JP3629894B2 - Electrostatic air purifier - Google Patents

Electrostatic air purifier Download PDF

Info

Publication number
JP3629894B2
JP3629894B2 JP15749897A JP15749897A JP3629894B2 JP 3629894 B2 JP3629894 B2 JP 3629894B2 JP 15749897 A JP15749897 A JP 15749897A JP 15749897 A JP15749897 A JP 15749897A JP 3629894 B2 JP3629894 B2 JP 3629894B2
Authority
JP
Japan
Prior art keywords
electrode
characteristic impedance
flat plate
dust collecting
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15749897A
Other languages
Japanese (ja)
Other versions
JPH10328576A (en
Inventor
章男 赤坂
邦之 福沢
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP15749897A priority Critical patent/JP3629894B2/en
Publication of JPH10328576A publication Critical patent/JPH10328576A/en
Application granted granted Critical
Publication of JP3629894B2 publication Critical patent/JP3629894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電型空気清浄器に係り、特に高電圧を印加する電極を備えた静電型空気清浄器に関する。
【0002】
【従来の技術】
静電型空気清浄器は、空気中の塵をコロナ放電で発生したイオンで帯電させる帯電部と帯電した塵を直流高電圧を印加した平行平板で補集する集塵部とからなる二段式電気集塵器の構造が多く使用されている。また、火力発電所や産業用に使われる電気集塵装置のように帯電部と集塵部を一つにした一段式電気集塵器が使用されることもある。どちらのタイプの静電型空気清浄器の場合も、多くの場合、ケーシングは空気の吸込み側または吹出し側、またはその両方が開放になっている。
【0003】
【発明が解決しようとする課題】
電気集塵器は、印加電圧が高いほど除塵性能が高くなる。しかし、高くし過ぎると電極間でスパーク放電が発生するのでスパーク電圧よりわずかに低い印加電圧に設定して運転している。それでも電極に捕集した塵の付着状態や放電極の振動でスパーク放電を発生することがある。また、静電型空気清浄器の場合、蛾や蚊などの昆虫が進入してスパーク放電が発生することがある。このようなスパーク放電は急激な電流変化を伴うので強力な電磁波がノイズとなって放射される。前述の産業用や火力発電所用の電気集塵器は全体が金属のケーシングで囲われているので、スパーク放電で発生した電磁波ノイズが外部に漏れることはなかった。
【0004】
一方、静電型空気清浄器は開口部があるので、そこから電磁波ノイズが外部に放射される。静電型空気清浄器の近辺に電子機器が置かれていると、電磁波ノイズにより動作に障害を引き起すおそれがある。
したがって、従来の静電型空気清浄器は、スパーク電圧よりもずっと低い電圧を印加し、低い除塵性能で運転するか、以下のようないくつかの放電電流の制御手段が考えられていた。
すなわち特開平1−194954号公報に開示されているものはアーク放電検出回路を有し、電極間で一定時間アーク放電が継続したとき高圧発生回路を停止させるように構成されている。この方法は離散的に発生するアーク放電に対しては異常状態と判断せず継続的なアーク放電に対してだけ高圧発生回路を制御するものである。しかしながら、静電型空気清浄器の周辺に置かれた電子機器などは、単発的な放射電磁波に対してでも影響されることがあり、対策としては不十分である。
【0005】
これに対し、実公昭54−20692号公報、特開平5−31398号公報及び特開平7−132249号公報のように高圧電源と電極の間に抵抗体やインダクタンス等の電流制限用素子を介在させて、スパーク発生時の放電電流を抑える方法が開示されている。それらの例を図7、図8及び図9に示す。
図7の抵抗器102、図8の抵抗器114及び図9のインダクタンス124は電流制限用素子であり、スパーク放電が発生したとき放電電流を抑えるために挿入されたものである。これらの電流制限素子により放電電流を抑制することで、スパーク発生時の放射電磁波強度や放電の発生音を小さくしようとするものである。
しかし、上記の対策を施しても、放射電磁波強度を測定したところ、明確な抑制効果を認めることが出来なかった。確かに高圧電源から電極に流れる電流は、抑えられるが、放射電磁波の強度はほとんど抑制されなかった。
【0006】
次にこの理由を考えてみる。上記特開平7−132249号公報で記述されているように高圧が印加される電極(図7の103及び105、図8の111、図9の120及び121)と、接地側の電極(図7の101、図8の112、図9の122)の構成は空気コンデンサの役割を果し、運転時両電極間に高電圧が印加されるため、電荷が蓄積されている。特開平7−132249号公報では、スパーク放電が生じると、電極間に蓄えられた電荷が瞬時に放出される。このときの電荷の放出がスパーク電流として現れるので、この電荷の放出を抑制する必要があるとしている。そして、その電荷の放出を止めようとする対策が図8の電流制限用素子のインダクタンス124である。
電極間に蓄えられていた電荷の急変な流れがスパーク放電電流であるという考え方には同意できる。そして、電流制限用素子の効果で電極から高圧電源へ流れる電流、あるいは高圧電源から電極へ流れる電流は抑えられる。このことは、前記3例に共通して言えることであり、実験でも確認された。
【0007】
しかし、空気コンデンサを構成している電極に蓄えられた電荷は、スパーク放電のときに電極の外部に放出されるのではなく、スパーク放電路を通して電極内で中和される。このときスパーク放電路を流れる電流がスパーク放電電流である。模型で表すと図2のようになり、空気コンデンサがスパーク点を通して絶縁破壊したのと等価である。したがって、スパーク放電電流は電極外部に取付けた電流検出器では捉えることが出来ず、また外部に設けた電流制限用素子では抑制することが出来ない。ただ、高圧電源から電極に流れ込む電流を制限するだけである。したがって、スパーク放電電流を抑制できないため、放射される電磁波の強度も抑制できない。
【0008】
図3は従来の静電型空気清浄器を使って、放電線電極と平板電極からなる帯電部でスパーク放電を発生させたとき、電極間電圧と放射された電磁波の電界強度の時間変化を示したものである。
電極間電圧はスパーク発生後、減衰振動しながら電圧がゼロに落ちてゆくが、その波形を詳しく観ると比較的周期の長い減衰振動の上に周期の短い振動が重畳している。周期の長い振動は帯電部の全放電線電極と平板電極の間の静電容量と、電極を構成する電流路及びスパーク放電路の持つインダクタンスによる振動の成分である。一方、周期の短い振動はスパークを発生した放電線電極だけが平板電極との間で持つ静電容量とインダクタンスによる振動であることが判った。
【0009】
電磁波電界強度は、短い周期に対応する電磁波が強く放射されていることが判る。周期の長い振動に対する電磁波の波長に対して静電型空気清浄器の電極系の寸法は非常に短く、電極をアンテナと考えたとき共振周波数が大きくずれていて放射効率が低くなっている。
それに対し、周期の短い振動に対する電磁波の波長は短く、電極の共振周波数に近付き、放射効率が高く、強い電磁波が放射されると考えられる。
以上の実験結果から、放射電磁波ノイズを抑制するためには、電極全体を一纒めにしてスパーク放電電流を抑制しようとする手段では効果がないことが判る。本発明の目的は高い運転電圧で高い除塵性能をもち、スパーク放電が発生しても、放射される電磁波ノイズが弱い静電型空気清浄器を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、請求項1の発明に係る静電型空気清浄器は、放電線とそれに対向する平板からなる電極を配列した電極系を備え、電極系の静電容量と自己誘導係数で決る特性インピーダンスに対して、各々の電極が単位長さ当り、特性インピーダンスのπ倍以上の分布した抵抗成分を持って電極自身の抵抗によりスパーク放電電流を抑制することを特徴とする。
請求項2の発明は、請求項1において、各々の電極の全抵抗が特性インピーダンスの2π倍以上かつ、106Ω以下であることを特徴とする。
請求項3の発明は、放電線とそれに対向する平板からなる帯電部の電極系及び高電圧印加平板と集塵板からなる集塵部の電極系により構成される二段式の静電型空気清浄器において、帯電部の電極系の静電容量と自己誘導係数で決る特性インピーダンスに対して、各々の電極が単位長さ当り、特性インピーダンスのπ倍以上の分布した抵抗成分を持つと共に、集塵部の電極の平板抵抗材で成形され、単位長さ当り、各々の対向する平板間の静電容量と自己誘導係数で決まる特性インスピーダンスのπ倍以上の抵抗成分を持つことを特徴とする。
請求項4の発明は、放電線とそれに対向する平板からなる帯電部の電極系及び高電圧印加平板と集塵板からなる集塵部の電極系により構成される二段式の静電型空気清浄器において、帯電部の電極系の各々の電極の全抵抗が特性インピーダンスの2π倍以上かつ、106Ω以下であると共に、集塵部の各々の電極の平板抵抗材で成形され、単位長さ当り、各々の対向する平板間の静電容量と自己誘導係数で決まる特性インスピーダンスのπ倍以上の抵抗成分を持つことを特徴とする。
【0011】
【発明の作用・効果】
本発明の構成によれば、各々の電極高い電気抵抗を持ことにより、スパーク放電が発生したとき放電電流を減少できる為、放射される電磁波ノイズの強さを大きく抑制でき、周辺に置かれた電子機器などへの電磁波による障害をなくし、しかも放電発生音を小さくできる。また高い電圧の運転が可能となる為、除塵性能の向上が図られる。
【0012】
【発明の実施の形態】
本発明の実施形態を図面を参照しながら説明する。図1は本発明の一実施例を示す電極の構造図である。外観形状としては従来の静電型空気清浄器と大きく異なるところはない。
本例は二段式電気集塵器であり、帯電部10と集塵部20からなっている。帯電部10は高電圧を印加してコロナ放電を生じさせる放電線11と接地平板12から構成されている。集塵部20は帯電した塵を捕集する集塵板22と集塵板22に向って帯電した塵が電気力が働くように電界を作る高電圧印加平板21から構成されている。
【0013】
帯電部の電極を構成する放電線11と接地平板12、および集塵部の電極を構成する高電圧印加平板21と集塵板22にそれぞれ抵抗材料を用いる。電極に抵抗成分を持たせる方法としてはすべての電極に抵抗成分を持たせる構造や各々の電極の一方の電極部材、つまり帯電部の放電線または接地平板および集塵部の高電圧印加平板または集塵板に抵抗成分を持たせる構造にする。
まず帯電部10について述べると、放電線11とそれをはさむ2枚の平板12で構成される電極を伝送路とみた場合の特性インピーダンス、すなわち、図1の縦方向単位長さ当りの放電線11と平板12間の静電容量をC、インダクタンスをLとすると、(L/C)0.5の値は、およそ100〜300Ωである。これは、平板12の間隔や放電線11の太さなど電極構造によって変る。
【0014】
ここで各々の放電線と平板からなる伝送路が抵抗成分を持つとスパーク放電が発生したときのスパーク放電電流が抑制される。図4は横軸に伝送路単位長さ当りの抵抗Rの特性インピーダンス(L/C)0.5に対する比をとり、スパーク放電電流の大きさを示したものである。抑制効果は抵抗Rが高いほど大きい。また周波数によっても変化するが、静電型空気清浄器がスパーク放電を発生したときに生じる振動は、最低次の伝送路の共振周波数に対応するものが圧倒的に多く二次以上の共振周波数に対応する振動はほとんど観測されないので図4は最低次の共振周波数に対して示した。
【0015】
抵抗Rが特性インスピーダンスのπ(円周率)倍以上で、スパーク放電電流の抑制効果が顕著になり、電極が導体で作製されている場合(R≒O)の1/2以下になる。
さらに、伝送路の過渡現象において、伝送路の長さ(放電線の長さにほぼ等しい)をl(エル)とすると単位長さ当りの抵抗Rが2π(L/C)0.5/l以上になると、伝送路に流れる電流は振動成分を持たない減衰波形となる。したがって、図3で現れた短い周期の振動成分は消滅する。
R*lは放電線11とそれを挟む接地平板12を伝送路とみたときの一伝送路当りの全抵抗であり、これが特性インピーダンス(L/C)0.5の2π倍以上で振動を抑えることが出来る。
【0016】
スパーク放電電流は抵抗が高いほど抑制できるが高すぎると正常運転時の放電線や接地平板に流れる電流による電圧降下が無視できなくなる。通常、放電線一本当りのコロナ放電電流は大きなものでも1mA程度であるから一伝送路当りの抵抗R*lが10Ω以下であれば電圧降下は1000V程度以下となる。10000V以上の電圧で運転する静電型空気清浄器では、電源電圧に電圧降下分の余裕をとることは容易である。
伝送路としての抵抗を持たせる方法は、放電線を抵抗器用金属線や熱電対用の合金線を使用できる。また平板をカーボンファイバー強化プラスチック、炭素繊維と高分子樹脂またはガラス繊維との複合板などの抵抗を持つ材料を使用してもよい。放電線だけを、または接地平板だけを抵抗材料で成形してもよいし、両方を抵抗材で成形してもよい。
【0017】
以上のように各放電線11とそれを挟む接地平板12からなる伝送路に単位長さ当り、特性インピーダンスのπ倍以上の抵抗を持たせることにより、スパーク放電電流を1/2以下に抑えることができる。したがって、放射電磁波のエネルギーを1/4以下に抑えることができる。また各伝送路の全抵抗を特性インピーダンスの2π倍以上にするとスパーク発生時の振動がなくなり、さらに放射電磁波強度を抑えることができる。
図6は本発明による静電型空気清浄器の帯電部でスパーク放電が生じたときの電極間電圧と放射電磁波強度の測定例を示す。放電極の抵抗は特性インピーダンスの約4π倍で、その他は図3に示した測定時と同じである。電極間電圧は振動がなく、静電容量に蓄えられた電荷が抵抗を通してゆっくり放電している。放射電磁波強度も激減し、図3に比べ最大のピーク値で1/40以下に抑制されている。
【0018】
次に集塵部20について説明する。集塵部は帯電した塵を捕集する集塵板22と高電圧印加平板21が平行に向い合わされて構成されている。これらの向い合った平板形の電極は帯電した塵にクーロン力を作用させる電界を作ることが働きであり、従来使われているような導体板であることを必要としない。帯電部10から流れてくるイオンの電荷や塵を帯電させていた電荷がこれらの平板形の電極に蓄積しない程度の抵抗材を使用できる。集塵部の電極に流れる電流は帯電部より2桁以上小さいため、抵抗材を用いた電極による電圧降下が小さく、帯電部より抵抗を100倍以上高くできる。
【0019】
スパーク放電電流の抑制の面から必要な抵抗を求めてみる。ここで、高電圧印加平板21と集塵板22の間隔をa、平板の幅をbとする。静電型空気清浄器の場合、導体で作られた平行平板電極の特性インピーダンスは、a<bのとき近似式120πa/bで表される。通常の静電型空気清浄器では数十Ωから200Ωの程度である。帯電部の説明と同様に高電圧印加平板21と集塵板22の一対の電極に単位長さ当り、この値のπ倍以上の抵抗を持たせることにより、スパーク放電電流を1/2以下に大きく減少させることができる。また1対ま電極の全抵抗を2π倍以上にすると、強い電磁波放射の原因になる振動を消すことができる。
【0020】
図5に帯電部または集塵部の平板の電極の変形例を示す。この変形例は金属板を抵抗板で両側から挟み込み平板の電極を成形したものである。電極は、間に挟み込んだ金属板が等電位面になるため、抵抗板表面の電位の分布が均等に近づく。したがって、全てを抵抗材で成形した場合、電位分布のバラツキが発生し、空気の流路で除塵性能が低下する場所が生じる欠点があったが、この変形例ではこの欠点を解消する効果がある。
【図面の簡単な説明】
【図1】本発明の実施例を示す電極構成の斜視図である。
【図2】スパーク放電を表す等価回路図である。
【図3】従来の静電型空気清浄器がスパーク放電を発生したときの電極間電圧と放射電磁波電界強度の測定例を示す図である。
【図4】電極の持つ電気抵抗とスパーク放電電流の大きさの関係図である。
【図5】平板形の電極の変形例の斜視図である。
【図6】本発明の静電型空気清浄器がスパーク放電を発生したときの電極間電圧と放射電磁波電界強度の測定例を示す図である。
【図7】従来のスパーク放電電流抑制法を表す回路図である。
【図8】従来のスパーク放電電流抑制法を表す他の回路図である。
【図9】従来のスパーク放電電流抑制法を表す他の回路図である。
【符号の説明】
10…帯電部、11…放電線、20…集塵部、21…高電圧印加平板、22…集塵板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic air cleaner, and more particularly to an electrostatic air cleaner provided with an electrode for applying a high voltage.
[0002]
[Prior art]
The electrostatic air cleaner is a two-stage system consisting of a charging unit that charges dust in the air with ions generated by corona discharge and a dust collecting unit that collects the charged dust with a parallel plate to which a high DC voltage is applied. Many electric dust collector structures are used. In addition, a single-stage electrostatic precipitator having a charging part and a dust collecting part may be used, such as an electrostatic precipitator used for a thermal power plant or industrial use. In both types of electrostatic air cleaners, the casing is often open on the air suction side, the blow side, or both.
[0003]
[Problems to be solved by the invention]
The dust collector has a higher dust removal performance as the applied voltage is higher. However, if it is too high, a spark discharge occurs between the electrodes, so that the operation is performed with the applied voltage set slightly lower than the spark voltage. Nevertheless, spark discharge may occur due to the dust attached to the electrode and the vibration of the discharge electrode. In the case of an electrostatic air cleaner, an insect such as a moth or a mosquito may enter to generate a spark discharge. Since such a spark discharge is accompanied by a rapid current change, a strong electromagnetic wave is emitted as noise. The above-mentioned industrial dust collectors for industrial and thermal power plants are entirely surrounded by a metal casing, so that electromagnetic noise generated by spark discharge never leaked to the outside.
[0004]
On the other hand, since the electrostatic air cleaner has an opening, electromagnetic noise is radiated to the outside. If an electronic device is placed in the vicinity of the electrostatic air cleaner, there is a risk of causing trouble in operation due to electromagnetic noise.
Therefore, a conventional electrostatic air cleaner is applied with a voltage much lower than the spark voltage and is operated with a low dust removal performance, or several discharge current control means as described below have been considered.
That is, the one disclosed in Japanese Patent Laid-Open No. 1-194554 has an arc discharge detection circuit, and is configured to stop the high voltage generation circuit when arc discharge continues between electrodes for a certain time. This method controls the high voltage generation circuit only for continuous arc discharge without determining that the arc discharge is discretely generated as an abnormal state. However, an electronic device or the like placed around an electrostatic air cleaner may be affected even by a single radiated electromagnetic wave, which is insufficient as a countermeasure.
[0005]
On the other hand, a current limiting element such as a resistor or an inductance is interposed between the high voltage power source and the electrode as disclosed in Japanese Utility Model Publication No. 54-20692, Japanese Patent Application Laid-Open No. 5-31398 and Japanese Patent Application Laid-Open No. 7-132249. Thus, a method for suppressing the discharge current when a spark occurs is disclosed. Examples thereof are shown in FIGS. 7, 8 and 9.
The resistor 102 in FIG. 7, the resistor 114 in FIG. 8, and the inductance 124 in FIG. 9 are current limiting elements, and are inserted in order to suppress the discharge current when a spark discharge occurs. By suppressing the discharge current by using these current limiting elements, it is intended to reduce the radiated electromagnetic wave intensity at the time of spark generation and the sound generated by the discharge.
However, even when the above measures were taken, when the radiated electromagnetic wave intensity was measured, a clear suppression effect could not be recognized. Certainly, the current flowing from the high-voltage power source to the electrode was suppressed, but the intensity of the radiated electromagnetic wave was hardly suppressed.
[0006]
Next, consider this reason. As described in JP-A-7-132249, electrodes to which a high voltage is applied (103 and 105 in FIG. 7, 111 in FIG. 8, 120 and 121 in FIG. 9), and an electrode on the ground side (FIG. 7). 101, 112 in FIG. 8 and 122) in FIG. 9 play the role of an air capacitor, and a high voltage is applied between both electrodes during operation, so that electric charges are accumulated. In Japanese Patent Application Laid-Open No. 7-132249, when a spark discharge occurs, the electric charge stored between the electrodes is instantaneously released. Since the discharge of the charge at this time appears as a spark current, it is necessary to suppress the discharge of the charge. A measure for stopping the discharge of the charge is the inductance 124 of the current limiting element shown in FIG.
We agree with the idea that the sudden flow of charge stored between the electrodes is the spark discharge current. Then, the current flowing from the electrode to the high voltage power source or the current flowing from the high voltage power source to the electrode is suppressed by the effect of the current limiting element. This is common to the above three examples, and was confirmed in experiments.
[0007]
However, the electric charge stored in the electrode constituting the air capacitor is not discharged outside the electrode during the spark discharge but is neutralized in the electrode through the spark discharge path. At this time, the current flowing through the spark discharge path is the spark discharge current. The model is shown in FIG. 2, which is equivalent to the dielectric breakdown of the air capacitor through the spark point. Therefore, the spark discharge current cannot be captured by a current detector attached outside the electrode, and cannot be suppressed by a current limiting element provided outside. It only limits the current flowing into the electrode from the high voltage power supply. Therefore, since the spark discharge current cannot be suppressed, the intensity of the radiated electromagnetic wave cannot be suppressed.
[0008]
Fig. 3 shows the change over time in the voltage between the electrodes and the electric field strength of the radiated electromagnetic waves when a spark discharge is generated in a charged part consisting of a discharge wire electrode and a plate electrode using a conventional electrostatic air cleaner. It is a thing.
After the spark is generated, the voltage between the electrodes drops to zero while being damped, but when the waveform is examined in detail, a vibration with a short period is superimposed on a damped vibration with a relatively long period. Long-period vibration is a component of vibration due to the capacitance between the entire discharge line electrode and the plate electrode of the charging unit, and the inductance of the current path and spark discharge path constituting the electrode. On the other hand, it was found that the vibration with a short period was due to the capacitance and inductance that only the discharge line electrode that generated the spark had between the flat plate electrode.
[0009]
The electromagnetic field intensity shows that electromagnetic waves corresponding to a short period are radiated strongly. The size of the electrode system of the electrostatic air cleaner is very short with respect to the wavelength of the electromagnetic wave with respect to vibration with a long period, and when the electrode is considered as an antenna, the resonance frequency is greatly shifted and the radiation efficiency is low.
On the other hand, the wavelength of the electromagnetic wave with respect to the vibration having a short period is short, approaches the resonance frequency of the electrode, has high radiation efficiency, and is considered to emit a strong electromagnetic wave.
From the above experimental results, it can be seen that the means for suppressing the spark discharge current with the entire electrode taken together is ineffective to suppress the radiated electromagnetic noise. An object of the present invention is to provide an electrostatic air cleaner that has high dust removal performance at a high operating voltage and has low electromagnetic wave noise radiated even when spark discharge occurs.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an electrostatic air cleaner according to a first aspect of the present invention includes an electrode system in which discharge lines and electrodes composed of flat plates facing the discharge line are arranged, and the capacitance and self-induction of the electrode system. With respect to the characteristic impedance determined by the coefficient, each electrode has a resistance component distributed over π times the characteristic impedance per unit length, and the spark discharge current is suppressed by the resistance of the electrode itself.
The invention of claim 2 is characterized in that, in claim 1, the total resistance of each electrode is not less than 2π times the characteristic impedance and not more than 10 6 Ω.
According to a third aspect of the present invention, there is provided a two-stage electrostatic air comprising a charging line electrode system comprising a discharge line and a flat plate facing the discharge line, and a dust collecting electrode system comprising a high voltage applying flat plate and a dust collecting plate. In the purifier, each electrode has a distributed resistance component more than π times the characteristic impedance per unit length with respect to the characteristic impedance determined by the capacitance of the electrode system of the charging unit and the self-induction coefficient. flat dust portion of the electrode is formed by a resistor material, per unit length, and characterized by having a capacitance and π times more resistive component of the characteristic inspiration over dance determined by the self-induction coefficient between each of the opposing flat plate To do.
According to a fourth aspect of the present invention, there is provided a two-stage electrostatic air composed of a discharge line and an electrode system of a charging portion comprising a flat plate opposed to the discharge line and an electrode system of a dust collection portion comprising a high voltage applying flat plate and a dust collecting plate. in purifier, the total resistance of each of the electrodes of the electrode system of the charging portion is higher 2π times the characteristic impedance and, together with or less 10 6 Omega, flat of each of the electrodes of the particulate collection portion is molded by a resistor material, the unit It has a resistance component more than π times the characteristic impedance determined by the capacitance between each opposing flat plate and the self-induction coefficient per length.
[0011]
[Operation and effect of the invention]
According to the configuration of the present invention, by one lifting each of the electrodes is high electrical resistance, since it reduces the discharge current when the spark discharge is generated, it can greatly suppressed the intensity of the electromagnetic wave noise radiated, location neighborhood It is possible to eliminate the interference caused by electromagnetic waves on the electronic devices and the like, and to reduce the discharge noise. Moreover, since high voltage operation is possible, dust removal performance can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a structural diagram of an electrode showing an embodiment of the present invention. There is no significant difference in appearance from the conventional electrostatic air cleaner.
This example is a two-stage electrostatic precipitator, which includes a charging unit 10 and a dust collecting unit 20. The charging unit 10 includes a discharge wire 11 and a ground plate 12 that generate a corona discharge by applying a high voltage. The dust collecting unit 20 includes a dust collecting plate 22 that collects charged dust and a high voltage applying flat plate 21 that creates an electric field so that an electric force acts on the dust collecting plate 22 toward the dust collecting plate 22.
[0013]
Resistive materials are used for the discharge wire 11 and the ground plate 12 constituting the electrode of the charging unit, and the high voltage application plate 21 and the dust plate 22 constituting the electrode of the dust collecting unit, respectively. As a method of giving a resistance component to the electrodes, a structure in which all the electrodes have a resistance component or one electrode member of each electrode, that is, a discharge line or ground plate of the charging unit and a high voltage application plate or collector of the dust collection unit. Make the dust plate have a resistance component.
First, the charging unit 10 will be described. The characteristic impedance when the electrode composed of the discharge line 11 and the two flat plates 12 sandwiching the discharge line 11 is regarded as a transmission line, that is, the discharge line 11 per unit length in the vertical direction in FIG. When the capacitance between the flat plate 12 and the flat plate 12 is C and the inductance is L, the value of (L / C) 0.5 is about 100 to 300Ω. This varies depending on the electrode structure such as the interval between the flat plates 12 and the thickness of the discharge line 11.
[0014]
Here, if the transmission line composed of each discharge line and the flat plate has a resistance component, the spark discharge current when the spark discharge is generated is suppressed. FIG. 4 shows the magnitude of the spark discharge current with the ratio of the resistance R per unit length of the transmission line R to the characteristic impedance (L / C) of 0.5 on the horizontal axis. The suppression effect is greater as the resistance R is higher. Although it varies depending on the frequency, the vibration that occurs when an electrostatic air cleaner generates a spark discharge is predominantly the one corresponding to the resonance frequency of the lowest-order transmission path and has a resonance frequency of the second or higher. Since the corresponding vibration is hardly observed, FIG. 4 shows the lowest resonance frequency.
[0015]
When the resistance R is π (circumferential ratio) or more times the characteristic impedance, the effect of suppressing the spark discharge current becomes remarkable, and it becomes ½ or less of the case where the electrode is made of a conductor (R≈O).
Further, in the transient phenomenon of the transmission line, if the length of the transmission line (approximately equal to the length of the discharge line) is 1 (el), the resistance R per unit length is 2π (L / C) 0.5 / l. If it becomes above, the electric current which flows into a transmission line becomes an attenuation | damping waveform which does not have a vibration component. Therefore, the vibration component having a short period appearing in FIG. 3 disappears.
R * l is the total resistance per transmission line when the discharge line 11 and the ground plate 12 sandwiching the discharge line 11 are regarded as the transmission line, and this suppresses vibration when the characteristic impedance (L / C) is 2π times or more of 0.5. I can do it.
[0016]
The spark discharge current can be suppressed as the resistance increases, but if it is too high, the voltage drop due to the current flowing through the discharge line and the ground plate during normal operation cannot be ignored. Normally, even if the corona discharge current per discharge line is large, it is about 1 mA. Therefore, if the resistance R * l per transmission line is 10 6 Ω or less, the voltage drop is about 1000 V or less. In an electrostatic air cleaner that operates at a voltage of 10,000 V or more, it is easy to take a margin for a voltage drop in the power supply voltage.
As a method for providing resistance as a transmission line, a metal wire for a resistor or an alloy wire for a thermocouple can be used as a discharge wire. Further, a material having resistance such as carbon fiber reinforced plastic, a composite plate of carbon fiber and polymer resin or glass fiber may be used for the flat plate. Only the discharge line or only the ground plane may be formed of a resistance material, or both may be formed of a resistance material.
[0017]
As described above, the spark discharge current can be reduced to ½ or less by providing a transmission line composed of each discharge line 11 and the ground plate 12 sandwiching the discharge line 11 with a resistance of π times or more of the characteristic impedance per unit length. Can do. Therefore, the energy of the radiated electromagnetic wave can be suppressed to ¼ or less. Further, if the total resistance of each transmission line is set to 2π times or more of the characteristic impedance, the vibration at the time of occurrence of spark is eliminated, and the radiation electromagnetic wave intensity can be further suppressed.
FIG. 6 shows a measurement example of the voltage between electrodes and the intensity of radiated electromagnetic waves when spark discharge occurs in the charging part of the electrostatic air cleaner according to the present invention. The resistance of the discharge electrode is about 4π times the characteristic impedance, and the others are the same as in the measurement shown in FIG. The voltage between the electrodes is not oscillated, and the electric charge stored in the capacitance is slowly discharged through the resistor. The radiated electromagnetic wave intensity is also drastically reduced and is suppressed to 1/40 or less at the maximum peak value as compared with FIG.
[0018]
Next, the dust collector 20 will be described. The dust collecting unit is configured by a dust collecting plate 22 for collecting charged dust and a high voltage applying flat plate 21 facing each other in parallel. These facing flat electrodes work to create an electric field that applies a Coulomb force to the charged dust, and do not need to be a conductive plate as used conventionally. Resistive materials can be used so that the charge of ions flowing from the charging unit 10 and the charge charged with dust do not accumulate on these flat electrodes. Since the current flowing through the electrode of the dust collection unit is two orders of magnitude or more smaller than that of the charging unit, the voltage drop due to the electrode using a resistance material is small, and the resistance can be made 100 times higher than that of the charging unit.
[0019]
Find the required resistance in terms of suppressing spark discharge current. Here, the distance between the high voltage applying flat plate 21 and the dust collecting plate 22 is a, and the flat plate width is b. In the case of an electrostatic air cleaner, the characteristic impedance of a parallel plate electrode made of a conductor is expressed by an approximate expression 120πa / b when a <b. In a normal electrostatic air cleaner, it is about several tens of ohms to 200 ohms. Similarly to the description of the charging unit, the spark discharge current is reduced to ½ or less by providing a pair of electrodes of the high voltage application flat plate 21 and the dust collecting plate 22 with a resistance of π times or more of this value per unit length. It can be greatly reduced. Further, if the total resistance of the pair of electrodes is 2π times or more, the vibration that causes strong electromagnetic radiation can be eliminated.
[0020]
FIG. 5 shows a modification of the flat electrode of the charging unit or the dust collecting unit. In this modification, a flat plate electrode is formed by sandwiching a metal plate from both sides with a resistor plate. Since the metal plate sandwiched between the electrodes becomes an equipotential surface, the potential distribution on the surface of the resistor plate approaches evenly. Therefore, when all are formed of a resistance material, there is a defect that potential distribution varies, and there is a place where dust removal performance is lowered in the air flow path, but this modification has an effect of eliminating this defect. .
[Brief description of the drawings]
FIG. 1 is a perspective view of an electrode configuration showing an embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram showing spark discharge.
FIG. 3 is a diagram showing a measurement example of the voltage between electrodes and the intensity of radiated electromagnetic field when a conventional electrostatic air cleaner generates a spark discharge.
FIG. 4 is a diagram showing the relationship between the electrical resistance of an electrode and the magnitude of a spark discharge current.
FIG. 5 is a perspective view of a modification of a flat electrode.
FIG. 6 is a diagram showing a measurement example of an interelectrode voltage and a radiation electromagnetic field intensity when a spark discharge is generated by the electrostatic air cleaner of the present invention.
FIG. 7 is a circuit diagram showing a conventional spark discharge current suppressing method.
FIG. 8 is another circuit diagram showing a conventional spark discharge current suppressing method.
FIG. 9 is another circuit diagram showing a conventional spark discharge current suppressing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Charging part, 11 ... Discharge wire, 20 ... Dust collection part, 21 ... High voltage application flat plate, 22 ... Dust collection board

Claims (4)

放電線とそれに対向する平板からなる電極を配列した電極系を備え、前記電極系の静電容量と自己誘導係数で決る特性インピーダンスに対して、各々の電極が単位長さ当り、特性インピーダンスのπ倍以上の分布した抵抗成分を持って前記電極自身の抵抗によりスパーク放電電流を抑制することを特徴とする静電型空気清浄器。It has an electrode system in which electrodes consisting of discharge lines and flat plates facing it are arranged, and each electrode has a characteristic impedance of π per unit length with respect to the characteristic impedance determined by the capacitance and self-induction coefficient of the electrode system. An electrostatic air cleaner characterized in that a spark discharge current is suppressed by the resistance of the electrode itself having a resistance component distributed more than twice. 前記各々の電極の全抵抗が特性インピーダンスの2π倍以上かつ、106Ω以下であることを特徴とする請求項1記載の静電型空気清浄器。2. The electrostatic air cleaner according to claim 1, wherein the total resistance of each of the electrodes is not less than 2π times the characteristic impedance and not more than 10 6 Ω. 放電線とそれに対向する平板からなる帯電部の電極系及び高電圧印加平板と集塵板からなる集塵部の電極系により構成される二段式の静電型空気清浄器において、
前記帯電部の電極系の静電容量と自己誘導係数で決る特性インピーダンスに対して、各々の電極が単位長さ当り、特性インピーダンスのπ倍以上の分布した抵抗成分を持つと共に、前記集塵部の電極の平板抵抗材で成形され、単位長さ当り、各々の対向する平板間の静電容量と自己誘導係数で決まる特性インスピーダンスのπ倍以上の抵抗成分を持つことを特徴とする静電型空気清浄器。
In a two-stage electrostatic air cleaner composed of a discharge line and an electrode system of a charging part consisting of a flat plate facing the discharge line and an electrode system of a dust collecting part consisting of a high voltage application flat plate and a dust collecting plate,
With respect to the characteristic impedance determined by the capacitance of the electrode system of the charging unit and the self-induction coefficient, each electrode has a resistance component distributed over π times the characteristic impedance per unit length, and the dust collecting unit static flat plate of the electrode is formed by a resistor material, per unit length, characterized by having a capacitance and the resistance component of the above π times the characteristic inspiration over dance determined by the self-induction coefficient between each of the opposing flat plate Electric air purifier.
放電線とそれに対向する平板からなる帯電部の電極系及び高電圧印加平板と集塵板からなる集塵部の電極系により構成される二段式の静電型空気清浄器において、
前記帯電部の電極系の各々の電極の全抵抗が特性インピーダンスの2π倍以上かつ、106Ω以下であると共に、前記集塵部の各々の電極の平板抵抗材で成形され、単位長さ当り、各々の対向する平板間の静電容量と自己誘導係数で決まる特性インスピーダンスのπ倍以上の抵抗成分を持つことを特徴とする静電型空気清浄器。
In a two-stage electrostatic air cleaner composed of a discharge line and an electrode system of a charging part consisting of a flat plate facing the discharge line and an electrode system of a dust collecting part consisting of a high voltage application flat plate and a dust collecting plate,
The total resistance of each electrode of the charging portion of the electrode system is more than 2π times the characteristic impedance and, together with or less 10 6 Omega, flat of each of the electrodes of the dust collecting part is formed by a resistor material, unit length An electrostatic air cleaner characterized by having a resistance component that is at least π times the characteristic impedance determined by the capacitance between each opposing flat plate and the self-induction coefficient.
JP15749897A 1997-05-31 1997-05-31 Electrostatic air purifier Expired - Fee Related JP3629894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15749897A JP3629894B2 (en) 1997-05-31 1997-05-31 Electrostatic air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15749897A JP3629894B2 (en) 1997-05-31 1997-05-31 Electrostatic air purifier

Publications (2)

Publication Number Publication Date
JPH10328576A JPH10328576A (en) 1998-12-15
JP3629894B2 true JP3629894B2 (en) 2005-03-16

Family

ID=15651007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15749897A Expired - Fee Related JP3629894B2 (en) 1997-05-31 1997-05-31 Electrostatic air purifier

Country Status (1)

Country Link
JP (1) JP3629894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO323806B1 (en) * 2005-11-01 2007-07-09 Roger Gale Entrance electrostatic stove precipitator
KR100724556B1 (en) 2005-12-22 2007-06-11 주식회사 리트코 Induction electrostatic precipitator

Also Published As

Publication number Publication date
JPH10328576A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP5011357B2 (en) Electrostatic fluid accelerator and method for controlling fluid flow
JP3999546B2 (en) Air ionizer
US6096119A (en) Apparatus for using ferrite spacers to suppress arc noise in electrostatic precipitators
US4231766A (en) Two stage electrostatic precipitator with electric field induced airflow
US5137552A (en) Dust collecting cell
US6259591B1 (en) Apparatus and method for monitoring of air ionization
EP0626886A1 (en) A two-stage electrostatic filter.
JP5344167B2 (en) Control device used for discharge device
US6574123B2 (en) Power supply for electrostatic air filtration
US3108865A (en) Electrostatic precipitator
JP5069491B2 (en) Ion balance adjusting electrode and static eliminator having the same
JP3629894B2 (en) Electrostatic air purifier
JP2009131823A (en) Electrostatic precipitator
JP5069495B2 (en) Ion balance adjustment circuit and static eliminator
JP3627610B2 (en) Electric dust collector
JP5816807B2 (en) Electric dust collector
JPH02222737A (en) Electrostatic air cleaner
JP2022030783A (en) Open structure type ion generator
JP2002260810A (en) Low noise spark gap switch
JP2001038242A (en) Electrostatic dust collector
JPH0531398A (en) Dust collection cell
JPH07132249A (en) Electrostatic air cleaner
JPH0747837Y2 (en) Electric charge control device for vacuum cleaner
JPH06154649A (en) Air filter
JPH05307419A (en) Dc high voltage power

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees