JP3630113B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP3630113B2
JP3630113B2 JP2001172467A JP2001172467A JP3630113B2 JP 3630113 B2 JP3630113 B2 JP 3630113B2 JP 2001172467 A JP2001172467 A JP 2001172467A JP 2001172467 A JP2001172467 A JP 2001172467A JP 3630113 B2 JP3630113 B2 JP 3630113B2
Authority
JP
Japan
Prior art keywords
gas flow
electrode
fuel cell
flow path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172467A
Other languages
Japanese (ja)
Other versions
JP2002367630A (en
Inventor
峰生 和島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001172467A priority Critical patent/JP3630113B2/en
Publication of JP2002367630A publication Critical patent/JP2002367630A/en
Application granted granted Critical
Publication of JP3630113B2 publication Critical patent/JP3630113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の属する技術分野】
【0001】
本発明は、固体高分子電解質膜を用いた燃料電池に関するものである。
【従来の技術】
【0002】
従来の燃料電池は、例えば、固体高分子電解質を用いたものは、図7に示すように、固体電解質100を挟んで、触媒101,102、水素極(負極)103,防水膜105が設けられた空気極(正極)104で構成されている。水素極103では外部から供給された水素ガスが、水素極103内を通過させて反応帯域近くに達し、触媒101に吸収されて活性な水素になる。
【0003】
この水素原子は、次式のように電解質中の水酸イオンと反応して水となり、その際、電子を空気極104に送る。
【0004】
2 + 2OH- → 2H2 O + 2e-
一方、空気極104では、触媒の存在の下で、空気極104から2個の電子を受け取り、外部から供給された酸素分子が、電解質100からの水と反応して、水酸イオンを生成する。
【0005】
1/2O2 + H2 O → 2OH-
この空気極で生成した水酸イオンは、電解質100中を移動してきた水素イオンと反応して水を生成し、全体の回路を形成する。
【0006】
従って、電池全体の反応は、
2 + 1/2O2 → 2H2
となり、燃料ガス中の水素と空気中の酸素が反応し水が生成する反応となる。
【発明が解決しようとする課題】
【0007】
さて、実際の燃料電池セルは、図8のように電解質100を、空気供給プレート106と水素供給プレート107で挟んで構成され、空気供給プレート106に、酸素供給管108と排水管109が接続され、水素供給プレート107に水素供給管110と排ガス管(図示せず)が接続される。
【0008】
図9は、図8のF−F線断面図を示したもので、空気供給プレート106と水素供給プレート107で、電解質100を負極側触媒付き電極シート111と正極側触媒電極シート(防水シート付き)112を介して挟み、水素ガスや、酸素ガスを配管し供給する構造をとる。多くの場合、空気供給プレート106と水素供給プレート107にガス流路113,114を形成し、さらに電極シート111,112に溝115,116を設けている。
【0009】
実用上は多数の積層構造をとるため、電極間にセパレータなどで絶縁分離している。従って、セルを組み立てるには、ガス漏れに対する配慮を各セル周囲全部に対して施す必要があり、またこの板状のものに配管を設け、原料ガスを供給してやる必要がある。
【0010】
また、電解質のイオンの移動効率に関して電解質の水分濃度のコントロールが重要である。
【0011】
8,9に示すような従来の燃料電池セルではガス流路が狭く長くなり、ガスの流れの抵抗が大きくなったり、水分が凝縮して水滴ができ、排水がうまくできず、酸化ガスが到達しないところや、水分濃度分布のばらつきを生じていた。
【0012】
そこで、本発明の目的は、上記課題を解決し、排水が良好に行える燃料電池を提供することにある。
【課題を解決するための手段】
【0013】
上記目的を達成するために、請求項1の発明は、筒状に形成した固体高分子電解質の内外にそれぞれガス流路を形成する電極を設け、その酸素供給側のガス流路断面を水素供給側より大きく形成した燃料電池である。
【0014】
請求項の発明は、固体高分子電解質の内周に、外周に酸素供給用のガス流路が形成された筒状の正極側内部電極を設け、固体高分子電解質の外周に、内周に水素供給用のガス流路が形成された筒状の負極側外部電極を設け、上記正極側内部電極の中心に酸素供給用のガス流路で生成した水を排水する通路を形成した請求項記載の燃料電池である。
【0015】
請求項の発明は、通路に排水管が接続され、その排水管に、酸素供給用のガス流路の水分濃度を制御する除湿器が接続された請求項記載の燃料電池である。
【0016】
請求項の発明は、固体高分子電解質の内周に、外周に水素供給用のガス流路が形成された筒状の負極側内部電極を設け、固体高分子電解質の外周に、内周に酸素供給用のガス流路が形成された2重の筒状体からなる正極側外部電極を設けた請求項記載の燃料電池である。
【0017】
請求項の発明は、正極側外部電極のガス流路に排水管を接続し、その排水管に、酸素供給用のガス流路の水分濃度を制御する除湿器が接続された請求項記載の燃料電池である。
【発明の実施の形態】
【0018】
以下、本発明の好適実施の形態を添付図面に基づいて詳述する。
【0019】
図1〜3は、本発明の燃料電池の一実施の形態を示したもので、図1は、燃料電池の概略全体図、図2は、図1のB−B線断面図、図3図1のC−C線断面図を示す。
【0020】
先ず燃料電池セル28は、円柱型に形成され、円筒状に形成した固体高分子電解質30を挟んで、筒状の正極側内部電極32と筒状の負極側外部電極34とが設けられて構成される。この正極側内部電極32の外周には、固体高分子電解質30に酸素を供給すべく溝状のガス流路31が形成され、負極側外部電極34の内周には、固体高分子電解質30に水素を供給すべく溝状のガス流路33が形成される。この正極側内部電極32の中心側には、ガス流路31とつながり、酸素の供給と生成水を排出するための通路35が形成される。なお、触媒層、防水層は図では省略しているが設けられている。
【0021】
また、正極側内部電極32と負極側外部電極34は、通電性があり、気密性が保たれ、燃料電池としての環境下で腐食されなければ、特に材料に拠らない。
【0022】
図1に示すように、水素ガス源40には供給配管41が接続され、その供給配管41が、負極側外部電極34のガス流路33とつながるガス通路43に接続され、他方、酸素ガス源44には、ガス配管45が接続され、その配管45が通路35に接続され、その通路35の下部に排水管46が接続され、その排水管46に圧力調整弁と冷却器などからなる除湿器47が接続され、その除湿器47で除去された水が排水孔48より排水されるようになっている。
【0023】
なお、49は電流電圧計である。
【0024】
この実施の形態においては、水素ガス源40と酸素ガス源44からの燃料ガスの供給は、ガス流路33,31に供給して軸方向に流すだけなので配管が容易となる。
【0025】
またガス流路31と通路35は、相互につながり、酸化ガスの流路断面水素のガス流路33より実質的に大きく形成され、正極側ガス流路31で生成した水はそのガス流路31から通路35に排出され、排水管46を通して良好に排水できる。
【0026】
この際、除湿器47で、排水孔48に排水する排水量を調整することで、ガス流路31内での水分濃度を自在に調整できると共にそのガス流路31内で水分が凝集して排水が不良になることもない。
【0027】
この燃料電池の運転は、1例として、水素を2気圧、酸素は1気圧とした。又酸素源として空気を用いた場合、圧力を5気圧にした。
【0028】
このように作製した燃料電池セルに上述の燃料ガスを供給して運転したところ、0.8Vの起電力が発生した。
【0029】
図4〜図6は、本発明の他の実施の形態を示したもので、図4は、燃料電池の概略全体図、図5は、図4のD−D線断面図、図6図4のE−E線断面図を示す。
【0030】
先ず燃料電池セル52は、円柱型に形成され、固体電解質50を挟んで、水素のガス流路53が形成された負極側内部電極54と、酸素の第1ガス流路55が形成された正極側外部第1電極56が設けられ、その外側に第2ガス流路57が形成された正極側外部第2電極58が設けられて構成され、その第1ガス流路55と第2ガス流路57とが適宜箇所でつながって形成される。なお、触媒層、防水層は図では省略しているが設けられている。
【0031】
図4に示すように、酸素ガス源60には供給配管61が接続され、その供給配管61が、正極側第1外部電極56と第2外部電極58のガス流路55,57とつながるガス通路63に接続され、他方、水素ガス源64には、ガス配管65が接続され、その配管65が負極側内部電極54のガス流路53に接続される。
【0032】
また燃料電池セル52の下部の排水管66は、第1ガス流路55と第2ガス流路57と接続され、その排水管66に圧力調整弁と冷却器などからなる除湿器67が接続され、その除湿器67で除去された水が排水孔68より排水されるようになっている。
【0033】
なお、69は電流電圧計である。
【0034】
この実施の形態においては、図1〜3の形態と逆に、水素ガス源64のガスを中心側に、酸素ガス源60からの酸素を外側に流し、その酸素のガス流路55,57を2段にし形成して流すことで、良好に排水できる。この際、除湿器67で、排水孔68に排水する排水量を調整することで、ガス流路55,57内での水分濃度を自在に調整できると共にそのガス流路55,57内で水分が凝集して排水が不良になることもない。
【0035】
このように円柱型の燃料電池とすることで、複数セルに対して各ガス流路への配管が容易となる。また燃料電池セルは、縦でも横でも、生成される水の排水を考慮すればどちらでも構わない。また円柱型のセルの太さは、原理的には起電力に依存しないので、自由に設計できる。
【発明の効果】
【0036】
以上要するに本発明によれば、酸素のガス流路を2段などに形成して広く形成することで、排水を良好にすることができる。
【図面の簡単な説明】
【0037】
【図1】本発明の実施の形態の燃料電池の概略全体図である。
【図2】図1のB−B線断面図である。
【図3】図1のC−C線断面図を示す。
【図4】本発明の他の実施の形態の燃料電池の概略全体図である。
【図5】図4のD−D線断面図である。
【図6】図4のE−E線断面図である。
【図7】燃料電池セルの基本構造を示す図である。
【図8】従来の燃料電池セルを示す概略斜視図である。
【図9】図8のF−F線断面図である。
【符号の説明】
【0038】
30 固体高分子電解質
31 正極側ガス流路
32 正極側内部電極
33 負極側ガス流路
34 負極側外部電極
35 通路
BACKGROUND OF THE INVENTION
[0001]
The present invention relates to a fuel cell using a solid polymer electrolyte membrane.
[Prior art]
[0002]
For example, a conventional fuel cell using a solid polymer electrolyte is provided with catalysts 101 and 102, a hydrogen electrode (negative electrode) 103, and a waterproof membrane 105 with a solid electrolyte 100 interposed therebetween as shown in FIG. The air electrode (positive electrode) 104 is configured. In the hydrogen electrode 103, hydrogen gas supplied from the outside passes through the hydrogen electrode 103 and reaches near the reaction zone, and is absorbed by the catalyst 101 to become active hydrogen.
[0003]
This hydrogen atom reacts with a hydroxide ion in the electrolyte as shown in the following formula to become water, and at that time, electrons are sent to the air electrode 104.
[0004]
H 2 + 2OH → 2H 2 O + 2e
On the other hand, the air electrode 104 receives two electrons from the air electrode 104 in the presence of the catalyst, and oxygen molecules supplied from the outside react with water from the electrolyte 100 to generate hydroxide ions. .
[0005]
1 / 2O 2 + H 2 O → 2OH
The hydroxide ions generated at the air electrode react with the hydrogen ions that have moved through the electrolyte 100 to generate water, thereby forming the entire circuit.
[0006]
Therefore, the overall reaction of the battery is
H 2 + 1 / 2O 2 → 2H 2 O
Thus, hydrogen in the fuel gas and oxygen in the air react to produce water.
[Problems to be solved by the invention]
[0007]
As shown in FIG. 8 , the actual fuel battery cell is configured by sandwiching the electrolyte 100 between the air supply plate 106 and the hydrogen supply plate 107, and the oxygen supply pipe 108 and the drain pipe 109 are connected to the air supply plate 106. A hydrogen supply pipe 110 and an exhaust gas pipe (not shown) are connected to the hydrogen supply plate 107.
[0008]
FIG. 9 is a cross-sectional view taken along the line F-F of FIG. 8. The electrolyte 100 is composed of an air supply plate 106 and a hydrogen supply plate 107. ) And sandwiched through 112, and a hydrogen gas or oxygen gas is piped and supplied. In many cases, gas flow paths 113 and 114 are formed in the air supply plate 106 and the hydrogen supply plate 107, and grooves 115 and 116 are provided in the electrode sheets 111 and 112.
[0009]
In practice, in order to take a large number of laminated structures, the electrodes are insulated and separated with a separator or the like. Therefore, in order to assemble the cells, it is necessary to give consideration to gas leakage to the entire periphery of each cell, and it is necessary to provide piping for the plate-like material and supply the raw material gas.
[0010]
In addition, it is important to control the water concentration of the electrolyte with respect to the ion transfer efficiency of the electrolyte.
[0011]
In the conventional fuel cell as shown in FIGS. 8 and 9 , the gas flow path is narrow and long, the resistance of the gas flow is increased, the water is condensed and water droplets are formed, the drainage is not successful, and the oxidizing gas is generated. It did not reach, and there were variations in moisture concentration distribution.
[0012]
Accordingly, an object of the present invention is to provide a fuel cell that solves the above-described problems and can drain water well.
[Means for Solving the Problems]
[0013]
In order to achieve the above object, according to the first aspect of the present invention, an electrode for forming a gas flow path is provided inside and outside of a solid polymer electrolyte formed in a cylindrical shape, and the gas flow path cross section on the oxygen supply side is supplied with hydrogen. This is a fuel cell formed larger than the side.
[0014]
According to the second aspect of the present invention, a cylindrical positive electrode internal electrode having an oxygen supply gas channel formed on the outer periphery is provided on the inner periphery of the solid polymer electrolyte, and on the outer periphery of the solid polymer electrolyte. provided a negative electrode side external electrode of the hydrogen supply-shaped cylinder gas flow path is formed of claim 1 forming a passage for draining the water produced by the gas flow path for oxygen supply to the center of the positive electrode-side internal electrode It is a fuel cell of description.
[0015]
A third aspect of the present invention is the fuel cell according to the second aspect , wherein a drain pipe is connected to the passage, and a dehumidifier for controlling the moisture concentration of the gas flow path for supplying oxygen is connected to the drain pipe.
[0016]
According to a fourth aspect of the present invention, a cylindrical negative electrode on the inner periphery of the solid polymer electrolyte is provided with a gas flow channel for supplying hydrogen on the outer periphery, and the outer periphery of the solid polymer electrolyte is provided on the inner periphery. a fuel cell according to claim 1, wherein the gas channel is provided with a positive electrode side external electrode made of double tubular body formed of oxygen supply.
[0017]
The invention of claim 5 connects the drain pipe to the gas flow path of the positive side external electrode, on the drain pipe, according to claim 4, wherein the dehumidifier to control the water content of the gas flow path for oxygen supply is connected This is a fuel cell.
DETAILED DESCRIPTION OF THE INVENTION
[0018]
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0019]
1 to 3 show an embodiment of a fuel cell according to the present invention . FIG. 1 is a schematic overall view of the fuel cell, FIG. 2 is a cross-sectional view taken along the line BB in FIG . The CC sectional view taken on the line of FIG. 1 is shown.
[0020]
First, the fuel cell 28 is formed in a columnar shape, and includes a cylindrical positive electrode-side internal electrode 32 and a cylindrical negative electrode-side external electrode 34 with a solid polymer electrolyte 30 formed in a cylindrical shape interposed therebetween. Is done. A groove-like gas flow path 31 is formed on the outer periphery of the positive side internal electrode 32 to supply oxygen to the solid polymer electrolyte 30, and the solid polymer electrolyte 30 is formed on the inner periphery of the negative side external electrode 34. A groove-like gas flow path 33 is formed to supply hydrogen. A passage 35 for supplying oxygen and discharging produced water is formed on the center side of the positive electrode 32 on the center side. Note that the catalyst layer and the waterproof layer are omitted in the figure.
[0021]
The positive electrode side internal electrode 32 and the negative electrode side external electrode 34 are not particularly dependent on materials unless they are electrically conductive, airtight, and corroded in the environment of a fuel cell.
[0022]
As shown in FIG. 1 , a supply pipe 41 is connected to the hydrogen gas source 40, and the supply pipe 41 is connected to a gas passage 43 connected to the gas passage 33 of the negative external electrode 34, while the oxygen gas source 44, a gas pipe 45 is connected, the pipe 45 is connected to a passage 35, a drain pipe 46 is connected to a lower portion of the passage 35, and a dehumidifier comprising a pressure regulating valve and a cooler is connected to the drain pipe 46. 47 is connected, and the water removed by the dehumidifier 47 is drained from the drain hole 48.
[0023]
Reference numeral 49 denotes a current voltmeter.
[0024]
In this embodiment, the supply of the fuel gas from the hydrogen gas source 40 and the oxygen gas source 44 is only supplied to the gas flow paths 33 and 31 and flows in the axial direction, so that piping is facilitated.
[0025]
Further , the gas channel 31 and the channel 35 are connected to each other, and the cross section of the oxidizing gas channel is formed to be substantially larger than the hydrogen gas channel 33, and the water generated in the positive gas channel 31 is the gas flow. It is discharged from the passage 31 to the passage 35 and can be drained well through the drain pipe 46.
[0026]
At this time, by adjusting the amount of drainage discharged to the drain hole 48 by the dehumidifier 47, the moisture concentration in the gas flow path 31 can be adjusted freely, and the water is condensed in the gas flow path 31 and the drainage is discharged. It will not be bad.
[0027]
As an example of the operation of this fuel cell, hydrogen was set to 2 atm and oxygen was set to 1 atm. When air was used as the oxygen source, the pressure was 5 atm.
[0028]
When the above fuel gas was supplied to the fuel cell thus produced and operated, an electromotive force of 0.8 V was generated.
[0029]
4 to 6 show other embodiments of the present invention . FIG. 4 is a schematic overall view of the fuel cell, FIG. 5 is a sectional view taken along the line DD of FIG. 4 , and FIG . 4 is a sectional view taken along line E-E.
[0030]
First, the fuel battery cell 52 is formed in a cylindrical shape, and a negative electrode-side internal electrode 54 in which a hydrogen gas flow channel 53 is formed and a positive electrode in which a first gas flow channel 55 of oxygen is formed with the solid electrolyte 50 interposed therebetween. The first external gas electrode 55 and the second gas flow channel are configured by providing a positive external second electrode 58 in which a second external gas electrode 57 is formed on the outer side. 57 is connected at appropriate places. Note that the catalyst layer and the waterproof layer are omitted in the figure.
[0031]
As shown in FIG. 4 , a supply pipe 61 is connected to the oxygen gas source 60, and the supply pipe 61 is connected to the gas flow paths 55 and 57 of the positive first external electrode 56 and the second external electrode 58. On the other hand, a gas pipe 65 is connected to the hydrogen gas source 64, and the pipe 65 is connected to the gas flow path 53 of the negative side internal electrode 54.
[0032]
A drain pipe 66 below the fuel battery cell 52 is connected to the first gas flow path 55 and the second gas flow path 57, and a dehumidifier 67 including a pressure regulating valve and a cooler is connected to the drain pipe 66. The water removed by the dehumidifier 67 is drained from the drain hole 68.
[0033]
Reference numeral 69 denotes a current voltmeter.
[0034]
In this embodiment, contrary to the embodiment shown in FIGS. 1 to 3 , the gas from the hydrogen gas source 64 is flowed to the center and the oxygen from the oxygen gas source 60 is flowed to the outside. By forming and flowing in two stages, it is possible to drain well. At this time, the moisture concentration in the gas flow paths 55 and 57 can be adjusted freely by adjusting the amount of drainage discharged to the drain hole 68 by the dehumidifier 67 and the water is condensed in the gas flow paths 55 and 57. And drainage does not become defective.
[0035]
By using a cylindrical fuel cell in this way, piping to each gas flow path is facilitated for a plurality of cells. The fuel cells may be either vertical or horizontal as long as the generated water drainage is taken into consideration. Further, the thickness of the cylindrical cell does not depend on the electromotive force in principle, and can be designed freely.
【The invention's effect】
[0036]
In short, according to the present invention, it is possible to improve the drainage by forming the oxygen gas flow path in two stages and so on.
[Brief description of the drawings]
[0037]
FIG. 1 is a schematic overall view of a fuel cell according to an embodiment of the present invention.
2 is a sectional view taken along line B-B of FIG.
3 shows a sectional view taken along line C-C of FIG.
FIG. 4 is a schematic overall view of a fuel cell according to another embodiment of the present invention.
5 is a sectional view taken along line D-D of FIG.
6 is a sectional view taken along line E-E in FIG. 4.
FIG. 7 is a diagram showing a basic structure of a fuel cell.
FIG. 8 is a schematic perspective view showing a conventional fuel cell.
9 is a sectional view taken along line F-F in FIG. 8.
[Explanation of symbols]
[0038]
30 solid polymer electrolyte
31 Positive gas flow path
32 positive side internal electrode
33 Negative gas flow path
34 Negative electrode external electrode
35 passages

Claims (5)

筒状に形成した固体高分子電解質の内外にそれぞれガス流路を形成する電極を設け、その酸素供給側のガス流路断面を水素供給側より大きく形成したことを特徴とする燃料電池。2. A fuel cell comprising: a solid polymer electrolyte formed in a cylindrical shape, and an electrode for forming a gas flow path provided inside and outside thereof; and a gas flow path cross section on the oxygen supply side is formed larger than the hydrogen supply side. 固体高分子電解質の内周に、外周に酸素供給用のガス流路が形成された筒状の正極側内部電極を設け、固体高分子電解質の外周に、内周に水素供給用のガス流路が形成された筒状の負極側外部電極を設け、上記正極側内部電極の中心に酸素供給用のガス流路で生成した水を排水する通路を形成した請求項1記載の燃料電池。A cylindrical positive internal electrode having an oxygen supply gas channel formed on the outer periphery is provided on the inner periphery of the solid polymer electrolyte, and a hydrogen supply gas channel is provided on the inner periphery of the solid polymer electrolyte. The fuel cell according to claim 1, wherein a cylindrical negative electrode on the side of the positive electrode is provided, and a passage for draining water generated in the gas flow path for supplying oxygen is formed at the center of the positive electrode. 通路に排水管が接続され、その排水管に、酸素供給用のガス流路の水分濃度を制御する除湿器が接続された請求項2記載の燃料電池。3. The fuel cell according to claim 2, wherein a drain pipe is connected to the passage, and a dehumidifier for controlling the moisture concentration of the gas flow path for supplying oxygen is connected to the drain pipe. 固体高分子電解質の内周に、外周に水素供給用のガス流路が形成された筒状の負極側内部電極を設け、固体高分子電解質の外周に、内周に酸素供給用のガス流路が形成された2重の筒状体からなる正極側外部電極を設けた請求項1記載の燃料電池。Provided on the inner periphery of the solid polymer electrolyte is a cylindrical negative electrode on the outer periphery of which a gas channel for supplying hydrogen is formed, and on the outer periphery of the solid polymer electrolyte, the gas channel for supplying oxygen on the inner periphery The fuel cell according to claim 1, further comprising a positive electrode-side external electrode made of a double cylindrical body formed with a gas. 正極側外部電極のガス流路に排水管を接続し、その排水管に、酸素供給用のガス流路の水分濃度を制御する除湿器が接続された請求項4記載の燃料電池。The fuel cell according to claim 4, wherein a drain pipe is connected to the gas flow path of the positive electrode side external electrode, and a dehumidifier for controlling the moisture concentration of the gas flow path for supplying oxygen is connected to the drain pipe.
JP2001172467A 2001-06-07 2001-06-07 Fuel cell Expired - Fee Related JP3630113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172467A JP3630113B2 (en) 2001-06-07 2001-06-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172467A JP3630113B2 (en) 2001-06-07 2001-06-07 Fuel cell

Publications (2)

Publication Number Publication Date
JP2002367630A JP2002367630A (en) 2002-12-20
JP3630113B2 true JP3630113B2 (en) 2005-03-16

Family

ID=19014083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172467A Expired - Fee Related JP3630113B2 (en) 2001-06-07 2001-06-07 Fuel cell

Country Status (1)

Country Link
JP (1) JP3630113B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934967B2 (en) * 2005-02-04 2012-05-23 トヨタ自動車株式会社 Membrane electrode composite for fuel cell
JP4977983B2 (en) 2005-08-31 2012-07-18 トヨタ自動車株式会社 Method for manufacturing tube fuel cell
JP2007066759A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Fuel cell
JP4910346B2 (en) * 2005-09-26 2012-04-04 株式会社エクォス・リサーチ Fuel cell and stack

Also Published As

Publication number Publication date
JP2002367630A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
JP3536765B2 (en) Fuel cell and method of manufacturing the same
JP4456188B2 (en) Fuel cell stack
JP2004031134A (en) Solid high polymer cell assembly
CN102725896A (en) Fuel battery
JPH041469B2 (en)
WO2003088394A3 (en) Fuel cell
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP3630113B2 (en) Fuel cell
JP2004207211A (en) Fuel gas humidifying device for fuel cell bipolar plate
JP4612977B2 (en) Fuel cell stack and reaction gas supply method thereof
JP2000164227A (en) Gas manifold integrated separator and fuel cell
JP2004207106A (en) Solid polymer fuel cell stack
CN102195048A (en) Selectively coated bipolar plates for water management and freeze start in PEM fuel cells
JP4739880B2 (en) Polymer electrolyte fuel cell
JP2001216983A (en) Humidifying system for fuel cell
CN103184467A (en) Oxygen electrochemical purification device for proton exchange membrane
JP5292553B2 (en) Fuel cell stack
JP5266666B2 (en) Fuel cell stack
JP4551746B2 (en) Fuel cell stack
JP2008091278A (en) Fuel cell
JP2004146309A (en) Fuel cell separator, and fuel cell using it
JP2003249243A (en) Fuel cell
JP2001155759A (en) Polymer electrolyte type fuel cell
WO2008056615A1 (en) Fuel cell
JPH0992309A (en) Solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees