG. 8 is a partial plan view of an essential part showing a sixth embodiment of the present invention.
FIG. 9 is a partial plan view of an essential part showing a seventh embodiment of the present invention.
FIG. 10 is a partial plan view of a main part showing an eighth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Feed shaft member 2a Spiral body 2b Spiral body P Pitch of helical body 3 Core rod 4a Strip (band shape)
4b strip (round bar shape)
5 Helical component 10 Drive motor 20 Guide means, guide rod 30 Moving body 33 Engaging means

Claims (3)

外周に凹凸状の螺旋体を有して軸心を中心に往復回転する送り軸部材と、送り軸部材を定位置で往復回転させる駆動モータと、送り軸部材と平行に配置されたガイド手段と、ガイド手段に送り軸部材の軸方向に往復移動可能に支持され、ガイド手段から送り軸部材の方向に延在する先端に送り軸部材の螺旋体にその螺旋方向に摺動可能に係合する係合手段を有する移動体を具備した往復移動装置において、
前記送り軸部材の螺旋体のピッチを送り軸部材の軸方向で相違させ、
前記送り軸部材の螺旋体が、芯棒の外周にピッチを相違させて凸状に巻回した条体であり、
前記移動体の係合手段が前記条体を挟持する二股状の爪部材である、
ことを特徴とする往復移動装置。
A feed shaft member having an uneven spiral body on the outer periphery and reciprocatingly rotating around an axis; a drive motor for reciprocatingly rotating the feed shaft member at a fixed position; and guide means arranged in parallel with the feed shaft member; An engagement that is supported by the guide means so as to be reciprocally movable in the axial direction of the feed shaft member, and that engages with a spiral body of the feed shaft member slidably in the spiral direction at a tip extending from the guide means in the direction of the feed shaft member. In a reciprocating device provided with a moving body having means,
The pitch of the spiral of the feed shaft member is different in the axial direction of the feed shaft member;
The spiral body of the feed shaft member is a strip wound in a convex shape with a different pitch on the outer periphery of the core rod,
The engaging means of the moving body is a bifurcated claw member that sandwiches the strip.
A reciprocating device characterized by that.
前記条体が、横幅一定かつ板厚一定の長尺な帯板を幅方向で螺旋状に曲げ成形した螺旋部品であることを特徴とする請求項1記載の往復移動装置。2. The reciprocating device according to claim 1, wherein the strip is a spiral part formed by bending a long strip having a constant lateral width and a constant plate thickness into a spiral shape in the width direction. 前記送り軸部材の螺旋体に係合する移動体の係合手段を、螺旋体との摺動抵抗を軽減させる方向に移動体に対して首振り可能に連結したことを特徴とする請求項2の往復移動装置。3. The reciprocation according to claim 2, wherein engaging means of the moving body that engages with the spiral body of the feed shaft member is connected to the moving body so as to be able to swing in a direction that reduces sliding resistance with the spiral body. Mobile device.
JP2000006673A 2000-01-14 2000-01-14 Reciprocating device Expired - Fee Related JP3630602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006673A JP3630602B2 (en) 2000-01-14 2000-01-14 Reciprocating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006673A JP3630602B2 (en) 2000-01-14 2000-01-14 Reciprocating device

Publications (2)

Publication Number Publication Date
JP2001200905A JP2001200905A (en) 2001-07-27
JP3630602B2 true JP3630602B2 (en) 2005-03-16

Family

ID=18535166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006673A Expired - Fee Related JP3630602B2 (en) 2000-01-14 2000-01-14 Reciprocating device

Country Status (1)

Country Link
JP (1) JP3630602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190099881A (en) * 2018-02-20 2019-08-28 주식회사 만도 Electric caliper brake

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111370B2 (en) * 2001-10-12 2008-07-02 信行 坪井 Screw drive
JP2006257805A (en) * 2005-03-18 2006-09-28 Toshiba Elevator Co Ltd Opening/closing mechanism of door
JP5055466B2 (en) * 2007-02-19 2012-10-24 常郎 後藤 Lead screw
DE102008042299A1 (en) * 2008-09-23 2010-04-01 Robert Bosch Gmbh helical
JP2014055585A (en) * 2012-09-12 2014-03-27 Yamazaki:Kk Wave power generator
EP3725449B1 (en) * 2019-02-26 2024-03-13 Dengensha Toa Co., Ltd. Pressurizing device, and welding device
JP7352167B2 (en) 2019-11-05 2023-09-28 株式会社アイシン drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190099881A (en) * 2018-02-20 2019-08-28 주식회사 만도 Electric caliper brake
KR102066263B1 (en) 2018-02-20 2020-02-11 주식회사 만도 Electric caliper brake

Also Published As

Publication number Publication date
JP2001200905A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3630602B2 (en) Reciprocating device
KR100405261B1 (en) Electric actuator
JP2526816B2 (en) Movable body feeding device
US7343766B2 (en) Spring manufacturing apparatus
JPH01199020A (en) Linear feed mechanism
JP2923951B2 (en) Feed screw support device
US5273223A (en) Nozzle mounting arrangement on a stator coil winding machine
WO2006083058A1 (en) Traverse device of bobbinless coil winding machine
KR20110048814A (en) Linear reciprocating motion apparatus using traverse cam with uniform velocity
US5003856A (en) Paper cutter
WO2002016804A1 (en) Drive shaft moving device
JPS63300836A (en) Fine positioning mechanism
JP2002199553A (en) Cable wiring apparatus
JP2014084975A (en) Linear motion table device and ball screw support mechanism of linear motion table device
JP3473957B2 (en) Swivel table device
JPH0632633Y2 (en) Character movement mechanism
JPH11349221A (en) Winding device for linear body
JPH0775298A (en) Winding machine
KR100214358B1 (en) Traverse guide
JP2951538B2 (en) Intermittent feed winding machine
KR970007116Y1 (en) Reciprocating driving device
CN112820606A (en) Spiral line adjusting mechanism
JPH0452514Y2 (en)
JPH04135157A (en) Processing method in wire saw device
JP2003260686A (en) Sheet material cutting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees