JP3630510B2 - Conductive terminal and polymer sheet package battery - Google Patents
Conductive terminal and polymer sheet package battery Download PDFInfo
- Publication number
- JP3630510B2 JP3630510B2 JP26161896A JP26161896A JP3630510B2 JP 3630510 B2 JP3630510 B2 JP 3630510B2 JP 26161896 A JP26161896 A JP 26161896A JP 26161896 A JP26161896 A JP 26161896A JP 3630510 B2 JP3630510 B2 JP 3630510B2
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- conductive
- battery
- electrode
- package
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 title claims description 26
- 229920005989 resin Polymers 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 239000005022 packaging material Substances 0.000 claims description 6
- 239000011231 conductive filler Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims 1
- -1 nickel metal hydride Chemical class 0.000 description 25
- 239000000463 material Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- 239000007784 solid electrolyte Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 238000007599 discharging Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 235000012489 doughnuts Nutrition 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011115 styrene butadiene Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリマーシートパッケージ材で包装された電池の電極に設置される導電性端子、およびこの導電性端子を用いた電池に関するものである。
【0002】
【従来の技術】
現在、パソコン、携帯電話、ビデオカメラなど種々の携帯機器に用いる電源として高エネルギー密度電池が開発されている。この電池として繰り返し充放電使用可能なリチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池などが利用されている。特にリチウムイオン二次電池はエネルギー密度が大きいことが特徴であり、電池の小型軽量化が可能であるため活発な開発が進められている。
【0003】
従来、リチウムイオン二次電池は電極間のイオン移動媒体として電解液が用いられ、通常は電極と多孔質セパレータの積層体に電解液が含浸された構造を有する。このように電解液を用いる電池では液漏れを防ぐため電池パッケージに重厚な金属材料が用いられている。
一方、固体電解質をイオン移動媒体とする電池は、従来の電解液をイオン移動媒体とする電池に比べ、実質的に液漏れがないため電池の信頼性、安全性が向上するとともに薄膜化や積層体形成の容易さ、電池形態の自由度が高いこと、パッケージの簡略化、軽量化が期待されている。
【0004】
固体電解質を用いた電池は、シート状の電極と固体電解質が積層された積層体や電極表面に高分子固体電解質層を塗布形成後積層させた積層体を所定の形状に加工して作製することができる。また、電極/高分子固体電解質/電極の各層を塗工によって形成する方法も提案されている。このように、シート積層や塗工などの方法が採用できることから製造プロセスが量産性に優れることが予想されている。また、従来の電解液系電池で起こりうる液漏れが実質的に起こらないため製造工程管理が容易であり、電極/固体電解質/電極積層体の直列接続積層による高電圧化も期待されている。
【0005】
上記の固体電解質電池は、通常、樹脂シートと金属シートが積層したラミネートポリマーシートでパッケージされて用いられている。このパッケージされた電池を使用するためにはパッケージ内部の電極からパッケージ外部への電流取り出し端子を設ける必要があり、通常は電極端子をポリマーシートの封口部で挟み込んで融着させる構造で電池が構成される。ところが、この構造では電極端子部がパッケージ面からはみ出した構造となり、電池の小型化の支障となっていた。また、パッケージの一部に空孔を設け、この空孔に電極積層体の集電体面を密着させる構造の電池も提案されている(米国特許第5478668号明細書)。ところが、これら構造の電池ではパッケージの電極端子封口部で電池内外のリーク、工程中の電極端子の切断、導通不良などが起こり、これによってリチウム二次電池の性能低下が起こるという問題があった。
【0006】
さらに、電池を誤って過充電した場合や充電状態で電極端子を短絡させた場合、電極内部で発熱が起こり電池の安全性を損なうことがある。この場合の安全性確保のために電極端子にPTC素子(Positive Temperature Coefficient素子)を内蔵させ、高温時の電極の導通を阻止する機能を付与させている。ポリマーパッケージ電池においてもこのPTC素子を用いる試みがある(米国特許第5478668号明細書)が電極積層体への接続加工が煩雑という問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、信頼性、安定性、安全性に優れ、かつ電池の小型化を可能にする導電性端子、およびそれを用いた電池を提供することを目的とする。
【0008】
本発明者らは、主に固体電解質を用いた固体電池のパッケージ材および構造の研究を進め、本発明を完成した。
すなわち、本発明は、開口部を有するポリマーシートパッケージ材で電極積層体が包装された電池において、該開口部が内側より、中央部に孔を有する樹脂シートの該孔が一定温度以上で急激に電気抵抗が上昇する導電性粒子または導電性フィラーと絶縁性ポリマーとの混合体で充填されておりかつ該孔が樹脂シートより小なる面積であって該孔の面積より大なる面積の導電性シートで両面から被覆されている導電性端子の樹脂シートで融着または粘着されており、かつ導電性端子を構成する導電性シートが電極積層体の電極または電極集電体と接合していることを特徴とするポリマーシートパッケージ電池である。
【0009】
以下、本発明の導電性端子および電池について説明する。
本発明は、ポリマーシートパッケージ材で包装された電池の電極または電極集電体にパッケージ外との電子移動を行うために設置される導電性端子に関するものである。
本発明の導電性端子は、図1、図2に示すように導電性シートと中央部に孔のある樹脂シートとが積層されたフラット形状の導電性端子であって、樹脂シートの積層されていない、電流を外部に取り出すことのできる充分な面積の導電性の部分を有する。本発明において中央部に孔を有するとは、積層された際に、導電性シートの周辺部に樹脂シートの積層された構造を有し、かつ電流を外部に取り出すことのできる充分な面積の導電性の部分を有することが可能な位置に孔があることであって、必ずしも中心部に位置することを意味しないが、導電性端子作成の容易性から中心部にあることが好ましい。本発明における孔は、電流を外部に取り出すことのできる充分な面積の導電性の部分を形成できればよく、形状は円状、楕円状、角状など様々な形を採ることができる。さらに、導電性端子を構成する導電性シートの周辺部に積層される樹脂シートは、ポリマーシートパッケージ材と粘着または融着可能であることが必要である。また、該樹脂シートは、ポリマーシートパッケージ材と接合可能な大きさであれば、導電性シートより小さくともよいが、導電性シートより大きく、導電性シートの周囲からはみ出した状態で積層されていることが好ましい。この粘着または融着可能な樹脂シートで導電性端子とポリマーシートパッケージ材とが接合されることによってパッケージ化され、内外のリークを阻止することができるとともに、ポリマーシートパッケージ内の電極または電極集電体と導電性端子との導電接合が可能になり、パッケージ外部へ電流を取り出すことができる。
【0010】
本発明の導電性端子の形状として、円板状、楕円板状、角板状など種々の形態が可能であり、電池パッケージの上面および下面部分、または側面部分に、該導電性端子を配置して電池を構成することができる。本発明の導電性端子形状はフラット形状であることから、設置しても電池パッケージ全体をかさばらせないため、電池の体積エネルギー密度を高めることができる。
【0011】
本発明の導電性端子の設置は、予めパッケージ材に設けた開口部に導電性端子を埋設させた後に、電極積層体をパッケージ材に入れ封口する方式、開口部を設けたパッケージ材に電極積層体を封口した後、予め設けた開口部に導電性端子を埋設する方式のいずれも可能である。従って導電性端子に用いる、融着または粘着可能な樹脂シートは、パッケージ材の開口部を覆うことができる大きさの形状が必要となる。
【0012】
本発明の導電性端子は、電気抵抗が一定温度以上で急激に上昇し、導電性端子の導通を遮断することのできる、導電性粒子または導電性フィラーと絶縁性ポリマーとのPTC素子材料からなる混合体層を積層した構造を採ることによって導電性端子の高温時の電流遮断機能を付与することができる。この高温時の電流遮断により、たとえば、過放電、外部短絡などの異常作動を防止できるため電池の安全性を向上させることができる。このPTC素子材料は、通常導電性粒子または導電性フィラーが樹脂バインダーで分散された構造であり、樹脂バインダーの熱膨張係数が導電性粒子または導電性フィラーより大きいことを利用して高温において導電性粒子間の導通を遮断することによって作動する。
【0013】
上記PTC素子材料からなる混合体層を積層した構造の作製方法としては、このPTC素子材料からなる混合体層と金属層との積層体を導電性シートとして用いる方法、樹脂シート積層側の樹脂シートの積層されていない導電性シート上に混合体層を積層する方法等がある。
本発明の導電性端子の構造の具体例として、図1に示す導電性シート/ドウナツ型樹脂シートの積層構造、金属層・混合体層(導電性シート)/ドウナツ型樹脂シートの積層構造、図2に示す導電性シート/ドウナツ型樹脂シート・混合体層/導電性シートの積層構造などが挙げられる。図2に示す積層構造において積層する混合体層の厚みはドウナツ型樹脂シートの厚み以上、好ましくは同じ厚みである。電池の小型化の観点から導電性端子を構成する導電性シートおよび樹脂シートの厚みは薄いことが好ましい。また、この端子を用いた電池の気密性保持のために、上記の構造における導電性シートの少なくとも一枚は貫通孔をもたない連続体であることが望ましい。
【0014】
本発明の導電性端子に用いる導電性シートとしては、ステンレスシート等の金属シート、カーボンシート、導電性粒子を樹脂またはセラミックに混合分散した分散体、導電性ポリマーシート、および上記混合体層と金属層の積層体などが挙げられる。
また、樹脂シートの材料は、パッケージ材と融着または粘着可能であることが必要である。具体例として、ポリエチレン、ポリプロピレン、アイオノマー樹脂、エチレン・ビニルアルコール共重合体、ナイロン、芳香族ポリアミド、芳香族ポリエステル、ポリフェニレンオキシド、ポリオキシメチレン、ポリカーボネートなどの熱可塑性樹脂、スチレン・ブタジエン共重合体などのラテックス、エポキシなどの接着剤などの粘着部を持つ熱可塑性樹脂または熱硬化性樹脂が挙げられる。また、これらの樹脂でラミネートされたシート、たとえば、ポリエチレン/ポリエチレンテレフタレート/ポリエチレン等も用いることができる。この場合はラミネートされる樹脂シートは上記樹脂に限定されないのは当然である。
【0015】
本発明の導電性端子の作製法として、たとえば、導電性シートに樹脂シートをラミネートする方法、導電性シートの一部に樹脂層を塗布する方法、導電性シートを樹脂シートに塗布形成する方法が挙げられる。
また、本発明の導電性端子を用いたパッケージ電池において、導電性端子と電極または電極集電体を導電接合することによって電池が作動するがこの接合方法として、圧着、密着、かしめにより直接接触させる方法、導電性接着剤、スポット溶接、超音波溶接などの溶接方法などが挙げられる。この直接接触の導通を良好にするため、電極積層体または導電性端子の一部に凹凸形状を設けることができる。
【0016】
本発明のポリマーシートパッケージ電池は、導電性端子がパッケージ材に埋設されているので、かさばらず、高エネルギー密度電池が作製できる。また本発明の電池を単セルまたは複数セルパック電池として利用することができる。さらに、本発明の導電性端子は、作製が容易で量産性に富み、種々の電池形態に応用できる。本発明の電池は、特にリチウムイオン電池に好適であるが、これにとどまらず鉛電池、アルカリ電池、ニッケル水素電池など種々の電池に応用できる。
【0017】
【発明の実施の形態】
以下実施例で本発明を詳細に説明する。
【0018】
【参考例1】
直径19mmに打ち抜いたステンレスシート円板(厚さ10μm)と外径30mm、内径15mmに切断したポリエチレン/ポリエチレンテレフタレート/ポリエチレンラミネートシート円板(厚さ50μm)の中心を一致させて積層し、ポリテトラフルオロエチレンシート(厚さ50μm)に挟み込んだまま熱ロールプレス(温度130℃)を行い、冷却後ポリテトラフルオロエチレンシートからポリエチレンラミネートシート/ステンレスシート積層体を取り出した。この積層体が図1に示す導電性端子である。
【0019】
ポリエチレン/アルミニウム/ポリエチレンテレフタレート積層シートを袋状に加工(100mm×105mm、4辺の2辺を幅3mmでヒートシール、1辺はシート折り返し、1辺は開放状態)した後に、この袋状の中心を直径20mmで打ち抜き、開口部となる孔を設けた(パッケージに2個の孔を開けた。)。2個の導電性端子をパッケージの孔に配置した後、パッケージ内部の導電性端子の間にポリテトラフルオロエチレンシート(幅92mm、長さ150mm)を挟んだ状態で熱ロールプレスして導電性端子をパッケージ袋に埋設させた。LiCoO2シート(幅90mm、バインダーにポリフッ化ビニリデン、膜厚110μm片面塗工、アルミ集電体)、ニードルコークスシート(幅90mm、バインダーにスチレン−ブタジエンラテックス、膜厚125μm片面塗工、銅集電体)をそれぞれ正極、負極に用い、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体発泡体シートに電解液を含浸させた固体電解質(幅92mm)とともに積層した電極積層体を作製した。該積層体シートを100mm毎に4回折り曲げ、折り曲げ積層体の上面にアルミニウム集電体が、下面に銅集電体を有する構造に加工した。この折り曲げ積層体をポリマーパッケージ袋に挿入した後、挿入口を幅3mmで熱シールして電池パッケージを作製した。電池の上面および下面の導電性端子を充放電機に接続して充放電を行った結果、初回放電容量は1.1Ah、平均電圧3.6V(3.96Wh)であり、繰り返し充放電が可能であった。
【0020】
【実施例1】
参考例1で用いたと同様のステンレスシート円板とポリエチレンラミネートシート円板を用い、ポリエチレンラミネートシート円板の中心部にPTCシート(直径10mm、厚さ約100μm)を配置させ、この上面および下面にステンレスシート円板を積層してステンレス/ポリエチレン−PTC素子/ステンレスシートを構成し、参考例1と同様にして加熱ロールプレスして積層体を作製した。この積層体を導電性端子(図2)として用いた。
【0021】
参考例1で用いたポリエチレン/アルミニウム/ポリエチレンテレフタレート積層シート孔開き袋の2個の孔に導電性端子を配置した後、パッケージ内部にポリテトラフルオロエチレンシート(幅92mm、長さ150mm)を挟んだ状態で熱ロールプレスして導電性端子をパッケージ袋に埋設させた。参考例1で用いた電極積層体シートを100mm毎に4回折り曲げ、折り曲げ積層体の上面にアルミニウム集電体が、下面に銅集電体を有する構造に加工した。この折り曲げ積層体をポリマーパッケージ袋に挿入した後、挿入口を幅3mmで熱シールして電池パッケージを作製した。電池の上面および下面の導電性端子を充放電機に接続して充放電を行った結果、初回放電容量は1.12Ah、平均電圧3.6V(4.0Wh)であり、繰り返し充放電が可能であった。またこの電池を外部加熱しながら電池抵抗測定した結果、110℃で急激に抵抗が増加し、PTC素子が作動していることがわかった。
【0022】
【参考例2】
ステンレスシート(厚さ10μm)を打ち抜いて直径20mmの円盤を作製し、この周囲5mm幅にスチレン−ブタジエンラテックスを塗布乾燥した。この円盤を導電性端子(図1)として、参考例1と同様にポリエチレン/アルミニウム/ポリエチレンテレフタレート積層シート袋状に加工(100mm×120mm、4辺の2辺を幅3mmでヒートシール、1辺はシート折り返し、1辺は開放状態)し、この中心を直径10mmで打ち抜き、開口部である孔を設けた(パッケージに2個の孔を開けた)。2個の導電性端子をパッケージの孔部に配置した後、パッケージ内部にポリテトラフルオロエチレンシート(幅92mm、長さ150mm)を挟んだ状態で熱ロールプレスして導電性端子をパッケージ袋に埋設させた。参考例1で用いた電極積層体シートを100mm毎に4回折り曲げ、折り曲げ積層体の上面にアルミニウム集電体が、下面に銅集電体を有する構造に加工した。この折り曲げ積層体をポリマーパッケージ袋に挿入した後、挿入口を幅3mmで熱シールして電池パッケージを作製した。電池の上面および下面の導電性端子を充放電機に接続して充放電を行った結果、初回放電容量は1.12Ah、平均電圧3.6V(4.0Wh)であり、繰り返し充放電が可能であった。
【0023】
【発明の効果】
本発明のポリマーシートパッケージ電池は、導電性端子がパッケージ材に埋設されるので、かさばらず、高エネルギー密度電池が作製できる。
【図面の簡単な説明】
【図1】参考例1に使用される導電性端子の一例を示す縦断面図である。
【図2】本発明に使用される導電性端子の一例を示す縦断面図である。
【図3】本発明の導電性端子が装着されたポリマーパッケージ電池の装着部を示す部分縦断面図である。
【符号の説明】
1. 導電性シート
2. 樹脂シート
3. PTCシート
4. ポリマーパッケージ材
5. 電極または電極集電体
6. 開口部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive terminal installed on an electrode of a battery packaged with a polymer sheet packaging material, and a battery using the conductive terminal.
[0002]
[Prior art]
Currently, high energy density batteries have been developed as power sources for various portable devices such as personal computers, mobile phones, and video cameras. As this battery, a lithium ion secondary battery, a nickel metal hydride battery, a nickel cadmium battery, and the like that can be repeatedly charged and discharged are used. In particular, lithium ion secondary batteries are characterized by a high energy density, and since the batteries can be made smaller and lighter, active development is underway.
[0003]
Conventionally, a lithium ion secondary battery uses an electrolyte as an ion transfer medium between electrodes, and usually has a structure in which a laminate of electrodes and a porous separator is impregnated with an electrolyte. In such a battery using an electrolytic solution, a heavy metal material is used for the battery package in order to prevent liquid leakage.
On the other hand, a battery using a solid electrolyte as an ion transfer medium has substantially no liquid leakage compared to a battery using an ion transfer medium as a conventional electrolyte. Easiness of body formation, a high degree of freedom in battery configuration, simplification of package, and weight reduction are expected.
[0004]
A battery using a solid electrolyte is manufactured by processing a laminated body in which a sheet-like electrode and a solid electrolyte are laminated, or a laminated body in which a polymer solid electrolyte layer is applied and formed on the electrode surface and then processed into a predetermined shape. Can do. In addition, a method of forming each layer of electrode / polymer solid electrolyte / electrode by coating has also been proposed. Thus, it is expected that the manufacturing process is excellent in mass productivity because methods such as sheet lamination and coating can be adopted. In addition, since the liquid leakage that can occur in the conventional electrolyte-based battery does not occur substantially, the manufacturing process can be easily managed, and higher voltage is expected due to the serial connection lamination of the electrode / solid electrolyte / electrode laminate.
[0005]
The solid electrolyte battery is usually used by being packaged with a laminated polymer sheet in which a resin sheet and a metal sheet are laminated. In order to use this packaged battery, it is necessary to provide a current extraction terminal from the electrode inside the package to the outside of the package. Normally, the battery is configured with a structure in which the electrode terminal is sandwiched and fused by the sealing portion of the polymer sheet. Is done. However, this structure has a structure in which the electrode terminal portion protrudes from the package surface, which hinders downsizing of the battery. There has also been proposed a battery having a structure in which holes are provided in a part of the package and the current collector surface of the electrode stack is in close contact with the holes (US Pat. No. 5,478,668). However, batteries with these structures have problems such as leakage inside and outside the battery, disconnection of the electrode terminals during the process, poor conduction, and the like at the electrode terminal sealing portion of the package, thereby reducing the performance of the lithium secondary battery.
[0006]
Furthermore, when the battery is accidentally overcharged or when the electrode terminal is short-circuited in the charged state, heat may be generated inside the electrode and the safety of the battery may be impaired. In order to ensure safety in this case, a PTC element (Positive Temperature Coefficient element) is incorporated in the electrode terminal to give a function of preventing the conduction of the electrode at a high temperature. An attempt to use this PTC element also in a polymer package battery (US Pat. No. 5,478,668) has a problem of complicated connection processing to an electrode laminate.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a conductive terminal that is excellent in reliability, stability, and safety, and that enables downsizing of a battery, and a battery using the same.
[0008]
The inventors of the present invention have advanced the research of a solid battery packaging material and structure mainly using a solid electrolyte, and have completed the present invention.
That is, according to the present invention, in a battery in which an electrode laminate is packaged with a polymer sheet packaging material having an opening, the hole of the resin sheet having a hole in the central part from the inside is suddenly increased above a certain temperature. A conductive sheet filled with a mixture of conductive particles or conductive filler that increases electrical resistance and an insulating polymer , wherein the hole is smaller than the resin sheet and larger than the hole. It is fused or adhered with the resin sheet of the conductive terminal coated from both sides, and the conductive sheet constituting the conductive terminal is bonded to the electrode of the electrode laminate or the electrode current collector. The polymer sheet package battery is characterized.
[0009]
Hereinafter, the conductive terminal and battery of the present invention will be described.
The present invention relates to a conductive terminal that is installed in a battery electrode or an electrode current collector packaged with a polymer sheet packaging material to perform electron transfer to and from the outside of the package.
1 and 2, the conductive terminal of the present invention is a flat conductive terminal in which a conductive sheet and a resin sheet having a hole in the center are laminated, and the resin sheets are laminated. There is no conductive portion with a sufficient area from which current can be taken out. In the present invention, having a hole in the central portion means that when laminated, the conductive sheet has a structure in which a resin sheet is laminated on the periphery of the conductive sheet and has a sufficient area that allows current to be taken out to the outside. This means that there is a hole at a position where the conductive portion can be provided, and it does not necessarily mean that the hole is located in the center portion. The hole in the present invention only needs to be able to form a conductive portion having a sufficient area from which an electric current can be taken out, and the shape can take various shapes such as a circular shape, an elliptical shape, and a rectangular shape. Furthermore, the resin sheet laminated | stacked on the peripheral part of the electroconductive sheet which comprises an electroconductive terminal needs to be able to adhere or fuse | fuse with a polymer sheet package material. The resin sheet may be smaller than the conductive sheet as long as it can be joined to the polymer sheet package material, but is larger than the conductive sheet and laminated in a state of protruding from the periphery of the conductive sheet. It is preferable. The adhesive sheet or the adhesive sheet can be fused to bond the conductive terminal and the polymer sheet package material, so that leakage inside and outside can be prevented, and the electrode or electrode current collector in the polymer sheet package can be prevented. Conductive bonding between the body and the conductive terminal becomes possible, and current can be taken out of the package.
[0010]
As the shape of the conductive terminal of the present invention, various forms such as a disk shape, an elliptical plate shape, and a square plate shape are possible, and the conductive terminal is arranged on the upper surface, the lower surface portion, or the side surface portion of the battery package. The battery can be configured. Since the conductive terminal shape of the present invention is a flat shape , even if it is installed, the entire battery package is not bulky. Therefore, the volume energy density of the battery can be increased.
[0011]
The conductive terminal of the present invention is installed in such a manner that the conductive terminal is embedded in the opening provided in the package material in advance, and then the electrode laminate is put in the package material and sealed, and the electrode stack is provided in the package material provided with the opening. Any method of embedding a conductive terminal in an opening provided in advance after sealing the body is possible. Therefore, the resin sheet that can be fused or adhered to the conductive terminal needs to have a shape that can cover the opening of the package material.
[0012]
The conductive terminal of the present invention comprises a PTC element material of conductive particles or a conductive filler and an insulating polymer , whose electrical resistance increases rapidly at a certain temperature or higher and can interrupt conduction of the conductive terminal. By adopting a structure in which the mixture layers are laminated, it is possible to provide a current interrupting function at a high temperature of the conductive terminal. By cutting off the current at this high temperature, for example, abnormal operation such as overdischarge and external short circuit can be prevented, so that the safety of the battery can be improved. This PTC element material usually has a structure in which conductive particles or conductive fillers are dispersed with a resin binder, and is electrically conductive at high temperatures by utilizing the fact that the thermal expansion coefficient of the resin binder is larger than that of the conductive particles or conductive fillers . Operates by interrupting conduction between particles.
[0013]
As a method for producing a structure in which a mixture layer made of the PTC element material is laminated, a method of using a laminate of the mixture layer made of the PTC element material and a metal layer as a conductive sheet, a resin sheet on the resin sheet lamination side There is a method of laminating a mixture layer on a non-laminated conductive sheet.
As a specific example of the structure of the conductive terminal of the present invention, the laminated structure of the conductive sheet / donut type resin sheet shown in FIG. 1, the laminated structure of the metal layer / mixture layer (conductive sheet) / donut type resin sheet, FIG. And a laminated structure of conductive sheet / donut type resin sheet / mixture layer / conductive sheet shown in FIG. The thickness of the mixture layer laminated in the laminated structure shown in FIG. 2 is equal to or greater than the thickness of the donut-shaped resin sheet, preferably the same thickness. From the viewpoint of battery miniaturization, the conductive sheet and the resin sheet constituting the conductive terminal are preferably thin. In order to maintain the airtightness of the battery using this terminal, it is desirable that at least one of the conductive sheets in the above structure is a continuous body having no through hole.
[0014]
Examples of the conductive sheet used for the conductive terminal of the present invention include a metal sheet such as a stainless sheet, a carbon sheet, a dispersion in which conductive particles are mixed and dispersed in a resin or ceramic, a conductive polymer sheet, and the mixture layer and metal. Examples include a laminate of layers.
The material of the resin sheet needs to be able to be fused or adhered to the package material. Specific examples include polyethylene, polypropylene, ionomer resin, ethylene / vinyl alcohol copolymer, nylon, aromatic polyamide, aromatic polyester, polyphenylene oxide, polyoxymethylene, polycarbonate and other thermoplastic resins, styrene / butadiene copolymer, etc. And a thermoplastic resin or thermosetting resin having an adhesive portion such as an adhesive such as latex and epoxy. Further, a sheet laminated with these resins, for example, polyethylene / polyethylene terephthalate / polyethylene can be used. In this case, the resin sheet to be laminated is naturally not limited to the above resin.
[0015]
As a method for producing the conductive terminal of the present invention, for example, a method of laminating a resin sheet on a conductive sheet, a method of applying a resin layer to a part of the conductive sheet, and a method of applying and forming a conductive sheet on a resin sheet Can be mentioned.
Moreover, in the package battery using the conductive terminal of the present invention, the battery is operated by conductively bonding the conductive terminal and the electrode or the electrode current collector. As this bonding method, direct contact is made by crimping, adhesion, or caulking. Examples thereof include welding methods such as methods, conductive adhesives, spot welding, and ultrasonic welding. In order to improve the direct contact conduction, it is possible to provide an uneven shape on a part of the electrode laminate or the conductive terminal.
[0016]
In the polymer sheet package battery of the present invention, since the conductive terminals are embedded in the package material, a high energy density battery can be produced without being bulky. Further, the battery of the present invention can be used as a single cell or a multiple cell pack battery. Furthermore, the conductive terminal of the present invention is easy to manufacture and rich in mass productivity, and can be applied to various battery forms. The battery of the present invention is particularly suitable for a lithium ion battery, but is not limited to this, and can be applied to various batteries such as a lead battery, an alkaline battery, and a nickel metal hydride battery.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
[0018]
[ Reference Example 1 ]
A stainless steel sheet disc (thickness 10 μm) punched to a diameter of 19 mm and a polyethylene / polyethylene terephthalate / polyethylene laminate sheet disc (thickness 50 μm) cut to an outer diameter of 30 mm and an inner diameter of 15 mm are laminated to coincide with each other. A hot roll press (temperature 130 ° C.) was performed while sandwiched between fluoroethylene sheets (thickness 50 μm), and after cooling, a polyethylene laminate sheet / stainless steel laminate was taken out of the polytetrafluoroethylene sheet. This laminate is the conductive terminal shown in FIG.
[0019]
After the polyethylene / aluminum / polyethylene terephthalate laminated sheet is processed into a bag shape (100 mm x 105 mm, heat sealing with 4 mm width on 2 sides, 1 side folded back, 1 side open), this bag-shaped center Was punched out with a diameter of 20 mm, and a hole was formed as an opening (two holes were made in the package). After arranging two conductive terminals in the hole of the package, the conductive terminals are subjected to hot roll pressing with a polytetrafluoroethylene sheet (width 92 mm, length 150 mm) sandwiched between the conductive terminals inside the package. Was embedded in a package bag. LiCoO 2 sheet (width 90 mm, polyvinylidene fluoride as binder, film thickness 110 μm single-sided coating, aluminum current collector), needle coke sheet (width 90 mm, binder as styrene-butadiene latex, film thickness 125 μm single-sided coating, copper current collector) Were used for the positive electrode and the negative electrode, respectively, to prepare an electrode laminate in which a polyvinylidene fluoride-hexafluoropropylene copolymer foam sheet was laminated with a solid electrolyte (width 92 mm) impregnated with an electrolyte solution. The laminate sheet was bent four times every 100 mm and processed into a structure having an aluminum current collector on the upper surface of the folded laminate and a copper current collector on the lower surface. After inserting this folded laminate into the polymer package bag, the insertion port was heat-sealed with a width of 3 mm to produce a battery package. As a result of charging / discharging by connecting the conductive terminals on the upper and lower surfaces of the battery to the charger / discharger, the initial discharge capacity is 1.1 Ah, the average voltage is 3.6 V (3.96 Wh), and repeated charging / discharging is possible. Met.
[0020]
[ Example 1 ]
Using the same stainless steel sheet disc and polyethylene laminate sheet disc as used in Reference Example 1 , a PTC sheet (diameter: 10 mm, thickness: about 100 μm) is placed in the center of the polyethylene laminate sheet disc, Stainless steel sheet discs were laminated to form a stainless steel / polyethylene-PTC element / stainless steel sheet, and heated roll press in the same manner as in Reference Example 1 to produce a laminate. This laminate was used as a conductive terminal (FIG. 2).
[0021]
After arranging conductive terminals in the two holes of the polyethylene / aluminum / polyethylene terephthalate laminated sheet perforated bag used in Reference Example 1 , a polytetrafluoroethylene sheet (width 92 mm, length 150 mm) was sandwiched inside the package. In this state, the conductive terminals were embedded in the package bag by hot roll pressing. The electrode laminate sheet used in Reference Example 1 was bent four times every 100 mm, and processed into a structure having an aluminum current collector on the upper surface of the folded laminate and a copper current collector on the lower surface. After inserting this folded laminate into the polymer package bag, the insertion port was heat-sealed with a width of 3 mm to produce a battery package. As a result of charging / discharging by connecting the conductive terminals on the upper and lower surfaces of the battery to the charger / discharger, the initial discharge capacity is 1.12 Ah, the average voltage is 3.6 V (4.0 Wh), and repeated charging / discharging is possible. Met. As a result of measuring the battery resistance while heating the battery externally, it was found that the resistance increased rapidly at 110 ° C., and the PTC element was operating.
[0022]
[ Reference Example 2 ]
A stainless sheet (thickness 10 μm) was punched out to produce a disk having a diameter of 20 mm, and a styrene-butadiene latex was applied to the
[0023]
【The invention's effect】
In the polymer sheet package battery of the present invention, since the conductive terminals are embedded in the package material, a high energy density battery can be produced without being bulky.
[Brief description of the drawings]
1 is a longitudinal sectional view showing an example of a conductive terminal used in Reference Example 1. FIG.
FIG. 2 is a longitudinal sectional view showing an example of a conductive terminal used in the present invention.
FIG. 3 is a partial longitudinal sectional view showing a mounting portion of a polymer package battery to which a conductive terminal of the present invention is mounted.
[Explanation of symbols]
1. 1.
Claims (1)
該開口部が内側より、
中央部に孔を有する樹脂シートの該孔が、一定温度以上で急激に電気抵抗が上昇する、導電性粒子または導電性フィラーと絶縁性ポリマーとの混合体で充填されており、かつ該孔が、該樹脂シートより小なる面積であって該孔の面積より大なる面積の導電性シートで両面から被覆されている導電性端子の樹脂シートで融着または粘着されており、
かつ該導電性端子を構成する該導電性シートが電極積層体の電極または電極集電体と接合していることを特徴とするポリマーシートパッケージ電池。In a battery in which an electrode laminate is packaged with a polymer sheet packaging material having an opening ,
The opening is from the inside ,
The holes of the resin sheet having a hole in its central portion, is abruptly electrical resistance increases at a constant temperature or higher, are filled with a mixture of conductive particles or conductive filler and the insulating polymer, and pores are The resin sheet of the conductive terminal that is covered from both sides with the conductive sheet having an area smaller than the resin sheet and larger than the area of the hole ,
And polymer sheet package batteries, characterized in that said conductive sheet constituting the conductive terminals are bonded to the electrode or electrode current collector of the electrode stack.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26161896A JP3630510B2 (en) | 1996-10-02 | 1996-10-02 | Conductive terminal and polymer sheet package battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26161896A JP3630510B2 (en) | 1996-10-02 | 1996-10-02 | Conductive terminal and polymer sheet package battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10106516A JPH10106516A (en) | 1998-04-24 |
JP3630510B2 true JP3630510B2 (en) | 2005-03-16 |
Family
ID=17364407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26161896A Expired - Lifetime JP3630510B2 (en) | 1996-10-02 | 1996-10-02 | Conductive terminal and polymer sheet package battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3630510B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999040639A1 (en) | 1998-02-06 | 1999-08-12 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method for manufacturing thereof, and battery using the electrode |
EP1100136A4 (en) | 1998-06-25 | 2006-09-06 | Mitsubishi Electric Corp | Cell and method of producing the same |
WO1999067835A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
WO1999067841A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067834A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method of producing electrode, and cell comprising the electrode |
EP1026766A1 (en) | 1998-06-25 | 2000-08-09 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067836A1 (en) | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
WO1999067842A1 (en) * | 1998-06-25 | 1999-12-29 | Mitsubishi Denki Kabushiki Kaisha | Cell and method of producing the same |
US6440605B1 (en) * | 1998-06-25 | 2002-08-27 | Mitsubishi Denki Kabushiki Kaisha | Electrode, method or producing electrode, and cell comprising the electrode |
EP1100135A4 (en) * | 1998-06-25 | 2006-06-14 | Mitsubishi Electric Corp | Cell and method of producing the same |
EP1104037A4 (en) * | 1998-06-25 | 2001-09-12 | Mitsubishi Electric Corp | Cell and method of producing the same |
WO2001008248A1 (en) * | 1999-07-23 | 2001-02-01 | Mitsubishi Denki Kabushiki Kaisha | Cell and cell inspecting method |
KR100337116B1 (en) * | 1999-10-28 | 2002-05-16 | 다니구찌 이찌로오, 기타오카 다카시 | Battery and method of fabricating thereof |
KR100335030B1 (en) * | 1999-10-28 | 2002-05-03 | 다니구찌 이찌로오, 기타오카 다카시 | Battery and method of fabricating thereof |
JP4812173B2 (en) * | 2001-02-02 | 2011-11-09 | パナソニック株式会社 | Battery sealing structure, battery and manufacturing method thereof |
KR100741058B1 (en) * | 2001-11-30 | 2007-07-20 | 삼성에스디아이 주식회사 | Secondary battery |
JP4374977B2 (en) * | 2003-10-10 | 2009-12-02 | 日産自動車株式会社 | Assembled battery |
JP5784928B2 (en) * | 2011-03-03 | 2015-09-24 | シャープ株式会社 | Non-aqueous secondary battery |
CN108391453B (en) * | 2015-12-18 | 2021-10-22 | 罗伯特·博世有限公司 | Through-wall current collector for soft package battery |
US10476049B2 (en) * | 2017-07-17 | 2019-11-12 | Robert Bosch Battery Systems Llc | Mechanically fastened through-wall current collector |
-
1996
- 1996-10-02 JP JP26161896A patent/JP3630510B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10106516A (en) | 1998-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3630510B2 (en) | Conductive terminal and polymer sheet package battery | |
CN106601960B (en) | Button cell and manufacturing method thereof | |
JP5186529B2 (en) | Lithium secondary battery | |
US8986871B2 (en) | Electrode assembly and secondary battery having the same | |
US6617074B1 (en) | Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery | |
US20140030579A1 (en) | Lithium Secondary Battery Having Multi-Directional Lead-Tab Structure | |
US20060269831A1 (en) | Pouch type lithium secondary battery | |
US20060115729A1 (en) | Rechargeable battery with jelly roll type electrode assembly | |
JP2002520803A (en) | Lithium secondary battery | |
WO1999048163A1 (en) | Lithium ion battery and method for forming the same | |
KR100686851B1 (en) | Composite Material Tape for Lithium Secondary battery and Lithium Secondary battery using the Same | |
KR100561303B1 (en) | Pouch type lithium secondary battery | |
US6727021B1 (en) | Lithium ion secondary battery | |
KR101735511B1 (en) | Battery cell with patterned shape and Method for manufacturing the same | |
US8940428B2 (en) | Separator, a lithium rechargeable battery using the same and a method of manufacture thereof | |
US6440605B1 (en) | Electrode, method or producing electrode, and cell comprising the electrode | |
WO1999067836A1 (en) | Cell and method of producing the same | |
JP2003208885A (en) | Sheet battery | |
JPH0574443A (en) | Nonaqueous electrolytic battery | |
WO1999048162A1 (en) | Lithium ion battery and method of manufacture thereof | |
JPH10289696A (en) | Battery and its manufacture | |
KR101655275B1 (en) | Secondary battery including layered welding zone having PTC-characteristics and Manufacturing method thereof | |
JPH10112296A (en) | Secondary battery and its manufacture | |
JPH10106531A (en) | Packaged flat battery | |
JP2004349156A (en) | Secondary battery and stacked secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081224 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091224 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101224 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111224 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121224 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |