JP3629977B2 - Manufacturing method of resin molded product by injection molding and injection mold - Google Patents

Manufacturing method of resin molded product by injection molding and injection mold Download PDF

Info

Publication number
JP3629977B2
JP3629977B2 JP28933798A JP28933798A JP3629977B2 JP 3629977 B2 JP3629977 B2 JP 3629977B2 JP 28933798 A JP28933798 A JP 28933798A JP 28933798 A JP28933798 A JP 28933798A JP 3629977 B2 JP3629977 B2 JP 3629977B2
Authority
JP
Japan
Prior art keywords
resin
movable core
runner
sprue
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28933798A
Other languages
Japanese (ja)
Other versions
JP2000117779A (en
Inventor
泰司 山本
喜平 岩崎
英治 寺村
直嗣 北村
清 坊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP28933798A priority Critical patent/JP3629977B2/en
Publication of JP2000117779A publication Critical patent/JP2000117779A/en
Application granted granted Critical
Publication of JP3629977B2 publication Critical patent/JP3629977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形品以外の不要樹脂を削減できる射出成形による樹脂成形品の製造法ならびに射出成形金型に関する。
【0002】
【従来の技術】
従来、樹脂の射出成形による成形品の製造において、廃棄物となる樹脂材料を削減する手段として断熱ランナ方式がある。この方式では、金型の成形キャビティと成形キャビティへ充填する溶融樹脂の通路であるランナとの間に断熱材を介在させる。成形キャビティとランナとの間を断熱材で分離した構造の金型を使用するのである。そして、一方ではランナにとどまっている樹脂が常に流動性を保持するように金型温度を制御し、他方では成形キャビティに充填された樹脂が適切に冷却されて固化するように金型温度を制御する。ランナにある樹脂を常に流動状態に維持しつつ、成形キャビティに充填された樹脂については、熱可塑性樹脂の場合は冷却固化させ、熱硬化性樹脂の場合は熱硬化反応を進めて、成形品を得る方式である。この方式では、ランナに残っている樹脂を次の成形サイクルで成形キャビティに充填し、成形品を成形するために使用するので樹脂材料の無駄がないという利点がある。
【0003】
ところで、この方式では、ランナにある樹脂を常に適切な流動状態に維持しておくことが重要である。従って、熱硬化性樹脂のように時間経過により熱硬化反応が進んで流動性が低下する樹脂には適さない。また、この方式では、成形キャビティとランナを区分けするゲートを堺にして、ランナ側では樹脂を流動状態に維持し、成形キャビティ側では樹脂を冷却して固体にすることが重要であり、そのためのゲート部の温度制御が難しい問題がある。温度制御の最適設定範囲が狭く、温度制御が適切でないと、成形キャビティに充填された樹脂の固化を待つ間に、ランナにある樹脂の流動性が低下して次の成形サイクルで射出をできなくなったり、逆に成形キャビティに充填した樹脂の固化が不足し、成形品の変形等が発生しやすくなる。
そこで、上記の断熱ランナ方式では、ゲートに針状のバルブを採用し、ランナと成形キャビティの間を分けることが多い。しかし、この針状のバルブは精密な部品で構成されるため、ガラス繊維で強化した樹脂等のように金型摩耗を起こしやすい樹脂材料の射出成形には適用できない。
【0004】
以上のように、断熱ランナ方式による樹脂成形品の製造法においては、成形条件の最適設定範囲が狭く安定しないこと、適用できる樹脂材料の種類に制限があること等の問題がある。また、断熱ランナ方式の成形金型は、その複雑な構造と精度の高い金型温度制御を必要とするため、金型製作費用が割高になることや、成形終了後もランナに樹脂が残るため、分解清掃時に樹脂を除去する手間がかかる等の保守・保全性に問題がある。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、廃棄物となる樹脂材料を削減する射出成形を行なう場合に、上記断熱ランナ方式の問題点を解決し、適用できる樹脂材料の種類と成形条件の最適設定範囲を広げ、金型製作費用を下げ金型保守・保全性も改善する。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る方法は、溶融樹脂を射出するノズルから、スプル・ランナを経て成形キャビティに溶融樹脂を充填し、樹脂の固化を待って金型を開き成形品を取出す樹脂成形品の製造において、ランナ空間を構成する金型部材の一部を可動コアとし、スプルと向き合う可動コアの対応位置は可動コアから動作が独立したスプルロックピンで構成する。成形キャビティに溶融樹脂を充填した後ランナ内の樹脂が流動性を保持している間に、ランナ空間を狭めるように前記可動コアを駆動させ、一方、前記スプルロックピンは動かさず元の位置のままとすることにより、当該可動コア箇所は樹脂が残留した凹部とする。
ランナ空間を狭めるように可動コアを駆動させると、ランナにあった樹脂は成形キャビティに押し込まれ、ランナに残る樹脂の厚みは薄くなる。成形後には不要で廃棄されるか再生処理をされることになるランナに残る樹脂を削減することができる。ランナには、厚みの薄い膜状の樹脂が残るが、これは、上記可動コア凹部に残留した樹脂と連続しており、成形後に金型を開いたとき、全て一側に残る。そして、可動コアを元の位置に戻す段階で、可動コア凹部に残留した樹脂はスプルロックピンで突き出され、スプル部及びランナ部樹脂が一緒に金型から脱落する。本発明に係る製造法は、成形キャビティに溶融状態の樹脂を充填した後も、ランナにある樹脂がしばらくの間は流動性を保持していることに着目している。可動コアの駆動は、成形キャビティに溶融樹脂を充填した後ランナ内の樹脂が流動性を保持している間に行なわれればよいから、断熱ランナ方式に必要であった精度の高い金型温度制御の必要がない。
【0007】
上記の製造法に用いる射出成形金型は、ランナ空間を構成する金型部材の一部を可動コアとし、ランナ空間の大きさを溶融樹脂射出時の状態から可逆的に狭めるための可動コア駆動手段を備えたものである。可動コアにヒータや超音波発振装置を備えこれらを作動させると、ランナにある樹脂の固化を遅らせることができるので、都合がよい。
【0008】
【発明の実施の形態】
本発明に係る射出成形による樹脂成形品の製造法は、射出成形機で樹脂材料を可塑化し、成形キャビティに溶融状態の樹脂を適量充填した後、ランナにある樹脂がしばらくの間は流動性を保持していることに着目している。成形キャビティに溶融状態の樹脂を充填した後、ランナにある樹脂が冷却固化又は熱硬化反応の進行により流動性を失う前に、強制的にランナ空間を狭めてランナ空間の樹脂を成形キャビティに押し込む。ランナ空間を構成する金型部材の一部を可動コアとし、可動コア駆動手段として成形機の成形品突き出し機構を利用したり、別途金型内に駆動装置を設けて可動コアを動かし、ランナ空間の体積を溶融樹脂射出時の状態から可逆的に減少させるのである。ランナには、厚みの薄い膜状の樹脂が残るだけであり、不要で廃棄物となる樹脂を削減することができる。
【0009】
射出成形する樹脂が熱硬化性の場合、ランナ内の樹脂の流動性は比較的良好でかつその流動性が長く維持されるので、可動コアを駆動することによりランナに残る樹脂の厚みを容易に薄くできる。一方、射出成形する樹脂が熱可塑性の場合、可動コアを駆動してランナに残っている樹脂を少なくしていくと、樹脂の熱が金型に奪われやすくなるため、樹脂の冷却固化が急激に進む。樹脂の冷却固化が起こってしまうと、それ以上ランナ空間を狭めることはできない。そこで、可動コアにヒータを具備し周囲の金型部材より温度を高くし、ランナに残っている樹脂が長い時間流動性を維持できるようにするとよい。これによってランナに残る樹脂を厚みの薄い膜状にまですることができる。ヒータの代わりに超音波発振機を可動コアに取り付け、ランナに残っている樹脂に超音波振動を加えることによっても、ランナに残っている樹脂の流動性を維持することが可能になる。
【0010】
【実施例】
本発明に係る射出成形金型の実施例を図1、図2に示す。図1は金型の側面断面図、図2は可動側金型の正面図である。
この金型は、1回の成形で8個の円筒状成形品を製造するためのものである。図2に示すように、8個の各成形キャビティ1に樹脂を分配し充填するために、はしご状のランナ2を設けてある。ランナ空間を構成するための金型部材の一部を、ランナ形状に合わせて加工された可動コア4とし、はめ込む。成形機の射出ノズル11からスプル3・ランナ2へとつながり、スプル3の直下は、可動コア4から独立した部材(スプルロックピン6)で構成する。可動コア4を可動コア板8に固定し、可動コア板8を成形機の突き出し装置7と連動させる。突き出し装置7の作動により、まず、図1の右方向へ可動コア4を3.8mm移動させることができ、ランナ2の空間の厚みは4mmから0.2mmに狭まる。この動作は、成形キャビティ1に溶融樹脂を充填した後ランナ2内の樹脂が流動性を保持している間に実施される。図3は図2のA−A’線に沿うランナ部の金型断面図であり、可動コア4の移動前(樹脂射出中)と移動後(樹脂射出後)の状態を示している。樹脂射出後には、ランナ2の空間が狭くなっていることを表している。
【0011】
また、可動コア板8には、可動コア板8から移動量3.8mmの遅れで作動する突き出し板9が連動しており、成形機の突き出し装置7を図1の右方向へ3.8mmを越えて駆動したとき、可動コア板8に押されて突き出し板9が図1の右方向へ移動し成形品突き出しピン5が作動するよう設定している。
【0012】
本発明に係る実施例の射出成形の手順を、以下順を追って説明する。
手順1(図4)
成形機に取り付けた金型を締める。この状態では、可動コア4は図最左位置にあり、ランナ2の厚みは4mmである。既に、図1において説明した状態である。
【0013】
手順2(図5)
成形機の射出ノズル11から溶融状態の樹脂材料を適切量射出し、スプル3・ランナ2を経て成形キャビティ1に充填する。
【0014】
手順3(図6)
手順2の後、ランナ2内の樹脂が溶融状態にある間に、突き出し装置7を駆動させることで、可動コア板8を介して可動コア4を図右側方向へ3.8mm移動せしめ、ランナ2の空間を狭めてそこにあった樹脂を成形キャビティ1に押し込む。ランナ2の厚みは0.2mmとなる。スプルロックピン6は動かず元の位置にあるので、可動コア4が移動してできた小さな凹部(スプルロックピン6の先端がその底部となっている)には樹脂が残ったままとなる。この状態で成形キャビティ1内の樹脂が固化するまで射出圧力を保持する。
【0015】
手順4(図7)
金型を開く。射出した樹脂は、すべて成形キャビティ1側の金型に残っている。
【0016】
手順5(図8)
突き出し装置7をさらに図右方向へ駆動させることで、突き出し板9は可動コア板8に押される。突き出し板9を介して突き出しピン5を図右側方向へ移動せしめ、成形品12を成形キャビティ1から突き出して取出す。このとき、可動コア4とスプルロックピン6は、突き出しピン5と同様に図右側方向へ移動する。スプルロックピン6は、突き出し板9を介して移動せしめられる。
【0017】
手順6(図9)
突き出し装置7をこれまでとは反対方向(図左方向)へ駆動させることで、可動コア4と突き出しピン5及びスプルロックピン6を元の図最左位置に戻す。まず、可動コア4だけが図左方向へ3.8mm移動するので、手順3において小さな凹部に残った樹脂はスプルロックピン6により突き出されることになる。これによって、スプル及びランナ部樹脂13は、金型から脱落する(ランナ部樹脂は厚み0.2mm)。可動コア4が図左方向へ3.8mmを越えて移動すると、突き出し板9は可動コア板8に押され、突き出しピン5とスプルロックピン6が図左方向へ移動する。
このようにして、1回の成形が完了する。
【0018】
次に、可動コア4とスプルロックピン6の協働関係の詳細を図10により説明する。
上記で説明した手順2においては、可動コア4とスプル3の直下に位置するスプルロックピン6の上面は同一面にあり、ランナ2の空間を構成している。可動コア7のスプルロックピン6との摺動面には、上面からわずかに下がった位置に小さな凹陥部10を形成しておく。
手順3において、可動コア4を図右側方向へ3.8mm移動させたとき、スプルロックピン6は動かず元の位置にあるので、可動コア4が移動してできた小さな凹部(スプルロックピン6の先端がその底部となっている)には樹脂が残ったままとなる。このとき、凹陥部10に樹脂が充填され、わずかなアンダーカット部が形成される。
手順4において金型を開くとき、スプル及びランナ部樹脂13は上記アンダーカット部に保持され、成形キャビティ1側の金型に残る。
手順6において、まず、可動コア4だけが図左方向へ3.8mm移動するので、スプル及びランナ部樹脂13はスプルロックピン6により突き出されることになる(無理抜きされる)。これによって、スプル及びランナ部樹脂13は、金型から脱落する。
【0019】
表1に、上記実施例と従来例(可動コア4を移動させない場合)の必要樹脂重量の比較を示す。本発明に係る実施例では、スプル及びランナ部樹脂量が15.7gから1.2gに削減され、その削減率は92%である。
【0020】
【表1】

Figure 0003629977
【0021】
図11に、可動コア4にヒータ14を内蔵した実施例を示す。この実施例は、可動コア4を移動させてランナ2の厚みを薄くする過程で、ランナ2にある樹脂の肉厚が薄くなるに従い金型に熱を奪われ流動性を失い易いガラス繊維充填熱可塑性樹脂等に適用する。成形手順は上述した手順と同じである。
【0022】
【発明の効果】
上述のように、本発明に係る製造法は、ランナ空間に残る樹脂を大幅に削減でき、省資源及び廃棄物低減に大きく貢献できるものである。その方法は、ランナ空間に残っている樹脂が溶融状態にある間に可動コアを移動させるものであるから、成形条件の最適設定範囲を広げることが可能である。断熱ランナ方式の如き複雑な構造の成形金型も必要としないから、適用できる樹脂材料の種類と金型製作費用を下げ金型保守・保全性も改善することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る射出成形金型の側面断面図である。
【図2】本発明の実施例に係る射出成形金型の可動側金型正面図である。
【図3】図2のA−A’線に沿うランナ部の金型断面図であり、可動コア4の移動前(樹脂射出中)と移動後(樹脂射出後)の状態を示す図である。
【図4】本発明の実施例に係る射出成形の手順を示し、手順1における射出成形金型の側面断面図である。
【図5】同手順2における射出成形金型の側面断面図である。
【図6】同手順3における射出成形金型の側面断面図である。
【図7】同手順4における射出成形金型の側面断面図である。
【図8】同手順5における射出成形金型の側面断面図である。
【図9】同手順6における射出成形金型の側面断面図である。
【図10】本発明の実施例に係る射出成形の手順において、手順2,3,4,6における可動コア4とスプルロックピン6の協働関係の詳細を示す断面図である。
【図11】本発明の他の実施例に係る射出成形金型の側面断面図である。
【符号の説明】
1は成形キャビティ
2はランナ
3はスプル
4は可動コア
5は突き出しピン
6はスプルーロックピン
7は成形機の突き出し装置
8は可動コア板
9は突き出し板
10は凹陥部
11は成形機の射出ノズル
12は成形品
13はスプル及びランナ部樹脂
14はヒータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a resin molded product by injection molding capable of reducing unnecessary resin other than the molded product, and an injection mold.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in the manufacture of a molded product by resin injection molding, there is a heat insulating runner method as a means for reducing resin material that becomes waste. In this system, a heat insulating material is interposed between a molding cavity of a mold and a runner that is a passage for a molten resin filling the molding cavity. A mold having a structure in which a molding cavity and a runner are separated by a heat insulating material is used. On the one hand, the mold temperature is controlled so that the resin staying in the runner always maintains fluidity, and on the other hand, the mold temperature is controlled so that the resin filled in the molding cavity is properly cooled and solidified. To do. While the resin in the runner is always kept in a fluid state, the resin filled in the molding cavity is cooled and solidified in the case of a thermoplastic resin, and the thermosetting reaction is advanced in the case of a thermosetting resin. It is a method to obtain. This method has an advantage that the resin material is not wasted because the resin remaining in the runner is filled in the molding cavity in the next molding cycle and used to mold the molded product.
[0003]
By the way, in this method, it is important to always maintain the resin in the runner in an appropriate flow state. Therefore, it is not suitable for a resin such as a thermosetting resin in which the thermosetting reaction proceeds with time and the fluidity is lowered. Also, in this system, it is important to keep the gate that separates the molding cavity and the runner, maintain the resin in a fluid state on the runner side, and cool the resin to the solid on the molding cavity side. There is a problem that it is difficult to control the temperature of the gate. If the optimal temperature control setting range is narrow and the temperature control is not appropriate, the fluidity of the resin in the runner will decrease while waiting for the resin filled in the molding cavity to solidify, making it impossible to inject in the next molding cycle. Conversely, the resin filled in the molding cavity is insufficiently solidified, and deformation of the molded product is likely to occur.
Therefore, in the above-described heat insulating runner method, a needle-like valve is often used for the gate, and the runner and the molding cavity are often separated. However, since this needle-shaped valve is composed of precision parts, it cannot be applied to injection molding of a resin material that easily causes mold wear, such as a resin reinforced with glass fiber.
[0004]
As described above, in the method for producing a resin molded product by the heat insulating runner method, there are problems that the optimum setting range of the molding conditions is narrow and unstable, and the types of resin materials that can be applied are limited. Insulating runner molds require complex structures and precise mold temperature control, which increases the cost of mold production and leaves resin in the runner after molding. There is a problem in maintenance and maintainability such as taking time and effort to remove the resin during disassembly and cleaning.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention solves the problems of the heat insulating runner method when performing injection molding to reduce the resin material that becomes waste, expands the optimum setting range of the types of resin material and molding conditions that can be applied, Lower mold production costs and improve mold maintenance and maintainability.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method according to the present invention is to fill a molding cavity with a molten resin through a sprue and runner from a nozzle for injecting the molten resin, wait for the resin to solidify, open the mold, and In manufacturing the resin molded product to be taken out, a part of the mold member constituting the runner space is made a movable core, and the corresponding position of the movable core facing the sprue is constituted by a sprue lock pin whose operation is independent from the movable core. While the resin in the runner retains fluidity after filling the molding cavity with molten resin, the movable core is driven to narrow the runner space , while the sprue lock pin does not move and remains in its original position. by left, the movable core portions are you with recesses resin remained.
When the movable core is driven so as to narrow the runner space, the resin in the runner is pushed into the molding cavity, and the thickness of the resin remaining in the runner is reduced. It is possible to reduce the resin remaining in the runner that is unnecessary and is discarded or regenerated after the molding. A thin film-like resin remains on the runner, which is continuous with the resin remaining in the movable core recess, and all remains on one side when the mold is opened after molding. Then, at the stage of returning the movable core to the original position, the resin remaining in the concave portion of the movable core is protruded by the sprue lock pin, and the sprue part and the runner part resin are dropped from the mold together. The manufacturing method according to the present invention focuses on the fact that the resin in the runner retains fluidity for a while even after the molding cavity is filled with the molten resin. The movable core only needs to be driven while the resin in the runner retains fluidity after filling the mold cavity with molten resin, so the mold temperature control with high accuracy required for the heat insulating runner method is required. There is no need for.
[0007]
The injection mold used in the above manufacturing method uses a movable core as a part of a mold member constituting the runner space, and reversibly narrows the size of the runner space from the state at the time of molten resin injection. Means are provided. If the movable core is provided with a heater and an ultrasonic oscillation device and these are operated, it is convenient because the solidification of the resin in the runner can be delayed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the method of manufacturing a resin molded product by injection molding according to the present invention, a resin material is plasticized by an injection molding machine, and after filling an appropriate amount of a molten resin into a molding cavity, the resin in the runner has flowability for a while. Focus on holding. After filling the molding cavity with molten resin, before the resin in the runner loses its fluidity due to cooling solidification or thermosetting reaction, the runner space is forcibly narrowed and the resin in the runner space is pushed into the molding cavity. . A part of the mold member that constitutes the runner space is used as a movable core, and as a movable core drive means, a molding product ejecting mechanism of a molding machine is used, or a drive device is separately provided in the mold to move the movable core. Is reversibly reduced from the state at the time of injection of the molten resin. Only a thin film-like resin remains in the runner, and unnecessary and waste resin can be reduced.
[0009]
When the resin to be injection-molded is thermosetting, the fluidity of the resin in the runner is relatively good and the fluidity is maintained for a long time. By driving the movable core, the thickness of the resin remaining in the runner can be easily Can be thin. On the other hand, when the resin to be injection-molded is thermoplastic, if the resin remaining in the runner is reduced by driving the movable core, the heat of the resin is easily taken away by the mold, and the resin is rapidly cooled and solidified. Proceed to Once the resin has cooled and solidified, the runner space cannot be further narrowed. Therefore, it is preferable that the movable core is provided with a heater so that the temperature is higher than that of the surrounding mold members so that the resin remaining in the runner can maintain fluidity for a long time. As a result, the resin remaining in the runner can be made into a thin film. The fluidity of the resin remaining in the runner can also be maintained by attaching an ultrasonic oscillator to the movable core instead of the heater and applying ultrasonic vibration to the resin remaining in the runner.
[0010]
【Example】
An embodiment of an injection mold according to the present invention is shown in FIGS. FIG. 1 is a side sectional view of the mold, and FIG. 2 is a front view of the movable mold.
This mold is for producing eight cylindrical molded products by one molding. As shown in FIG. 2, a ladder-like runner 2 is provided to distribute and fill the resin into each of the eight molding cavities 1. A part of the mold member for constituting the runner space is set as the movable core 4 processed according to the shape of the runner. The injection nozzle 11 of the molding machine is connected to the sprue 3 and the runner 2, and the part directly below the sprue 3 is constituted by a member (sprue lock pin 6) independent of the movable core 4. The movable core 4 is fixed to the movable core plate 8, and the movable core plate 8 is interlocked with the extrusion device 7 of the molding machine. By the operation of the ejecting device 7, first, the movable core 4 can be moved 3.8 mm in the right direction in FIG. 1, and the thickness of the space of the runner 2 is reduced from 4 mm to 0.2 mm. This operation is performed while the resin in the runner 2 retains fluidity after the molding cavity 1 is filled with molten resin. FIG. 3 is a mold cross-sectional view of the runner along the line AA ′ in FIG. 2, and shows a state before the movable core 4 is moved (during resin injection) and after the movement (after resin injection). This shows that the space of the runner 2 is narrowed after the resin injection.
[0011]
Further, the movable core plate 8 is interlocked with a protruding plate 9 that operates with a delay of 3.8 mm from the movable core plate 8, and the protruding device 7 of the molding machine is moved 3.8 mm to the right in FIG. 1. When driven beyond, the movable core plate 8 is pushed to move the protruding plate 9 to the right in FIG. 1 so that the molded product protruding pin 5 is activated.
[0012]
The procedure of the injection molding of the embodiment according to the present invention will be described below in order.
Procedure 1 (Fig. 4)
Tighten the mold attached to the molding machine. In this state, the movable core 4 is at the leftmost position in the figure, and the runner 2 has a thickness of 4 mm. The state has already been described with reference to FIG.
[0013]
Procedure 2 (Fig. 5)
An appropriate amount of molten resin material is injected from the injection nozzle 11 of the molding machine, and filled into the molding cavity 1 through the sprue 3 and the runner 2.
[0014]
Step 3 (Figure 6)
After the procedure 2, while the resin in the runner 2 is in a molten state, the ejector 7 is driven to move the movable core 4 through the movable core plate 8 to the right side of the figure by 3.8 mm. Narrow the space and push the resin there into the molding cavity 1. The runner 2 has a thickness of 0.2 mm. Since the sprue lock pin 6 does not move and is in its original position, the resin remains in a small recess formed by the movement of the movable core 4 (the tip of the sprue lock pin 6 is the bottom). In this state, the injection pressure is maintained until the resin in the molding cavity 1 is solidified.
[0015]
Step 4 (Figure 7)
Open the mold. All of the injected resin remains in the mold on the molding cavity 1 side.
[0016]
Step 5 (Figure 8)
The ejecting plate 9 is pushed by the movable core plate 8 by further driving the ejecting device 7 to the right in the figure. The protruding pin 5 is moved in the right direction in the figure through the protruding plate 9, and the molded product 12 is protruded from the molding cavity 1 and taken out. At this time, the movable core 4 and the sprue lock pin 6 move in the right direction of the figure in the same manner as the protruding pin 5. The sprue lock pin 6 is moved through the protruding plate 9.
[0017]
Step 6 (Figure 9)
By driving the ejection device 7 in the opposite direction (left direction in the figure), the movable core 4, the ejection pin 5 and the sprue lock pin 6 are returned to the original leftmost position in the figure. First, since only the movable core 4 moves 3.8 mm in the left direction in the figure, the resin remaining in the small concave portion in the procedure 3 is protruded by the sprue lock pin 6. As a result, the sprue and the runner resin 13 fall off from the mold (the runner resin has a thickness of 0.2 mm). When the movable core 4 moves beyond 3.8 mm in the left direction in the figure, the protruding plate 9 is pushed by the movable core plate 8, and the protruding pin 5 and the sprue lock pin 6 move in the left direction in the figure.
In this way, one molding is completed.
[0018]
Next, details of the cooperative relationship between the movable core 4 and the sprue lock pin 6 will be described with reference to FIG.
In the procedure 2 described above, the upper surface of the sprue lock pin 6 located immediately below the movable core 4 and the sprue 3 is on the same plane, and constitutes the space of the runner 2. On the sliding surface of the movable core 7 with the sprue lock pin 6, a small recess 10 is formed at a position slightly lowered from the upper surface.
In step 3, when the movable core 4 is moved 3.8 mm in the right direction in the figure, the sprue lock pin 6 does not move and is in its original position. Therefore, a small recess formed by the movement of the movable core 4 (the sprue lock pin 6 The resin remains on the bottom of the top). At this time, the recessed portion 10 is filled with resin, and a slight undercut portion is formed.
When the mold is opened in step 4, the sprue and runner resin 13 are held in the undercut portion and remain in the mold on the molding cavity 1 side.
In the procedure 6, first, only the movable core 4 moves 3.8 mm in the left direction in the figure, so that the sprue and runner resin 13 are protruded by the sprue lock pin 6 (forcibly removed). As a result, the sprue and the runner resin 13 fall off from the mold.
[0019]
Table 1 shows a comparison of the required resin weight between the above-described example and the conventional example (when the movable core 4 is not moved). In the embodiment according to the present invention, the amount of sprue and runner resin is reduced from 15.7 g to 1.2 g, and the reduction rate is 92%.
[0020]
[Table 1]
Figure 0003629977
[0021]
FIG. 11 shows an embodiment in which the heater 14 is built in the movable core 4. In this embodiment, in the process of moving the movable core 4 to reduce the thickness of the runner 2, the glass fiber filling heat that easily loses fluidity due to heat being taken away by the mold as the resin thickness in the runner 2 becomes thinner. Applies to plastic resins. The molding procedure is the same as that described above.
[0022]
【The invention's effect】
As described above, the production method according to the present invention can greatly reduce the resin remaining in the runner space, and can greatly contribute to resource saving and waste reduction. Since the method moves the movable core while the resin remaining in the runner space is in a molten state, it is possible to widen the optimum setting range of molding conditions. Since a molding die having a complicated structure such as a heat-insulating runner method is not required, the type of applicable resin material and die manufacturing cost can be reduced, and die maintenance and maintainability can be improved.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an injection mold according to an embodiment of the present invention.
FIG. 2 is a front view of a movable mold of an injection mold according to an embodiment of the present invention.
3 is a mold cross-sectional view of a runner portion along the line AA ′ in FIG. 2, and shows a state before the movable core 4 is moved (during resin injection) and after the movement (after resin injection). FIG. .
FIG. 4 is a side cross-sectional view of an injection mold in Procedure 1 showing an injection molding procedure according to an embodiment of the present invention.
FIG. 5 is a side cross-sectional view of an injection mold in the same procedure 2;
6 is a side cross-sectional view of the injection mold in the same procedure 3. FIG.
7 is a side sectional view of an injection mold in the same procedure 4. FIG.
FIG. 8 is a side cross-sectional view of the injection mold in the same procedure 5.
9 is a side cross-sectional view of the injection mold in the same procedure 6. FIG.
FIG. 10 is a cross-sectional view showing details of the cooperative relationship between the movable core 4 and the sprue lock pin 6 in steps 2, 3, 4 and 6 in the procedure of injection molding according to the embodiment of the present invention.
FIG. 11 is a side sectional view of an injection mold according to another embodiment of the present invention.
[Explanation of symbols]
1 is a molding cavity 2 is a runner 3 is a sprue 4 is a movable core 5 is an ejection pin 6 is a sprue lock pin 7 is an ejection device 8 of a molding machine 8 is a movable core plate 9 is an ejection plate 10 is a recess 11 is an injection nozzle of a molding machine 12 is a molded product 13 is sprue and runner resin 14 is a heater

Claims (4)

溶融樹脂を射出するノズルから、スプル・ランナを経て成形キャビティに溶融樹脂を充填し、樹脂の固化を待って金型を開き成形品を取出す樹脂成形品の製造において、
ランナ空間を構成する金型部材の一部を可動コアとし、スプルと向き合う可動コアの対応位置は可動コアから動作が独立したスプルロックピンで構成し、成形キャビティに溶融樹脂を充填した後ランナ内の樹脂が流動性を保持している間に、ランナ空間を狭めるように前記可動コアを駆動させ、一方、前記スプルロックピンは動かさず元の位置のままとすることにより、当該可動コア箇所は樹脂が残留した凹部とすることを特徴とする射出成形による樹脂成形品の製造法。
In the production of resin molded products, from the nozzle that injects the molten resin, through the sprue and runner, the molten resin is filled into the molding cavity, and after the resin is solidified, the mold is opened and the molded product is taken out.
A part of the mold member that constitutes the runner space is a movable core, and the corresponding position of the movable core that faces the sprue is constituted by a sprue lock pin that operates independently from the movable core, and after filling the molding cavity with molten resin, The movable core is driven so as to narrow the runner space while the resin of the resin is kept fluid , while the sprue lock pin is not moved and remains in its original position, preparation of the resin molded article by injection molding, wherein the recess and to Rukoto resin remained.
ランナ空間を構成する金型部材の一部を可動コアとし、スプルと向き合う可動コアの対応位置は可動コアから独立したスプルロックピンで構成し、ランナ空間の大きさを溶融樹脂射出時の状態から可逆的に狭めるための可動コア駆動手段と前記可動コア駆動時にスプルロックピンを元の位置にとどめるスプルロック保持構造を備えた射出成形金型。A part of the mold member that constitutes the runner space is a movable core, and the corresponding position of the movable core facing the sprue is configured by a sprue lock pin independent of the movable core, and the size of the runner space is determined from the state at the time of molten resin injection An injection mold comprising a movable core driving means for reversibly narrowing and a sprue lock holding structure that keeps a sprue lock pin in its original position when the movable core is driven . 可動コアにヒータを具備した請求項2記載の射出成形金型。The injection mold according to claim 2, wherein the movable core is provided with a heater. 可動コアに超音波発振装置を具備した請求項2記載の射出成形金型。The injection mold according to claim 2, wherein the movable core is provided with an ultrasonic oscillator.
JP28933798A 1998-10-12 1998-10-12 Manufacturing method of resin molded product by injection molding and injection mold Expired - Lifetime JP3629977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28933798A JP3629977B2 (en) 1998-10-12 1998-10-12 Manufacturing method of resin molded product by injection molding and injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28933798A JP3629977B2 (en) 1998-10-12 1998-10-12 Manufacturing method of resin molded product by injection molding and injection mold

Publications (2)

Publication Number Publication Date
JP2000117779A JP2000117779A (en) 2000-04-25
JP3629977B2 true JP3629977B2 (en) 2005-03-16

Family

ID=17741900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28933798A Expired - Lifetime JP3629977B2 (en) 1998-10-12 1998-10-12 Manufacturing method of resin molded product by injection molding and injection mold

Country Status (1)

Country Link
JP (1) JP3629977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227811A (en) * 2019-07-17 2019-09-13 爱柯迪股份有限公司 Aluminium diecasting process equipment and method with the adjustable auxiliary flow of thickness

Also Published As

Publication number Publication date
JP2000117779A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
CN102328404B (en) Ejection forming method and injection machine
US20100047500A1 (en) Injection molding process, resin molded product and mold
JP2002316347A (en) Mold assembly and injection molding method
JP4081201B2 (en) Tandem injection molding apparatus and method of manufacturing molded product using the same
JP3629977B2 (en) Manufacturing method of resin molded product by injection molding and injection mold
JPH0768601A (en) Runnerless mold
WO2012172669A1 (en) Molding device for injection molding and injection molding machine
JP6845683B2 (en) Injection molding machine and injection molding method
JP2000301583A (en) Method for injection-compression molding of member of complicated shape precisely, and injection/compression molding device for practicing the method
JPH10175233A (en) Injection molding die and injection molding method
JP3295714B2 (en) Insert molding method
JPH11333898A (en) Mold for injection molding
JP5014523B1 (en) Injection mold apparatus and injection molding machine
US5851254A (en) Method for molding vitreous optical elements
JP3934807B2 (en) Injection molding method and apparatus
JP4600980B2 (en) Injection molding machine and injection molding method
JP4576504B2 (en) Injection molding machine and injection molding method
JP7141609B2 (en) injection mold
US20220126491A1 (en) Method for manufacturing an optical lens
US20210069952A1 (en) Method for producing an optical lens and optical lens produced by said method
WO2011091592A1 (en) Mini-type built-in high-pressure reciprocating oil cylinder
JP2589397B2 (en) Injection molding apparatus and injection molding method
JPS60166416A (en) Method and apparatus for molding molded shape with casting hole
JPH0752205A (en) Injection mold
JP3785000B2 (en) Thermosetting resin injection molding method and mold unit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term