JP3630272B2 - Digital ground fault distance relay - Google Patents

Digital ground fault distance relay Download PDF

Info

Publication number
JP3630272B2
JP3630272B2 JP36702897A JP36702897A JP3630272B2 JP 3630272 B2 JP3630272 B2 JP 3630272B2 JP 36702897 A JP36702897 A JP 36702897A JP 36702897 A JP36702897 A JP 36702897A JP 3630272 B2 JP3630272 B2 JP 3630272B2
Authority
JP
Japan
Prior art keywords
phase current
zero
ground fault
phase
reactance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36702897A
Other languages
Japanese (ja)
Other versions
JPH11191922A (en
Inventor
保広 黒沢
浩 斎藤
Original Assignee
ティーエム・ティーアンドディー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエム・ティーアンドディー株式会社 filed Critical ティーエム・ティーアンドディー株式会社
Priority to JP36702897A priority Critical patent/JP3630272B2/en
Publication of JPH11191922A publication Critical patent/JPH11191922A/en
Application granted granted Critical
Publication of JP3630272B2 publication Critical patent/JP3630272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電力系統の地絡事故点迄のインピーダンスを計測する地絡距離リレーの応動を制御するディジタル形距離継電装置に関する。
【0002】
【従来の技術】
従来から電力系統の2線地絡事故をインピーダンスを計測して、所定の地絡事故点迄のインピーダンスに入ってるか否かで動作判定する方式が採用されてる。この時、2線地絡事故で事故点に電圧が残った場合、進み相 (ab相事故の場合a相)側の計測インピーダンスのリアクタンス値が実際の事故点迄のリアクタンスより小さく(以降オーバリーチと呼称)、事故点を短く見る傾向が強い。
【0003】
その結果、送電線の自区間事故か否かを検出する地絡第1段が次区間の事故を短く見て、自区間事故であると判断して当該送電線の電力を遮断する遮断器へ誤トリップ指令を出す可能性がある。その対策として、遅れ相の地絡第1段リレーより大きな領域の事故を検出する地絡第3段リレーが動作したら進み相の地絡第1段リレーのトリップ指令を阻止する対策を実施している。
【0004】
送電線のb,c相2線地絡事故時の電圧、電流の傾向は図2に示すとおりである。ここに、b、c相の相電流から零相電流を除いた電流Ib12,Ic12と零相電流I0の位相差は略90度近くある。この両電流の大きさは、送電線の背後インピーダンスの大きさに依存し、正相背後インピーダンスが極端に大きい端子(いわゆる弱電源端子)があるとその端子から流れ込む正逆相事故電流は小さくなる。
【0005】
逆にインピーダンスが小さくなると、その端子から流れ込む正逆相電流は大きくなり、正相電源の大きさで正逆相電流と零相電流の大きさの相対比が変わり、事故点抵抗による事故点の残り電圧との位相関係がb、c相で変化する。b,c相線間の事故点抵抗Raと対地間の抵抗Rgとしたときのb,c相対地事故点残り電圧VbF,VcFは次式となる。
【数1】
VbF=Ra・Ib12+Rg・3I0 (VcF=Ra・Ic12+Rg・3I0) ・・・・(1)
【0006】
図2(a)はIb12、Ic12>I0の場合、図2(b)はIb12、Ic12<I0の場合を示す。更に、事故点抵抗は線間のRaより、対地間抵抗Rgが一般的に大きいので、共に実抵抗とすれば、b,c相の事故点残り電圧は零相電流位相に近くなり、b,c相の零相補償後のb,c相電流Ib,Icは次式で与えられので、b相の電流に対してb相の残り電圧は遅れ、c相の電流に対してc相の残り電圧は進みの傾向を示す。
【0007】
【数2】
Ib=C1・Ib12+k0・(C0・I0)、 Ib=C1・Ic12+k0・(C0・I0) ・・・・(2)
(但し、k0=(Z0−Z1)/Z1:零相補償係数、
Z1、Z0:送電線路正相、零相インピーダンス
C1、C0:事故点からリレー設置点側に流れる正相、零相電流の分流比)
【0008】
その結果、
【数3】
ZbF=Im[VbF/Ib]=負のリアクタンス ・・・・オーバリーチ
ZcF=Im[VcF/Ic]=正のリアクタンス ・・・・アンダリーチ
となる。
【0009】
従って図3に示す系統において、リレー設置点Aから事故点Fまでの線路降下インピーダンスZIineはb,c相が共に正確に測定できるが、(1)式の事故点残り電圧の影響が残り、前述の傾向を呈することになる。そのため、進み相a相の見るインピーダンスのリアクタンス成分は実際の事故点迄の線路インピーダンスより小さく即ち距離を近く見るオーバリーチ傾向となり、b相はその逆にアンダリーチ傾向となる。
【0010】
この対策として従来から、相手母線より近く設定されている第1段領域より広く、次区間領域の事故点までのインピーダンスを見るように設定されている第3段領域のリレー要素が動作したら、進み相の第1段領域を保護するリレー要素の遮断器引き外し指令を阻止する方式が採用されている。
【0011】
しかし、事故点迄の線路方程式(4)式から直接、線路の正相及び零相の抵抗R1ine12、R1ine0、インダクタンス値L1ine12、L1ine0を算出するアルゴリズム(以降RL算出形と呼称)を採用した保護リレーの零相補償方法は次式のとおりである。以下、b相のリレーで説明する。
【0012】
【数4】

Figure 0003630272
【0013】
上記(7)、(8)式において、VbFは事故点残り電圧で実際には不知で保護リレーにはVb(t)しか入ってこないので、次式のアンダーライン部で示すように事故点残り電圧が誤差となる。
【数5】
Figure 0003630272
【0014】
(5)式を基本波成分ベクトル式で表記すると(11)式となる。
【数6】
Vb=R1ine・Ib12r+jω・L1ine12・Ib12x+VbF ・・・・(11)
【0015】
本式から、(9)、(10)式相当でR1ine12、L1ine12を算出すると、
【数7】
Figure 0003630272
(∴Re:複素数のreal part,Re{jωIb12x・Ib12x=jω|Ib12x|
=0、 Im:複素数のimaginary part,*印:共役複素数)
となる。
【0016】
上記(12)、(13)式の下線部が(9)、(10)式の下線部に相当する。ここに一般的に2つのベクトルA、Bの間で、数学的に
【数8】
Im{A・B}=|A|・|B|・sin(θ)、 Re{A・B}=|A|・|B|・cos(θ)
ここで、A=|A|ej(θ+φ), B=|B|ejφである。
(∴ * :共役複素数、θ :ベクトルBに対してベクトルAの進み位相)
が成立する。
【0017】
この数学的な意味を踏まえて、(12)、(13)式で示される事故点電圧VbFと電流Ib12r、Ib12xのベクトル関係を示すと図4の関係になる。同図の(RF、ω・LF)は事故点で見る同上リレーの至近点インピーダンスである。
【数9】
ベクトルOC=[VbF・cos(φV)]/cos(φr)=RF・|Ib12r|
べクトルCD=[VbF・sin(φV−φr)]/cos(φr)=ω・LF・|Ib12x|
【0018】
又、従来の電気機械形、静止形リレーなどで適用されてる(以降基本波演算形と呼称)零相電流補償は、リアクタンス成分のみを考慮し、次式に示す方法を採用している。
【数10】
Figure 0003630272
【0019】
(15)、(16)式の関係を(12)、(13)式と同様にベクトル図で示すと図5のようになる。同図で基準となる電流はIb12zである。事故点残り電圧WFの電流Ib12zとその90度進み位相成分への投影分が各々
【数11】
ベクトルOA=VbF・cos(φ)=RF・|Ib12z|
ベクトルOB=VbF・sin(φ)=ωLF・|Ib12z|
となる。
【0020】
以上から、RL算出形リレーはbc相2線地絡時の事故点残り電圧が図6(a)の関係になった時、b相の見るインピーダンスのリアクタンス成分jωLFは正、c相の見るインピーダンスのリアクタンス成分jωLFは負となる状態を示している。それに反して、図6(b)は基本波演算形リレーのb相の見るリアクタンスは負、c相のリアクタンスは正である。従って、b、c相2線地絡時にRL算出形リレーのR、L成分の零相電流補償係数がKr>Kxの時には、b相の補償電流Ib12rはIb12xより遅れ位相傾向になる。逆にKr<Kxの場合は進み位相となる。
【0021】
【発明が解決しようとする課題】
架空線路では遅れ位相傾向が殆どであることから、従来の基本波演算形リレーでb相がオーバリーチ傾向であっても、RL算出形リレーではアンダリーチ傾向になる場合も生じうる。従って進み相オーバリーチ対策を実施している従来の対策をRL算出形リレーにも適用することは出来ない。又事故点の残り電圧の傾向でも様相が変わりうるので、何らかの2線地絡事故でのオーバリーチ対策は必要となる。
【0022】
本発明は上記事情に鑑みてなされたものであり、送電線路の線路方程式から抵抗R,リアクタンスjωLを直接算出する地絡距離リレーで、零相電流補償の抵抗分補償係数Krとリアクタンス補償係数Kxの比を所定値以上に設定して、2線地絡が生じてもオーバリーチが発生して不要な動作をする可能性を防止するディジタル形地絡距離継電装置を提供することを目的としている。
【0023】
【課題を解決するための手段】
本発明の請求項1に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段からなる構成とした。
【0024】
本発明の請求項2に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを該第2の手段より広い領域をインピーダンス計測により検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段からなる構成とした。
【0025】
本発明の請求項3に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを各相の相電圧の大きさが所定値以下になったことで検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段からなる構成とした。
【0026】
本発明の請求項4に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを各相の相電流の大きさが所定値以上になったことで検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段からなる構成とした。
【0027】
このようにして、本発明のディジタル形地絡距離継電装置は、送電線の抵抗分零相補償係数(=零相インピーダンスの抵抗分と正相インピーダンスの抵抗分の比)とリアクタンス補償係数(=零相インピーダンスのリアクタンス分と正相インピーダンスのリアクタンス分の比)を個別に設定して、リレー設置点から地絡事故点迄の送電線のインピーダンスを抵抗、リアクタンス個別に算出する演算方式を適用したリレーにおいて、2相以上の地絡事故が生じたら、送電線の所定領域迄の事故を検出する第1段リレー要素の遮断器引き外し指令を阻止しようとするものである。
【0028】
本発明の請求項5に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段と、遅れ相の地絡事故を検出する第5の手段と、前記第1の手段で設定された抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値以上になったら、前記第3の手段の機能を活かし、未満となったら前記第3の手段の出力を阻止して、前記第5の手段で前記第2の手段の検出出力を阻止する第6の手段とからなる構成とした。
【0029】
このようにして、本発明のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定の値より大きい場合には、2相以上の地絡事故を検出したら、前記第2の手段の出力が遮断器引き外し指令を出すのを阻止し、小さい場合には、遅れ相の地絡事故の検出出力で前記第2の手段の出力を阻止しようとするものである。
【0030】
本発明の請求項6に係るディジタル形地絡距離継電装置は、送電線の線路インピーダンスの抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で生じた地絡事故点が生じたか否かを判定する第2の手段と、該送電線に2相以上の地絡事故が発生したことを検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段と、遅れ相の地絡事故を検出する第5の手段と、前記第1の手段で設定された抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値以上になったら、抵抗分の零相電流補償係数をリアクタンス分の零相電流補償係数と同一値とし、前記第5の手段の出力で前記第2の手段の検出出力を阻止する第7の手段とからなる構成とした。
【0031】
このようにして、本発明のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値より大きければ、両者をリアクタンス分の零相電流補償係数に合わせて、従来のアナログ形の基本波演算形リレーと同じ補償にし、且つ遅れ相の地絡事故検出で前記第2の手段の出力を阻止しようとするものである。
【0032】
本発明の請求項7に係るディジタル形地絡距離継電装置は、電力系統の送電線の電圧、電流を所定の周期でサンプリングして取り込んで、抵抗、インダクタンスからなる送電線の線路方程式から抵抗分、インダクタンス分を直接算出して地絡事故点を検出するディジタル形地絡距離継電装置において、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で地絡事故点が生じたか否かを判定する第2の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流と、前記第1の手段で設定されたリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流の位相差を算出して所定値以上になったら、該第2の手段の検出出力を阻止し、未満となったら遅れ相の地絡を検出する第5の手段の出力で前記第2の手段の検出出力を阻止する第8の手段とからなる構成とした。
【0033】
このようにして、本発明のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流と、リアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流の位相差を算出して、位相差が所定値以上ならば2線地絡と判断し、前記第2の手段の遮断器引き外し指令を阻止しようとするものである。
【0034】
【発明の実施の形態】
図7は本発明に係る送電線用ディジタル形地絡距離継電装置を説明する実施の形態のハードウエアを示す構成図である。図において、1は対象となる送電線、2は変流器、3は変成器、4は変流器2の電流出力と電圧変成器3の電圧出力とを入力して各々適当なレベルに変換する入力変換器、5は入力変換器の電流・電圧出力をサンプリングするサンプリング保持回路、6はサンプリング保持回路5の電流・電圧出力をアナログ・ディジタル変換する回路、7は事故前後のデータを記憶する回路、8は前記電流・電圧データを用いて所定の周期で演算処理を実行してディジタル形地絡距離継電装置の動作判定及び遮断器引き外し指令を出力するための判定を行う演算回路(CPU)、9は地絡距離リレーの動作判定結果を出力するI/Oインターフェース回路である。
【0035】
図1は本発明の第1の実施形態の演算回路8(図7の演算回路8に相当)で行うディジタル形距離継電装置の動作判定の内容を示す図である。抵抗分、リアクタンス分各々の零相電流補償係数Kr、Kxを設定し、各々を零相電流に乗じて、相電流に加算して零相補償相電流を得る。b相の例で示したのが(6)式である。
【数12】
Ib12r(t)=C1・Ib12(t)+Kr・C0・I0(t)、
Ib12x(t)=C1・Ib12(t)+Kx・C0・I0(t)
(∴Kr=R1ine0/R1ine12、 Kx=L1ine0/L1ine12)
【0036】
この電流と相電圧とから、時刻t1、t2のデータを適用して、次式に基づいて抵抗、リアクタンスを算出する。
【数13】
Figure 0003630272
【0037】
ここで算出された抵抗分、リアクタンス分が所定の領域内の値か否かを判定し領域内に入ってれば動作と判定する。但し、この判定結果と2相以上の地絡事故か否かを判定して2相以上の地絡事故の時は、遮断器を引き外すのを阻止するように作用する。
【0038】
図8は本発明の第2の実施形態の2相以上の事故を検出する手段として、当該所定領域内にあることを検出する第2の手段の責務より広い領域を検出する第3の手段を説明する図である。図9に第2の手段の検出特性X1と本実施形態の第3の手段に適用する検出特性例X3を示す。同図で示すように第3の手段の検出領域の方が広く、且つ2回線送電線において、両回線にまたがる各々の回線の1線地絡事故の場合も、各回線毎に確実に当該相の事故を検出することができ、第3の手段で2相以上の地絡事故と判定されたら第2の手段の検出出力を阻止する第4の手段の動作により不要に2相動作を検出することはない。
【0039】
図10は本発明の第3の実施形態の2相以上の事故を検出する手段として、回線毎に電圧が所定値以下になったことで事故と検出する第3の手段を説明する図である。この方式では回線間に跨がる各々の回線の異名相1線地絡事故の場合、回線毎に第3の手段の検出要素を持たせても、2相事故と見てしまう可能性があり、第2の手段の検出出力を阻止する可能性が生じる。従って、本実施形態では、送電線に2相以上の地絡事故が発生したことを各相の相電圧の大きさが所定値以下になったことで検出する第3の手段を設け、この第3の手段で2相以上の地絡事故と判定されたら第2の手段の検出出力を阻止する第4の手段からなるものであり、1回線送電線にのみ有効な実施形態である。
【0040】
図11は本発明の第4の実施形態の2相以上の事故を検出する手段として、回線毎に相電流の大きさが所定値以上になったことで事故を検出する第3の手段を説明する図である。送電線に2相以上の地絡事故が発生したことを各相の相電流の大きさが所定値以上になったことで検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら第2の手段の検出出力を阻止する第4の手段から構成する。この方式では回線単位で相電流の大きさを検出するので、2回線に跨って異なる相で1線地絡が生じても2相以上の地絡事故と見てしまうことはない。また、この実施形態では相電流の大きさとあるが、当然相電流の変化分の大きさを見る構成にしても実現できることは言うまでもない。
【0041】
図12は本発明の第5の実施形態の第5の手段と第6の手段の関係を説明する図である。第5の手段は本発明の着目する相の地絡事故に対して、遅れ相の地絡事故を検出する第2の手段で検出する領域より広い領域を、RL算出形の地絡距離リレーで検出するように構成したものである。更に、第6の手段は抵抗分の零相電流補償係数Krとリアクタンス分の零相電流補償係数Kxの大きさの比の大きさが所定値以上か、未満かで前記した第5の手段と、送電線の2相以上の地絡事故を検出する第3の手段の何れかを選択して、前記第2の手段の検出出力を阻止するようにしている。即ち、下記のように処理するようにしている。
【0042】
【数14】
Kr/Kx>Kの場合:2相以上の地絡事故検出がされたら阻止
Kr/Kx<Kの場合:遅れ相の地絡事故検出がされたら阻止
このようにして、この実施形態のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定の値より大きい場合には、2相以上の地絡事故を検出したら、前記第2の手段の出力が遮断器引き外し指令を出すのを阻止し、小さい場合には、遅れ相の地絡事故の検出出力で前記第2の手段の出力を阻止しようとするものである。
【0043】
図13は本発明の第6の実施形態の第5の手段と第6手段の関係を説明する図である。第5の手段は、本実施形態の着目する相の地絡事故に対して、送電線の所定領域内で地絡事故点が生じたか否かを判定する第2の手段で検出する領域より広い領域を、RL算出形の地絡距離リレーで検出するように構成したものである。
【0044】
更に、第7の手段は抵抗分の零相電流補償係数Krとリアクタンス分の零相電流補償係数Kxの大きさの比の大きさが所定値以上になったらKrをKxに等しくするようにして、前記した第5の手段で前記第2の手段の検出出力を阻止するようにしている。即ち、下記のように処理するようにしている。
【0045】
【数15】
Kr/Kx>Kの場合:KrをKxと同じ値として使用
Kr/Kx<Kの場合:Kr、Kxをそのまま使用
前記第2の手段のRL算出を行い、前記した第5の手段でこの第2の手段の検出出力を阻止するようにしてる。
【0046】
このようにして、この実施形態のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値より大きければ、両者をリアクタンス分の零相電流補償係数に合わせて、従来のアナログ形の基本波演算形リレーと同じ補償にし、且つ遅れ相の地絡事故検出で前記第2の手段の出力を阻止しようとするものである。
【0047】
図14は本発明の第7の実施形態の第8の手段と、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段、送電線の所定領域内で地絡事故点が生じたか否かを判定する第2の手段の関係を説明している。ここに(6)式で示す、抵抗分零相補償相電流Ib12rとリアクタンス分零相補償相電流Ib12xの位相差θを算出手法は種々ある。例えば下式でも実現できる。
【0048】
【数16】
Figure 0003630272
【0049】
この位相差θが所定値以上になったら、2相以上の地絡事故が発生したものとして、前記第2の手段の検出出力を阻止するようにし、前記位相差が所定値以下であれば、遅れ相の地絡事故を検出する第5の手段の出力で前記第2の手段の検出出力を阻止するようにしている。
【0050】
このようにして、この実施形態のディジタル形地絡距離継電装置は、抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流と、リアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流の位相差を算出して、位相差が所定値以上ならば2線地絡と判断し、前記第2の手段の遮断器引き外し指令を阻止しようとするものである。
【0051】
【発明の効果】
以上説明したように、本発明によれば、抵抗分、リアクタンス分各々の零相電流補償した相電流と相電圧から、事故点迄の抵抗、リアクタンスを直接算出するRL算出形を基準にした地絡距離リレーにおいて、2線地絡時に生じるオーバリーチによる不要な動作を容易に阻止できるディジタル形地絡距離継電装置を実現することができる。
【図面の簡単な説明】
【図1】本発明のディジタル形地絡距離継電装置の第1の実施形態図。
【図2】2線地絡時の事故点電圧と電流の傾向図。
【図3】本発明の対象となる電力系統図。
【図4】本発明が解決すべき電力系統の現象の説明図。
【図5】本発明が解決すべき現象に対する、従来の地絡距離リレーの示す性能を説明する図。
【図6】本発明が解決すべき現象の説明図。
【図7】本発明のディジタル形地絡距離継電装置のハードウエアを示す構成図。
【図8】本発明のディジタル形地絡距離継電装置の第2の実施形態図。
【図9】第2手段の検出特性X1と第3手段に適用する検出特性例X3の特性図。
【図10】本発明のディジタル形地絡距離継電装置の第3の実施形態図。
【図11】本発明のディジタル形地絡距離継電装置の第4の実施形態図。
【図12】本発明のディジタル形地絡距離継電装置の第5の実施形態図。
【図13】本発明のディジタル形地絡距離継電装置の第6の実施形態図。
【図14】本発明のディジタル形地絡距離継電装置の第7の実施形態図。
【符号の説明】
1 送電線
2 変流器
3 変成器
4 入力変換器
5 サンプリング保持回路
6 アナログディジタル変換回路
7 メモリ
8 CPU
9 I/Oインターフェース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital distance relay device that controls the response of a ground fault distance relay that measures impedance to the point of ground fault in a power system.
[0002]
[Prior art]
Conventionally, a method has been adopted in which the impedance of a two-line ground fault in the power system is measured and the operation is determined based on whether or not the impedance reaches a predetermined ground fault point. At this time, if voltage remains at the fault point due to a two-wire ground fault, the reactance value of the measured impedance on the leading phase (a phase in the case of ab phase fault) is smaller than the reactance up to the actual fault point (hereinafter referred to as overreach and ), And there is a strong tendency to look at accident points shortly.
[0003]
As a result, the ground fault first stage for detecting whether or not the transmission line is in its own section will look at the accident in the next section, determine that it is the accident in its own section, and to a circuit breaker that cuts off the power in the transmission line An erroneous trip command may be issued. As a countermeasure, if a ground fault third stage relay that detects an accident in a larger area than the ground phase first stage relay of the delayed phase is activated, implement a countermeasure to block the trip command of the ground fault first stage relay of the leading phase. Yes.
[0004]
The tendency of voltage and current at the time of b, c phase 2-wire ground fault of the transmission line is as shown in FIG. Here, the phase difference between the currents Ib12 and Ic12 obtained by removing the zero phase current from the b and c phase currents and the zero phase current I0 is approximately 90 degrees. The magnitude of both currents depends on the magnitude of the back impedance of the transmission line. If there is a terminal with a very large positive phase back impedance (so-called weak power supply terminal), the normal / reverse phase fault current flowing from that terminal becomes small. .
[0005]
Conversely, when the impedance is reduced, the forward / reverse phase current flowing from the terminal increases, the relative ratio of the forward / reverse phase current and the zero phase current changes depending on the magnitude of the positive phase power supply, and the fault point due to the fault point resistance is changed. The phase relationship with the remaining voltage changes between b and c phases. The b and c relative ground fault point residual voltages VbF and VcF when the fault point resistance Ra between the b and c phase lines and the resistance Rg between the ground are given by the following equations.
[Expression 1]
VbF = Ra · Ib12 + Rg · 3I0 (VcF = Ra · Ic12 + Rg · 3I0) (1)
[0006]
2A shows the case where Ib12 and Ic12> I0, and FIG. 2B shows the case where Ib12 and Ic12 <I0. Further, since the fault point resistance is generally larger than the Ra between the lines, the ground-to-ground resistance Rg is generally larger, so if both are actual resistances, the fault point residual voltage of the b and c phases will be close to the zero phase current phase. Since the b-phase and c-phase currents Ib and Ic after the zero-phase compensation of the c-phase are given by the following equation, the remaining voltage of the b-phase is delayed with respect to the current of the b-phase, and the remaining of the c-phase with respect to the current of the c-phase The voltage shows a tendency to advance.
[0007]
[Expression 2]
Ib = C1 · Ib12 + k0 · (C0 · I0), Ib = C1 · Ic12 + k0 · (C0 · I0) (2)
(Where k0 = (Z0−Z1) / Z1: zero-phase compensation coefficient,
Z1, Z0: Transmission line positive phase, zero phase impedance
C1, C0: Ratio of shunt of positive phase and zero phase current flowing from the accident point to the relay installation point side)
[0008]
as a result,
[Equation 3]
ZbF = Im [VbF / Ib] = Negative reactance ... Overreach
ZcF = Im [VcF / Ic] = Positive reactance .... underreach
It becomes.
[0009]
Therefore, in the system shown in FIG. 3, the line drop impedance ZIine from the relay installation point A to the fault point F can be accurately measured for both the b and c phases, but the influence of the fault point residual voltage in the equation (1) remains, and The tendency will be exhibited. For this reason, the reactance component of the impedance seen by the leading phase a phase is smaller than the line impedance up to the actual fault point, that is, the overreach tendency to look closer, and the b phase tends to be under reach.
[0010]
As a countermeasure, if a relay element in the third stage area, which has been set so as to see the impedance up to the fault point in the next section area, is operated, the process proceeds. A system is employed that prevents a breaker trip command for a relay element that protects the first stage region of the phase.
[0011]
However, a protection relay that employs an algorithm (hereinafter referred to as RL calculation type) that calculates the resistances R1ine12, R1ine0, inductance values L1ine12, L1ine0 of the positive and zero phases of the line directly from the equation (4) up to the point of the accident. The zero-phase compensation method is as follows. Hereinafter, a b-phase relay will be described.
[0012]
[Expression 4]
Figure 0003630272
[0013]
In the above formulas (7) and (8), VbF is the residual voltage at the fault point and is actually unknown and only Vb (t) enters the protection relay. The voltage becomes an error.
[Equation 5]
Figure 0003630272
[0014]
When Expression (5) is expressed as a fundamental wave component vector expression, Expression (11) is obtained.
[Formula 6]
Vb = R1ine · Ib12r + jω · L1ine12 · Ib12x + VbF (11)
[0015]
From this equation, when R1ine12 and L1ine12 are calculated according to equations (9) and (10),
[Expression 7]
Figure 0003630272
(∴Re: complex real part, Re {jωIb12x · Ib12x * = Jω | Ib12x | 2 }
= 0, Im: complex number of an integral part, * mark: conjugate complex number)
It becomes.
[0016]
The underlined parts in the above expressions (12) and (13) correspond to the underlined parts in the expressions (9) and (10). Here, generally between the two vectors A and B, mathematically
[Equation 8]
Im {A ・ B * } = | A | · | B | · sin (θ), Re {A · B * } = | A | ・ | B | ・ cos (θ)
Here, A = | A | ej (θ + φ) and B = | B | ejφ.
(∴ *: conjugate complex number, θ: leading phase of vector A relative to vector B)
Is established.
[0017]
Based on this mathematical meaning, the vector relationship between the fault point voltage VbF and the currents Ib12r and Ib12x expressed by the equations (12) and (13) is as shown in FIG. In the figure, (RF, ω · LF) is the close-point impedance of the relay as seen at the accident point.
[Equation 9]
Vector OC = [VbF · cos (φV)] / cos (φr) = RF · | Ib12r |
Vector CD = [VbF · sin (φV−φr)] / cos (φr) = ω · LF · | Ib12x |
[0018]
In addition, the zero-phase current compensation applied to conventional electromechanical and static relays (hereinafter referred to as a fundamental wave calculation type) adopts the method shown in the following equation, considering only the reactance component.
[Expression 10]
Figure 0003630272
[0019]
FIG. 5 shows the relationship between the equations (15) and (16) in the form of a vector diagram as in the equations (12) and (13). The reference current in the figure is Ib12z. The current Ib12z of the fault point residual voltage WF and its projection onto the phase component advanced by 90 degrees are respectively shown.
[Expression 11]
Vector OA = VbF · cos (φ) = RF · | Ib12z |
Vector OB = VbF · sin (φ) = ωLF · | Ib12z |
It becomes.
[0020]
From the above, in the RL calculation type relay, the reactance component jωLF of the impedance seen by the b phase is positive and the impedance seen by the c phase when the residual voltage at the fault point at the time of the bc phase 2-wire ground is in the relationship of FIG. The reactance component jωLF is negative. On the other hand, in FIG. 6B, the reactance seen by the b phase of the fundamental wave operation type relay is negative and the reactance of the c phase is positive. Accordingly, when the zero-phase current compensation coefficient of the R and L components of the RL calculation type relay is Kr> Kx at the time of b- and c-phase two-wire ground fault, the b-phase compensation current Ib12r tends to lag behind Ib12x. Conversely, when Kr <Kx, the leading phase is reached.
[0021]
[Problems to be solved by the invention]
Since there is almost a lagging phase tendency in the overhead line, even if the b-phase tends to be overreachable in the conventional fundamental wave calculation type relay, the RL calculation type relay may tend to be underreachable. Therefore, the conventional countermeasure that implements the countermeasure for the lead phase overreach cannot be applied to the RL calculation type relay. Moreover, since the aspect can change depending on the tendency of the remaining voltage at the accident point, it is necessary to take measures against overreach in the case of any two-wire ground fault.
[0022]
The present invention has been made in view of the above circumstances, and is a ground fault distance relay that directly calculates the resistance R and reactance jωL from the line equation of the transmission line, and the resistance compensation coefficient Kr and reactance compensation coefficient Kx for zero-phase current compensation. It is an object of the present invention to provide a digital ground fault distance relay device that prevents the possibility of unnecessary operation due to occurrence of overreach even if a two-wire ground fault occurs by setting the ratio of the above to a predetermined value or more .
[0023]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting the occurrence of a ground fault of two or more phases in the transmission line, and the second means if the third means determines that a ground fault of two or more phases has occurred. The fourth means for blocking the detection output of the means of
[0024]
According to a second aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting, by impedance measurement, a region larger than the second means that a ground fault accident of two or more phases has occurred in the transmission line; If it is determined that the above ground fault has occurred, the second hand It was constructed and made of a fourth means for blocking the detection output.
[0025]
According to a third aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting that a ground fault of two or more phases has occurred in the power transmission line by the magnitude of the phase voltage of each phase being a predetermined value or less, and the third means If it is determined that a ground fault accident of two or more phases And a structure in which a fourth means for blocking the output out.
[0026]
According to a fourth aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting that a ground fault of two or more phases has occurred in the power transmission line by the magnitude of the phase current of each phase being a predetermined value or more, and the third means If it is determined that a ground fault accident of two or more phases And a structure in which a fourth means for blocking the output out.
[0027]
In this way, the digital ground fault distance relay device of the present invention has a resistance zero-phase compensation coefficient (= ratio of zero-phase impedance resistance to positive-phase impedance resistance) and reactance compensation coefficient ( = Ratio of reactance of zero-phase impedance and reactance of positive-phase impedance) is set individually, and the calculation method is applied to calculate the impedance of the transmission line from the relay installation point to the ground fault point separately by resistance and reactance When a ground fault accident of two or more phases occurs in the relay, the circuit breaker trip command for the first stage relay element for detecting the accident up to a predetermined area of the transmission line is to be blocked.
[0028]
According to a fifth aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting the occurrence of a ground fault of two or more phases in the transmission line, and the second means if the third means determines that a ground fault of two or more phases has occurred. The fourth means for blocking the detection output of the means, and the ground fault of the delayed phase And when the ratio of the resistance zero-phase current compensation coefficient set by the first means and the reactance zero-phase current compensation coefficient exceeds a predetermined value, the third means By taking advantage of the above function, the sixth means is configured to block the output of the third means when the number is less, and to block the detection output of the second means by the fifth means.
[0029]
In this way, the digital ground fault distance relay device of the present invention has two or more phases when the ratio of the zero-phase current compensation coefficient for resistance and the zero-phase current compensation coefficient for reactance is larger than a predetermined value. When the ground fault is detected, the output of the second means is prevented from issuing a circuit breaker trip command. It is intended to prevent.
[0030]
According to a sixth aspect of the present invention, there is provided a digital ground fault distance relay device in which a zero-phase current compensation coefficient corresponding to a resistance of a line impedance of a transmission line and a zero-phase current compensation coefficient corresponding to a reactance are individually set. And the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current and the zero-phase current compensation coefficient for the reactance The resistance and reactance components are calculated from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage to determine whether or not a ground fault point has occurred within a predetermined area of the transmission line. A second means, a third means for detecting the occurrence of a ground fault of two or more phases in the transmission line, and the second means if the third means determines that a ground fault of two or more phases has occurred. The fourth means for blocking the detection output of the means, and the ground fault of the delayed phase And when the ratio of the zero-phase current compensation coefficient for the resistance set by the first means and the zero-phase current compensation coefficient for the reactance exceeds a predetermined value, the zero phase for the resistance The current compensation coefficient is set to the same value as the zero-phase current compensation coefficient corresponding to the reactance, and the seventh means for blocking the detection output of the second means by the output of the fifth means is adopted.
[0031]
In this way, the digital ground fault distance relay device of the present invention is configured such that if the ratio of the resistance zero-phase current compensation coefficient and the reactance zero-phase current compensation coefficient is greater than a predetermined value, both are reduced to the reactance zero. According to the phase current compensation coefficient, the same compensation as that of the conventional analog type fundamental wave operation type relay is made, and the output of the second means is to be blocked by detecting a ground fault in the late phase.
[0032]
According to a seventh aspect of the present invention, there is provided a digital ground fault distance relay device that samples and takes in a voltage and current of a power transmission line of a power system at a predetermined period, and resistance from a line equation of a power transmission line composed of resistance and inductance. In the digital ground fault distance relay device that detects the ground fault point by directly calculating the inductance and inductance, the zero-phase current compensation coefficient for resistance and the zero-phase current compensation coefficient for reactance are set individually. 1 and the resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and the phase current, and the zero-phase current compensation coefficient for the reactance is zero. Calculates the resistance and reactance from the reactance compensation phase current multiplied by the phase current and added to the phase current and the phase voltage, and determines whether or not a ground fault point has occurred in the predetermined area of the transmission line Second Means, a resistance-compensated phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the resistance set by the first means and adding the phase current, and a reactance component set by the first means When the phase difference of the reactance compensation phase current obtained by multiplying the zero-phase current compensation coefficient by the zero-phase current and adding it to the phase current is equal to or greater than a predetermined value, the detection output of the second means is blocked and less than Then, an eighth means for blocking the detection output of the second means by the output of the fifth means for detecting the ground fault of the delayed phase is adopted.
[0033]
In this way, the digital ground fault distance relay device of the present invention multiplies the zero-phase current compensation coefficient for the resistance by the zero-phase current and adds it to the phase current, and the zero-phase for the reactance. The phase difference of the reactance compensation phase current obtained by multiplying the zero phase current by the current compensation coefficient and added to the phase current is calculated. If the phase difference is equal to or greater than a predetermined value, it is determined that there is a two-wire ground fault, and the second means is interrupted It is intended to prevent the device trip command.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 7 is a block diagram showing hardware of an embodiment for explaining a digital ground fault distance relay device for a transmission line according to the present invention. In the figure, 1 is a target transmission line, 2 is a current transformer, 3 is a transformer, 4 is a current output of the current transformer 2 and a voltage output of the voltage transformer 3, and each is converted to an appropriate level. The input converter 5 is a sampling holding circuit for sampling the current / voltage output of the input converter, 6 is a circuit for analog / digital conversion of the current / voltage output of the sampling holding circuit 5, and 7 is for storing data before and after the accident. An arithmetic circuit (8) performs arithmetic processing at a predetermined cycle using the current / voltage data to perform operation determination of the digital ground fault distance relay device and determination for outputting a circuit breaker trip command ( CPU) and 9 are I / O interface circuits for outputting the operation determination result of the ground fault distance relay.
[0035]
FIG. 1 is a diagram showing the contents of the operation determination of the digital distance relay device performed by the arithmetic circuit 8 (corresponding to the arithmetic circuit 8 of FIG. 7) of the first embodiment of the present invention. Zero-phase current compensation coefficients Kr and Kx for resistance and reactance are set, and each is multiplied by the zero-phase current and added to the phase current to obtain a zero-phase compensation phase current. Expression (6) is shown as an example of the b phase.
[Expression 12]
Ib12r (t) = C1 · Ib12 (t) + Kr · C0 · I0 (t),
Ib12x (t) = C1 · Ib12 (t) + Kx · C0 · I0 (t)
(∴Kr = R1ine0 / R1ine12, Kx = L1ine0 / L1ine12)
[0036]
From this current and phase voltage, data at times t1 and t2 are applied, and resistance and reactance are calculated based on the following equations.
[Formula 13]
Figure 0003630272
[0037]
It is determined whether or not the resistance and reactance calculated here are values within a predetermined area. However, this determination result and whether or not a ground fault accident of two or more phases is determined. In the case of a ground fault accident of two or more phases, the circuit breaker is prevented from being tripped.
[0038]
FIG. 8 shows a third means for detecting an area wider than the responsibility of the second means for detecting that the vehicle is within the predetermined area as means for detecting an accident of two or more phases according to the second embodiment of the present invention. It is a figure explaining. FIG. 9 shows a detection characteristic X1 of the second means and a detection characteristic example X3 applied to the third means of the present embodiment. As shown in the figure, the detection area of the third means is wider, and in the case of a one-line ground fault of each line across both lines in a two-line transmission line, the corresponding phase is surely confirmed for each line. If the third means determines that the ground fault has two or more phases, the two-phase operation is detected unnecessarily by the action of the fourth means for blocking the detection output of the second means. There is nothing.
[0039]
FIG. 10 is a diagram for explaining a third means for detecting an accident when the voltage has fallen below a predetermined value for each line as means for detecting an accident of two or more phases according to the third embodiment of the present invention. . In this method, in the case of an uncommon phase 1-line ground fault of each line straddling between the lines, there is a possibility that even if a detection element of the third means is provided for each line, it may be regarded as a two-phase accident. The possibility of blocking the detection output of the second means arises. Therefore, in the present embodiment, there is provided a third means for detecting that a ground fault accident of two or more phases has occurred in the transmission line when the magnitude of the phase voltage of each phase becomes a predetermined value or less. This embodiment comprises the fourth means for blocking the detection output of the second means if it is determined that the ground fault accident of two or more phases is detected by means of 3, and is an embodiment effective only for one line transmission line.
[0040]
FIG. 11 illustrates a third means for detecting an accident when the magnitude of the phase current exceeds a predetermined value for each line as means for detecting an accident of two or more phases according to the fourth embodiment of the present invention. It is a figure to do. A third means for detecting the occurrence of a ground fault of two or more phases in the transmission line by the fact that the magnitude of the phase current of each phase has reached a predetermined value or more; If it is determined that there is a ground fault, the fourth means for blocking the detection output of the second means. In this method, since the magnitude of the phase current is detected in units of lines, even if a one-line ground fault occurs in different phases across the two lines, it will not be regarded as a ground fault accident of two or more phases. Further, in this embodiment, the magnitude of the phase current is used, but it goes without saying that it can be realized by a configuration in which the magnitude of the change in the phase current is observed.
[0041]
FIG. 12 is a diagram for explaining the relationship between the fifth means and the sixth means of the fifth embodiment of the present invention. The fifth means is a RL calculation type ground fault distance relay that is wider than the area detected by the second means for detecting the ground fault accident of the late phase with respect to the ground fault accident of the phase of interest of the present invention. It is comprised so that it may detect. Further, the sixth means is the fifth means described above, depending on whether the ratio of the magnitude of the resistance zero-phase current compensation coefficient Kr and the reactance zero-phase current compensation coefficient Kx is greater than or less than a predetermined value. One of the third means for detecting a ground fault of two or more phases of the transmission line is selected to block the detection output of the second means. That is, processing is performed as follows.
[0042]
[Expression 14]
If Kr / Kx> K: Stop if a ground fault is detected for two or more phases.
If Kr / Kx <K: Stop if a ground fault in the late phase is detected
In this way, the digital ground fault distance relay device according to the present embodiment has two phases when the ratio of the zero-phase current compensation coefficient for resistance and the zero-phase current compensation coefficient for reactance is larger than a predetermined value. If the above ground fault is detected, the output of the second means is prevented from issuing a circuit breaker trip command, and if it is small, the output of the second means is detected by the detection output of the delayed phase ground fault. It tries to block the output.
[0043]
FIG. 13 is a diagram for explaining the relationship between the fifth means and the sixth means of the sixth embodiment of the present invention. The fifth means is wider than the area detected by the second means for determining whether or not a ground fault point has occurred in a predetermined area of the transmission line with respect to the ground fault of the phase of interest of the present embodiment. The region is configured to be detected by an RL calculation type ground fault distance relay.
[0044]
Further, the seventh means makes Kr equal to Kx when the ratio of the magnitude of the resistance zero-phase current compensation coefficient Kr and the reactance zero-phase current compensation coefficient Kx exceeds a predetermined value. The detection means of the second means is blocked by the fifth means. That is, processing is performed as follows.
[0045]
[Expression 15]
When Kr / Kx> K: Kr is used as the same value as Kx
When Kr / Kx <K: Use Kr and Kx as they are
The RL calculation of the second means is performed, and the detection output of the second means is blocked by the fifth means.
[0046]
In this way, the digital ground fault distance relay device according to this embodiment is configured so that if the ratio of the resistance zero-phase current compensation coefficient and the reactance zero-phase current compensation coefficient is greater than a predetermined value, both are equivalent to the reactance. In accordance with the zero-phase current compensation coefficient, the same compensation as that of a conventional analog type fundamental wave arithmetic relay is performed, and the output of the second means is to be blocked by detecting a ground-phase fault in the delayed phase.
[0047]
FIG. 14 shows the eighth means of the seventh embodiment of the present invention, the first means for individually setting the resistance zero-phase current compensation coefficient and the reactance zero-phase current compensation coefficient. The relationship of the 2nd means which determines whether the ground fault point has arisen in the area | region is demonstrated. There are various methods for calculating the phase difference θ between the resistance-component zero-phase compensation phase current Ib12r and the reactance-component zero-phase compensation phase current Ib12x shown by the equation (6). For example, it can be realized by the following formula.
[0048]
[Expression 16]
Figure 0003630272
[0049]
If this phase difference θ is greater than or equal to a predetermined value, it is assumed that a ground fault accident of two or more phases has occurred, the detection output of the second means is blocked, and if the phase difference is less than or equal to a predetermined value, The detection output of the second means is blocked by the output of the fifth means for detecting a ground-phase fault in the late phase.
[0050]
In this way, the digital ground fault distance relay device of this embodiment multiplies the zero-phase current compensation coefficient for the resistance by the zero-phase current and adds the phase current to the resistance compensation phase current and the reactance zero The phase difference of the reactance compensation phase current obtained by multiplying the phase current compensation coefficient by the zero phase current and adding to the phase current is calculated. If the phase difference is equal to or greater than a predetermined value, it is determined that there is a two-wire ground fault. It is intended to prevent the circuit breaker trip command.
[0051]
【The invention's effect】
As described above, according to the present invention, the ground based on the RL calculation form that directly calculates the resistance and reactance up to the fault point from the phase current and the phase voltage compensated for the zero-phase current of each of the resistance and reactance. In the relay distance relay, it is possible to realize a digital ground fault distance relay device that can easily prevent an unnecessary operation due to overreach occurring at the time of a two-wire ground fault.
[Brief description of the drawings]
FIG. 1 is a first embodiment of a digital ground fault distance relay device according to the present invention.
FIG. 2 is a trend diagram of accident point voltage and current during a two-wire ground fault.
FIG. 3 is a power system diagram as an object of the present invention.
FIG. 4 is an explanatory diagram of a phenomenon of a power system to be solved by the present invention.
FIG. 5 is a diagram for explaining the performance of a conventional ground fault distance relay for a phenomenon to be solved by the present invention.
FIG. 6 is an explanatory diagram of a phenomenon to be solved by the present invention.
FIG. 7 is a block diagram showing hardware of a digital ground fault distance relay device of the present invention.
FIG. 8 is a second embodiment of the digital ground fault distance relay device of the present invention.
FIG. 9 is a characteristic diagram of a detection characteristic X1 of the second means and a detection characteristic example X3 applied to the third means.
FIG. 10 is a diagram of a third embodiment of the digital ground fault distance relay device of the present invention.
FIG. 11 is a diagram showing a fourth embodiment of the digital ground fault distance relay device of the present invention.
FIG. 12 is a diagram of a fifth embodiment of the digital ground fault distance relay device of the present invention.
FIG. 13 is a diagram showing a digital ground fault distance relay device according to a sixth embodiment of the present invention.
FIG. 14 is a seventh embodiment of the digital ground fault distance relay device of the present invention.
[Explanation of symbols]
1 Transmission line
2 Current transformer
3 Transformer
4 Input converter
5 Sampling holding circuit
6 Analog-digital conversion circuit
7 memory
8 CPU
9 I / O interface

Claims (7)

電力系統の送電線の電圧、電流を所定の周期でサンプリングして取り込み、抵抗、インダクタンスからなる送電線の線路方程式から抵抗分、インダクタンス分を直接算出して地絡事故点を検出するディジタル形地絡距離リレーにおいて、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で地絡事故点が生じたか否かを判定する第2の手段と、該送電線の2相以上の地絡事故を検出する第3の手段と、該第3の手段で2相以上の地絡事故と判定されたら該第2の手段の検出出力を阻止する第4の手段からなることを特徴とするディジタル形地絡距離継電装置。Digital type ground that detects the ground fault point by directly sampling the resistance and inductance of the transmission line voltage and current of the power grid, and sampling the resistance and inductance from the transmission line equation. In a relay distance relay, first means for individually setting a resistance zero-phase current compensation coefficient and a reactance zero-phase current compensation coefficient, respectively, and zero-phase current compensation for the resistance set by the first means The resistance compensation phase current obtained by multiplying the zero-phase current by the coefficient and adding the phase current, and the reactance compensation phase current obtained by multiplying the zero-phase current by the zero-phase current compensation coefficient for the reactance and the phase current and the resistance from the phase voltage A second means for calculating a reactance component and determining whether or not a ground fault point has occurred within a predetermined area of the transmission line; and detecting a ground fault of two or more phases of the transmission line. 3 means , Fourth means that the digital form grounding distance relay apparatus according to claim consisting of blocking the detection output of the second means if it is determined that two or more phases of the ground fault in the unit of the third. 該送電線の2相以上の地絡事故を、抵抗分、リアクタンス分を算出して、前記第2の手段よりも広い領域を検出するように構成した第3の手段からなることを特徴とする請求項1記載のディジタル形地絡距離継電装置。The ground fault of two or more phases of the transmission line is composed of a third means configured to detect an area wider than the second means by calculating a resistance component and a reactance component. The digital ground fault distance relay device according to claim 1. 該送電線の2相以上の地絡事故を各相の相電圧の大きさが所定値以下になったことで検出するように構成した第3の手段からなることを特徴とする請求項1記載のディジタル形地絡距離継電装置。2. A third means configured to detect a ground fault of two or more phases of the power transmission line when a phase voltage of each phase becomes a predetermined value or less. Digital ground fault distance relay device. 該送電線の2相以上の地絡事故を各相の相電流の大きさが所定値以上になったことで検出するように構成した第3の手段からなることを特徴とする請求項1記載のディジタル形地絡距離継電装置。2. A third means configured to detect a ground fault of two or more phases of the transmission line when the magnitude of the phase current of each phase exceeds a predetermined value. Digital ground fault distance relay device. 遅れ相の地絡事故を検出する第5の手段と、前記第1の手段で設定された抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値以上になったら、前記第3の手段の機能を活かし、未満となったら前記第3の手段の検出出力を阻止して、前記第5の手段で前記第2の手段の検出出力を阻止する第6の手段とからなることを特徴とする請求項1記載のディジタル形地絡距離継電装置。When the ratio of the zero-phase current compensation coefficient for the resistance set by the first means and the zero-phase current compensation coefficient for the reactance set by the first means exceeds a predetermined value Taking advantage of the function of the third means, blocking the detection output of the third means when less than the sixth means, and blocking the detection output of the second means by the fifth means; The digital ground fault distance relay device according to claim 1, comprising: 遅れ相の地絡事故を検出する第5の手段と、前記第1の手段で設定された抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数の比が所定値以上になったら、抵抗分の零相電流補償係数をリアクタンス分の零相電流補償係数と同一値とし、前記第5の手段の出力で前記第2の手段の検出出力を阻止する第7の手段とからなることを特徴とする請求項1記載のディジタル形地絡距離継電装置。When the ratio of the zero-phase current compensation coefficient for the resistance set by the first means and the zero-phase current compensation coefficient for the reactance set by the first means exceeds a predetermined value And a seventh means for making the zero-phase current compensation coefficient for the resistance equal to the zero-phase current compensation coefficient for the reactance and blocking the detection output of the second means by the output of the fifth means. The digital ground fault distance relay device according to claim 1. 電力系統の送電線の電圧、電流を所定の周期でサンプリングして取り込んで、抵抗、インダクタンスからなる送電線の線路方程式から抵抗分、インダクタンス分を直接算出して地絡事故点を検出するディジタル形地絡距離継電装置において、抵抗分の零相電流補償係数とリアクタンス分の零相電流補償係数を各々個別に設定する第1の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流とリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流及び当該相電圧とから抵抗分、リアクタンス分を算出して、当該送電線の所定領域内で地絡事故点が生じたか否かを判定する第2の手段と、該第1の手段で設定された抵抗分の零相電流補償係数を零相電流に乗じて相電流と加算した抵抗分補償相電流と、前記第1の手段で設定されたリアクタンス分の零相電流補償係数を零相電流に乗じて相電流と加算したリアクタンス補償相電流の位相差を算出して所定値以上になったら、該第2の手段の検出出力を阻止し、未満となったら遅れ相の地絡事故を検出する第5の手段の出力で前記第2の手段の検出出力を阻止する第8の手段とからなることを特徴とするディジタル形地絡距離継電装置。Digital type that detects the ground fault point by sampling the voltage and current of the transmission line of the power system at a predetermined cycle and directly calculating the resistance and inductance from the line equation of the transmission line consisting of resistance and inductance In the ground fault distance relay device, a first means for individually setting a resistance zero-phase current compensation coefficient and a reactance zero-phase current compensation coefficient, respectively, and a resistance zero set by the first means Reactance compensation phase current obtained by multiplying the phase current compensation coefficient by the zero phase current and adding it to the phase current and reactance compensation phase current obtained by multiplying the zero phase current by the zero phase current compensation coefficient for the reactance and the phase current and the phase voltage concerned The second means for calculating the resistance and the reactance from the above and determining whether or not a ground fault point has occurred in the predetermined area of the transmission line, and the resistance set by the first means Zero phase current compensation The resistance compensation phase current obtained by multiplying the zero phase current by the number and adding the phase current, and the reactance obtained by multiplying the zero phase current by the zero phase current compensation coefficient corresponding to the reactance set by the first means and adding the phase current. When the phase difference of the compensation phase current is calculated and becomes a predetermined value or more, the detection output of the second means is blocked, and when it becomes less than the above, the output of the fifth means for detecting the ground fault accident of the delayed phase is used. A digital ground fault distance relay device comprising: eighth means for blocking detection output of the second means.
JP36702897A 1997-12-25 1997-12-25 Digital ground fault distance relay Expired - Fee Related JP3630272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36702897A JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36702897A JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Publications (2)

Publication Number Publication Date
JPH11191922A JPH11191922A (en) 1999-07-13
JP3630272B2 true JP3630272B2 (en) 2005-03-16

Family

ID=18488287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36702897A Expired - Fee Related JP3630272B2 (en) 1997-12-25 1997-12-25 Digital ground fault distance relay

Country Status (1)

Country Link
JP (1) JP3630272B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393909B1 (en) * 2001-03-29 2003-08-06 유호전기공업주식회사 Methol of distance relay for protecting transmission line with removal reactance effect
JP6362569B2 (en) * 2015-06-10 2018-07-25 三菱電機株式会社 Distance relay device and power line protection method
CN109782117B (en) * 2019-03-29 2020-05-08 云南电网有限责任公司电力科学研究院 Ground fault disappearance discrimination method based on amplitude adjustment of controllable voltage source
CN110470950B (en) * 2019-08-16 2021-07-16 深圳供电局有限公司 Fault location method for power transmission line

Also Published As

Publication number Publication date
JPH11191922A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
EP1982395B1 (en) Method and adaptive distance protection relay for power transmission lines
JP6711844B2 (en) Fault position detection and distance protection device and related method
US5956220A (en) Adaptive distance protection system
EP1971869B1 (en) Method and device for fault location in a two-terminal transmission or distribution power line
US9118181B2 (en) Method of fault phase selection and fault type determination
US4996624A (en) Fault location method for radial transmission and distribution systems
CN105467268B (en) Directional detection of ground faults in an electric power distribution network
WO1995024014A2 (en) One-terminal data fault location system
US6661630B1 (en) Distance relay for protection of transmission line having minimized reactance effect
JP3456952B2 (en) Digital type distance relay
Mooney Distance element performance under conditions of CT saturation
JP3630272B2 (en) Digital ground fault distance relay
US5493228A (en) Method and device for measuring and recreating the load current in a power network in connection with the occurrence of faults
CN112703649A (en) Method and device for controlling at least one circuit breaker of an electrical power system
CN114184843A (en) Method and apparatus for estimating source impedance on one or more transmission lines
EP0721687B1 (en) Method and device for identifying single ground faults
US6173216B1 (en) Protective relay with improved, sub-window cosine filter
US5710542A (en) Method of measuring the A.C. current in a conductor in an A.C. power transmission network
JP3628143B2 (en) Ground fault distance relay
JP3575814B2 (en) Power system fault location system
JP3460336B2 (en) Fault location method for multi-terminal transmission lines
JPH0373825B2 (en)
US6420875B1 (en) CVT transient filter
US6154687A (en) Modified cosine filters
JP3844551B2 (en) Ground impedance estimation method for distribution lines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees