JP3629595B2 - Servo device for multi-axis operation - Google Patents

Servo device for multi-axis operation Download PDF

Info

Publication number
JP3629595B2
JP3629595B2 JP28634494A JP28634494A JP3629595B2 JP 3629595 B2 JP3629595 B2 JP 3629595B2 JP 28634494 A JP28634494 A JP 28634494A JP 28634494 A JP28634494 A JP 28634494A JP 3629595 B2 JP3629595 B2 JP 3629595B2
Authority
JP
Japan
Prior art keywords
servo
servo driver
injection
closing
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28634494A
Other languages
Japanese (ja)
Other versions
JPH08147016A (en
Inventor
裕治 上垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP28634494A priority Critical patent/JP3629595B2/en
Publication of JPH08147016A publication Critical patent/JPH08147016A/en
Application granted granted Critical
Publication of JP3629595B2 publication Critical patent/JP3629595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/762Measuring, controlling or regulating the sequence of operations of an injection cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Programmable Controllers (AREA)
  • Control Of Multiple Motors (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、複数軸運転用サーボ装置に関し、さらに詳しくは、小型化とコストの低減とを図ることが出来る複数軸運転用サーボ装置に関する。
【0002】
【従来の技術】
図4は、射出成形機の一例の模式図である。
この射出成形機Mは、ホッパ,スクリュウ,ヒータを有し溶融樹脂を可塑化して射出する可塑化射出機構M1と、所定形状のキャビティを有する金型M2と、金型M2の開閉を行う開閉機構M3と、成形後に製品を突き出す突出し機構M4とを具備している。
前記可塑化射出機構M1は、可塑化用サーボモータMaおよび射出用サーボモータMcを有している。また、前記開閉機構M3は、型開閉用サーボモータMbを有している。さらに、前記突出し機構M4は、突出し用サーボモータMdを有している。
【0003】
図5は、従来の複数軸運転用サーボ装置の一例を示す回路図である。
この複数軸運転用サーボ装置500は、4個のサーボモータMa,Mb,Mc,Mdのそれぞれ対応して設けられた4個のサーボドライバ3a,3b,3c,3dと、入力された交流を整流して脈流を出力する整流器1と、前記脈流を平滑して前記サーボドライバ3a,3b,3c,3dにそれぞれモータ駆動電流を供給する平滑コンデンサ52a,52b,52c,52dと、前記サーボドライバ3a,3b,3c,3dがそれぞれ取り付けられた放熱器55a,55b,55c,55dとを具備している。
前記サーボドライバ3a,3b,3c,3dは、パルスジェネレータPa,Pb,Pc,Pdからの信号を基にしてコントローラCにより個別に制御され、前記4個のサーボモータMa,Mb,Mc,Mdを可塑化,型開閉,射出,突出しの各運転シーケンス(後述する)で駆動する。
図6は、上記複数軸運転用サーボ装置500の回路図である。
なお、スナバ回路,回生回路などは省略している。
【0004】
図7は、前記サーボドライバ3a,3b,3c,3dの負荷線図である。なお、0ラインの上下はサーボモータMa,Mb,Mc,Mdの駆動方向が逆であることを表している。
この負荷線図により可塑化,型開閉,射出,突出しの各運転シーケンスを説明する。
まず、可塑化射出機構M1で加熱により樹脂材料を可塑化して流動状態にする。また、スクリュウを回転させて前記流動状態を均一化しつつ、樹脂材料を可塑化射出機構M1の先端付近に集める。この時、可塑化用サーボモータMaに負荷がかかる。
次に、開閉機構M3により金型M2を閉じる。この時、型開閉用サーボモータMbに負荷がかかる。
次に、可塑化射出機構M1のスクリュウで樹脂材料を金型M2のキャビティ内に射出する。この時、射出用サーボモータMcに負荷がかかる。さらに、金型M2のキャビティ内で樹脂材料が固化するまで保圧する。この時、射出用サーボモータMcに負荷がかかる。
次に、開閉機構M3により金型M2を開く。この時、型開閉用サーボモータMbに負荷がかかる。
最後に、突出し機構M4により製品を突き出す。この時、突出し用サーボモータMdに負荷がかかる。
【0005】
【発明が解決しようとする課題】
上記従来の複数軸運転用サーボ装置500では、サーボモータMa,Mb,Mc,Mdの連続定格に合わせてサーボドライバ3a,3b,3c,3dのそれぞれに対して放熱器55a,55b,55c,55dおよび平滑コンデンサ52a,52b,52c,52dが設けられている。
しかし、サーボドライバ3a,3b,3c,3dのそれぞれに対して放熱器55a,55b,55c,55dおよび平滑コンデンサ52a,52b,52c,52dを設けると、部品の占有容積が大きくなり、小型化の障害となる問題点がある。また、部品点数が多くなり、コストが高くなる問題点がある
そこで、この発明の目的は、小型化とコストの低減とを図ることが出来る複数軸運転用サーボ装置を提供することにある。
【0006】
【課題を解決するための手段】
第1の観点では、この発明は、射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)にそれぞれ対応して設けられた可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)を具備する複数軸運転用サーボ装置において、前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図に基づく発熱量に応じた放熱能力を持つ共有の放熱器(5)に前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)を取り付けたことを特徴とする複数軸運転用サーボ装置(100)を提供する。
【0007】
第2の観点では、この発明は、上記構成の複数軸運転用サーボ装置(100)において、前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図に基づく電流量に応じた平滑能力を持つ共有の平滑コンデンサ(2)から前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)にモータ駆動電流を供給することを特徴とする複数軸運転用サーボ装置(100)を提供する。
【0008】
【作用】
上記第1の観点による複数軸運転用サーボ装置(100)では、射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)の各運転シーケンスによる可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図を求め、その負荷線図に基づく発熱量に応じた放熱能力を持つ放熱器(5)を用意し、その放熱器(5)に可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)を取り付けた。
射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)は別々のタイミングで間欠的に運転されており、全て同時に連続運転されている訳ではない。従って、可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図から求められる発熱量に応じた放熱能力を持つ放熱器(5)は、従来の放熱器55a,55b,55c,55dを合せたサイズより小さくて済む。このため、放熱器(5)の占有容積が小さくなり、小型化が可能となる。また、部品点数が少なくなり、コストを低減できる。
【0009】
上記第2の観点による複数軸運転用サーボ装置(100)では、射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)の各運転シーケンスによる可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図を求め、その負荷線図に基づく電流量に応じた平滑能力を持つ平滑コンデンサ(2)を用意し、その平滑コンデンサ(2)から可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)にモータ駆動電流を供給するようにした。
射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)は別々のタイミングで間欠的に運転されており、全て同時に連続運転されている訳ではない。従って、可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図から求められる電流量に応じた平滑能力を持つ平滑コンデンサ(2)は、従来の平滑コンデンサ52a,52b,52c,52dを合せた容量より小さくて済む。このため、平滑コンデンサ(2)の占有容積が小さくなり、小型化が可能となる。また、部品点数が少なくなり、コストを低減できる。
【0010】
【実施例】
以下、図に示す実施例によりこの発明をさらに詳細に説明する。なお、これによりこの発明が限定されるものではない。
図1に、この発明の複数軸運転用サーボ装置の一実施例を示す。
この複数軸運転用サーボ装置100は、図4に示す射出成形機Mの4個のサーボモータMa,Mb,Mc,Mdのそれぞれ対応して設けられた4個のサーボドライバ3a,3b,3c,3dと、入力された交流(例えば三相300V)を整流して脈流を出力する整流器1と、前記脈流を平滑して前記サーボドライバ3a,3b,3c,3dにそれぞれモータ駆動電流を供給する平滑コンデンサ2と、前記サーボドライバ3a,3b,3c,3dが取り付けられた放熱器5とを具備している。
前記サーボドライバ3a,3b,3c,3dは、パルスジェネレータPa,Pb,Pc,Pdからの信号を基にしてコントローラCにより個別に制御され、前記4個のサーボモータMa,Mb,Mc,Mdを可塑化,型開閉,射出,突出しの各運転シーケンスで駆動する。
図2は、上記複数軸運転用サーボ装置100の回路図である。
なお、スナバ回路,回生回路などは省略している。
【0011】
図3は、前記サーボドライバ3a,3b,3c,3dの負荷線図である。なお、0ラインの上下はサーボモータMa,Mb,Mc,Mdの駆動方向が逆であることを表している。
この負荷線図により可塑化,型開閉,射出,突出しの各運転シーケンスを説明する。
まず、可塑化射出機構M1で加熱により樹脂材料を可塑化して流動状態にする。また、スクリュウを回転させて前記流動状態を均一化しつつ、樹脂材料を可塑化射出機構M1の先端付近に集める。この時、可塑化用サーボモータMaに負荷がかかる。
次に、開閉機構M3により金型M2を閉じる。この時、型開閉用サーボモータMbに負荷がかかる。
次に、可塑化射出機構M1のスクリュウで樹脂材料を金型M2のキャビティ内に射出する。この時、射出用サーボモータMcに負荷がかかる。さらに、金型M2のキャビティ内で樹脂材料が固化するまで保圧する。この時、射出用サーボモータMcに負荷がかかる。
次に、開閉機構M3により金型M2を開く。この時、型開閉用サーボモータMbに負荷がかかる。
最後に、突出し機構M4により製品を突き出す。この時、突出し用サーボモータMdに負荷がかかる。
【0012】
図3の(e)は、前記サーボドライバ3a,3b,3c,3dの総和の負荷線図である。
放熱器5は、この総和の負荷線図に基づく発熱量に応じた放熱能力を持っている。
また、平滑コンデンサ2は、この総和の負荷線図に基づく電流量に応じた平滑能力を持っている。
【0013】
以上の複数軸運転用サーボ装置100によれば、放熱器5は、従来の放熱器55a,55b,55c,55dを合せたサイズより小さくて済む。このため、放熱器5の占有容積が小さくなり、小型化が可能となる。また、部品点数が少なくなり、コストを低減できる。さらに、実際に発熱しているサーボドライバから見た放熱容量が従来より大きくなるため、信頼性を向上できる。
また、平滑コンデンサ2は、従来の平滑コンデンサ52a,52b,52c,52dを合せた容量より小さくて済む。このため、平滑コンデンサ2の占有容積が小さくなり、小型化が可能となる。また、部品点数が少なくなり、コストを低減できる。また、実際に供給しているモータ駆動電流から見た容量が従来より大きくなるため、信頼性を向上できる。さらに、図には表されていないが、平滑コンデンサの本数が少なくなるため、複数軸運転用サーボ装置100内の配線が短くなり、サージ電圧が下がり、信頼性を向上できる。また、スナバ回路が小さくて済むようになる。
【0015】
【発明の効果】
この発明の複数軸運転用サーボ装置によれば、放熱器の占有容積が小さくなり、小型化が可能となる。また、平滑コンデンサの占有容積が小さくなり、小型化が可能となる。さらに、部品点数が少なくなり、コストを低減できる。
【図面の簡単な説明】
【図1】この発明の複数軸運転用サーボ装置の一実施例を示す模式的構成図である。
【図2】図1の複数軸運転用サーボ装置の回路図である。
【図3】サーボドライバの負荷線図である。
【図4】射出成形機の模式的構成図である。
【図5】従来の複数軸運転用サーボ装置の一例を示す模式的構成図である。
【図6】図5の複数軸運転用サーボ装置の回路図である。
【図7】サーボドライバの負荷線図である。
【符号の説明】
100 複数軸運転用サーボ装置
1 整流器
2 平滑コンデンサ
3a,3b,3c,3d サーボドライバ
5 放熱器
Ma,Mb,Mc,Md サーボモータ
Pa,Pb,Pc,Pd パルスジェネレータ
C コントローラ
M 射出成形機
[0001]
[Industrial application fields]
The present invention relates to a servo device for multi-axis operation, and more particularly to a servo device for multi-axis operation that can be reduced in size and cost.
[0002]
[Prior art]
FIG. 4 is a schematic diagram of an example of an injection molding machine.
This injection molding machine M has a hopper, a screw, a heater, a plasticizing injection mechanism M1 for plasticizing and injecting molten resin, a mold M2 having a cavity of a predetermined shape, and an opening / closing mechanism for opening and closing the mold M2. M3 and a protruding mechanism M4 that protrudes the product after molding.
The plasticizing injection mechanism M1 includes a plasticizing servo motor Ma and an injection servo motor Mc. The opening / closing mechanism M3 includes a mold opening / closing servomotor Mb. Further, the protruding mechanism M4 has a protruding servo motor Md.
[0003]
FIG. 5 is a circuit diagram showing an example of a conventional servo apparatus for multi-axis operation.
This multi-axis operation servo device 500 rectifies the input AC and four servo drivers 3a, 3b, 3c, 3d provided corresponding to each of the four servo motors Ma, Mb, Mc, Md. Rectifier 1 for outputting a pulsating flow, smoothing capacitors 52a, 52b, 52c and 52d for smoothing the pulsating flow and supplying motor driving currents to servo drivers 3a, 3b, 3c and 3d, respectively, and the servo driver The radiators 55a, 55b, 55c, and 55d to which 3a, 3b, 3c, and 3d are attached, respectively.
The servo drivers 3a, 3b, 3c, 3d are individually controlled by the controller C based on signals from the pulse generators Pa, Pb, Pc, Pd, and the four servo motors Ma, Mb, Mc, Md are controlled. It is driven by plasticizing, mold opening / closing, injection, and protruding operation sequences (described later).
FIG. 6 is a circuit diagram of the servo device 500 for multi-axis operation.
Note that a snubber circuit, a regenerative circuit, and the like are omitted.
[0004]
FIG. 7 is a load diagram of the servo drivers 3a, 3b, 3c, 3d. Note that the top and bottom of the 0 line indicate that the drive directions of the servo motors Ma, Mb, Mc, and Md are opposite.
Each operation sequence of plasticization, mold opening / closing, injection, and protrusion will be described with reference to this load diagram.
First, the resin material is plasticized by heating with the plasticizing injection mechanism M1 to be in a fluid state. Further, the resin material is collected near the tip of the plasticizing injection mechanism M1 while rotating the screw to make the flow state uniform. At this time, a load is applied to the plasticizing servo motor Ma.
Next, the mold M2 is closed by the opening / closing mechanism M3. At this time, a load is applied to the mold opening / closing servomotor Mb.
Next, the resin material is injected into the cavity of the mold M2 with the screw of the plasticizing injection mechanism M1. At this time, a load is applied to the injection servo motor Mc. Further, the pressure is maintained until the resin material is solidified in the cavity of the mold M2. At this time, a load is applied to the injection servo motor Mc.
Next, the mold M2 is opened by the opening / closing mechanism M3. At this time, a load is applied to the mold opening / closing servomotor Mb.
Finally, the product is ejected by the ejection mechanism M4. At this time, a load is applied to the protruding servo motor Md.
[0005]
[Problems to be solved by the invention]
In the conventional multi-axis servo device 500, the radiators 55a, 55b, 55c, and 55d are respectively provided to the servo drivers 3a, 3b, 3c, and 3d in accordance with the continuous ratings of the servo motors Ma, Mb, Mc, and Md. Further, smoothing capacitors 52a, 52b, 52c, and 52d are provided.
However, if the radiators 55a, 55b, 55c, and 55d and the smoothing capacitors 52a, 52b, 52c, and 52d are provided for the servo drivers 3a, 3b, 3c, and 3d, respectively, the occupied volume of the parts becomes large, and the size can be reduced. There is a problem that becomes an obstacle. Another object of the present invention is to provide a servo system for multi-axis operation that can be reduced in size and cost.
[0006]
[Means for Solving the Problems]
In a first aspect, the present invention relates to a plasticizing servomotor (Ma), a mold opening / closing servomotor (Mb), an injection servomotor (Mc), and a protruding servomotor (Md) of an injection molding machine (M). corresponding to provided the plasticizing servo driver) (3a), the mold opening and closing servo driver (3b), the injection servo driver (3c), servo multi-axis operation having a servo driver for projecting (3d) According to the amount of heat generated based on the total load diagram of the plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) sharing of the radiator (5) to the plasticizing servo driver with heat transfer capability (3a), the mold opening and closing servo driver (3b), the injection servo driver (3c), Sa for projecting Servo device for multi-axis operation, characterized in that fitted with Bodoraiba (3d) to provide (100).
[0007]
In a second aspect, the present invention relates to the plasticizing servo driver (3a), the mold opening / closing servo driver (3b), and the injection servo driver (3c) in the multi-axis operation servo apparatus (100) having the above-described configuration. , The plasticizing servo driver (3a), the mold opening / closing servo driver (3b ) from the shared smoothing capacitor (2) having a smoothing capacity corresponding to the amount of current based on the total load diagram of the protruding servo driver (3d) . ), A servo driver for multi-axis operation (100) characterized by supplying a motor drive current to the servo driver for injection (3c) and the servo driver for projection (3d) .
[0008]
[Action]
In the servo apparatus for multi-axis operation (100) according to the first aspect, the plasticizing servo motor (Ma), the mold opening / closing servo motor (Mb), and the injection servo motor (Mc) of the injection molding machine (M). , Total load of plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) according to each operation sequence of the protruding servo motor (Md) Obtain a diagram and prepare a radiator (5) with heat dissipation capability according to the amount of heat generated based on the load diagram. Plasticizer servo driver (3a) and mold opening / closing servo driver are installed in the radiator (5). (3b) An injection servo driver (3c) and a protruding servo driver (3d) were attached.
The injection molding machine (M) plasticizing servo motor (Ma), mold opening / closing servo motor (Mb), injection servo motor (Mc), and protruding servo motor (Md) are operated intermittently at different timings. And not all are continuously running at the same time. Therefore, heat dissipation according to the amount of heat generated from the total load diagram of the plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) . The radiator (5) having the capability may be smaller than the size of the conventional radiators 55a, 55b, 55c, and 55d. For this reason, the occupied volume of the radiator (5) is reduced, and downsizing is possible. Further, the number of parts is reduced, and the cost can be reduced.
[0009]
In the servo apparatus for multi-axis operation (100) according to the second aspect, the plasticizing servo motor (Ma), the mold opening / closing servo motor (Mb), and the injection servo motor (Mc) of the injection molding machine (M). , Total load of plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) according to each operation sequence of the protruding servo motor (Md) A smoothing capacitor (2) having a smoothing capability corresponding to the amount of current based on the load diagram is obtained, and a plasticizing servo driver (3a) and a mold opening / closing servo driver are prepared from the smoothing capacitor (2). (3b) The motor drive current is supplied to the injection servo driver (3c) and the protruding servo driver (3d) .
The injection molding machine (M) plasticizing servo motor (Ma), mold opening / closing servo motor (Mb), injection servo motor (Mc), and protruding servo motor (Md) are operated intermittently at different timings. And not all are continuously running at the same time. Therefore, the smoothing according to the amount of current determined from the total load diagram of the plasticizing servo driver (3a), the mold opening / closing servo driver (3b), the injection servo driver (3c), and the protruding servo driver (3d) . The smoothing capacitor (2) having the capacity may be smaller than the combined capacity of the conventional smoothing capacitors 52a, 52b, 52c, and 52d. For this reason, the occupied volume of the smoothing capacitor (2) becomes small, and miniaturization becomes possible. Further, the number of parts is reduced, and the cost can be reduced.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
FIG. 1 shows an embodiment of a servo device for multi-axis operation according to the present invention.
This multi-axis operation servo apparatus 100 includes four servo drivers 3a, 3b, 3c, provided corresponding to the four servo motors Ma, Mb, Mc, Md of the injection molding machine M shown in FIG. 3d, the rectifier 1 that rectifies the input alternating current (for example, three-phase 300V) and outputs a pulsating current, and smoothes the pulsating current and supplies the motor driving currents to the servo drivers 3a, 3b, 3c, and 3d, respectively. And a radiator 5 to which the servo drivers 3a, 3b, 3c and 3d are attached.
The servo drivers 3a, 3b, 3c, 3d are individually controlled by the controller C based on signals from the pulse generators Pa, Pb, Pc, Pd, and the four servo motors Ma, Mb, Mc, Md are controlled. It is driven by each operation sequence of plasticization, mold opening / closing, injection, and extrusion.
FIG. 2 is a circuit diagram of the servo device 100 for multi-axis operation.
Note that a snubber circuit, a regenerative circuit, and the like are omitted.
[0011]
FIG. 3 is a load diagram of the servo drivers 3a, 3b, 3c and 3d. Note that the top and bottom of the 0 line indicate that the drive directions of the servo motors Ma, Mb, Mc, and Md are opposite.
Each operation sequence of plasticization, mold opening / closing, injection, and protrusion will be described with reference to this load diagram.
First, the resin material is plasticized by heating with the plasticizing injection mechanism M1 to be in a fluid state. Further, the resin material is collected near the tip of the plasticizing injection mechanism M1 while rotating the screw to make the flow state uniform. At this time, a load is applied to the plasticizing servo motor Ma.
Next, the mold M2 is closed by the opening / closing mechanism M3. At this time, a load is applied to the mold opening / closing servomotor Mb.
Next, the resin material is injected into the cavity of the mold M2 with the screw of the plasticizing injection mechanism M1. At this time, a load is applied to the injection servo motor Mc. Further, the pressure is maintained until the resin material is solidified in the cavity of the mold M2. At this time, a load is applied to the injection servo motor Mc.
Next, the mold M2 is opened by the opening / closing mechanism M3. At this time, a load is applied to the mold opening / closing servomotor Mb.
Finally, the product is ejected by the ejection mechanism M4. At this time, a load is applied to the protruding servo motor Md.
[0012]
FIG. 3E is a load diagram of the total sum of the servo drivers 3a, 3b, 3c, and 3d.
The radiator 5 has a heat radiation capability according to the amount of heat generation based on the total load diagram.
Further, the smoothing capacitor 2 has a smoothing ability corresponding to the amount of current based on the total load diagram.
[0013]
According to the multi-axis operation servo apparatus 100 described above, the radiator 5 may be smaller than the combined size of the conventional radiators 55a, 55b, 55c, and 55d. For this reason, the occupation volume of the heat radiator 5 becomes small, and miniaturization becomes possible. Further, the number of parts is reduced, and the cost can be reduced. Furthermore, since the heat radiation capacity seen from the servo driver that actually generates heat is larger than the conventional one, the reliability can be improved.
Further, the smoothing capacitor 2 may be smaller than the combined capacity of the conventional smoothing capacitors 52a, 52b, 52c, and 52d. For this reason, the occupied volume of the smoothing capacitor 2 is reduced, and downsizing is possible. Further, the number of parts is reduced, and the cost can be reduced. Further, since the capacity viewed from the motor drive current that is actually supplied is larger than the conventional one, the reliability can be improved. Furthermore, although not shown in the figure, since the number of smoothing capacitors is reduced, the wiring in the multi-axis operation servo apparatus 100 is shortened, the surge voltage is reduced, and the reliability can be improved. In addition, the snubber circuit can be made small.
[0015]
【The invention's effect】
According to the servo system for multi-axis operation of the present invention, the occupied volume of the radiator is reduced, and the size can be reduced. Further, the volume occupied by the smoothing capacitor is reduced, and the size can be reduced. Furthermore, the number of parts is reduced, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a servo device for multi-axis operation according to the present invention.
FIG. 2 is a circuit diagram of the multi-axis operation servo apparatus of FIG. 1;
FIG. 3 is a load diagram of a servo driver.
FIG. 4 is a schematic configuration diagram of an injection molding machine.
FIG. 5 is a schematic configuration diagram showing an example of a conventional multi-axis operation servo apparatus.
6 is a circuit diagram of the multi-axis operation servo apparatus of FIG. 5;
FIG. 7 is a load diagram of a servo driver.
[Explanation of symbols]
100 Servo device for multi-axis operation 1 Rectifier 2 Smoothing capacitors 3a, 3b, 3c, 3d Servo driver 5 Radiator Ma, Mb, Mc, Md Servo motor Pa, Pb, Pc, Pd Pulse generator C Controller M Injection molding machine

Claims (2)

射出成形機(M)の可塑化用サーボモータ(Ma),型開閉用用サーボモータ(Mb),射出用サーボモータ(Mc),突出し用サーボモータ(Md)にそれぞれ対応して設けられた可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)を具備する複数軸運転用サーボ装置において、
前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図に基づく発熱量に応じた放熱能力を持つ共有の放熱器(5)に前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)を取り付けたことを特徴とする複数軸運転用サーボ装置(100)。
Servomotor plasticization of the injection molding machine (M) (Ma), the servo motor for mold opening and closing (Mb), injection servomotor (Mc), provided corresponding to the servo motor for projecting (Md) plasticizer Servo device for multi-axis operation comprising a servo driver for conversion (3a), a servo driver for mold opening / closing (3b), a servo driver for injection (3c), and a servo driver for projection (3d)
Heat dissipation capability according to the amount of heat generation based on the total load diagram of the plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) The plasticizing servo driver (3a), the mold opening / closing servo driver (3b), the injection servo driver (3c), and the protruding servo driver (3d) are attached to a common radiator (5). Servo device for multi-axis operation (100).
請求項1に記載の複数軸運転用サーボ装置(100)において、
前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)の総和の負荷線図に基づく電流量に応じた平滑能力を持つ共有の平滑コンデンサ(2)から前記可塑化用サーボドライバ(3a),型開閉用サーボドライバ(3b),射出用サーボドライバ(3c),突出し用サーボドライバ(3d)にモータ駆動電流を供給することを特徴とする複数軸運転用サーボ装置(100)。
In the multi-axis operation servo device (100) according to claim 1 ,
Smoothing capability according to the amount of current based on the total load diagram of the plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d) Motor driving current is supplied from the shared smoothing capacitor (2) to the plasticizing servo driver (3a), mold opening / closing servo driver (3b), injection servo driver (3c), and protruding servo driver (3d). A servo apparatus for multi-axis operation (100) characterized by the above.
JP28634494A 1994-11-21 1994-11-21 Servo device for multi-axis operation Expired - Fee Related JP3629595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28634494A JP3629595B2 (en) 1994-11-21 1994-11-21 Servo device for multi-axis operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28634494A JP3629595B2 (en) 1994-11-21 1994-11-21 Servo device for multi-axis operation

Publications (2)

Publication Number Publication Date
JPH08147016A JPH08147016A (en) 1996-06-07
JP3629595B2 true JP3629595B2 (en) 2005-03-16

Family

ID=17703177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28634494A Expired - Fee Related JP3629595B2 (en) 1994-11-21 1994-11-21 Servo device for multi-axis operation

Country Status (1)

Country Link
JP (1) JP3629595B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11356090A (en) * 1998-06-10 1999-12-24 Japan Steel Works Ltd:The Motor controller of electric injection molding machine
JP5830939B2 (en) * 2011-05-30 2015-12-09 ブラザー工業株式会社 Machine Tools
RU2643179C1 (en) * 2016-09-19 2018-01-31 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") Digital servo driver
RU2643782C1 (en) * 2016-09-19 2018-02-06 Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина" (ФГУП "НПЦАП") Servo

Also Published As

Publication number Publication date
JPH08147016A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
JP7017566B2 (en) Bio 3D printer
EP1180850B1 (en) Control unit of motor for injection molding machine
JP3708728B2 (en) Motor drive device for injection molding machine
EP0247208B1 (en) Injection driving device
JP3629595B2 (en) Servo device for multi-axis operation
CN206415609U (en) A kind of 3D printing extrusion shaping machine
CN103991219A (en) Three-dimensional rapid molding printer made of nylon 6 material synthesized based on anionic polymerization reaction
US5580584A (en) Injection molding machine
KR20190130474A (en) Method for operating a multi-nozzle extruder using zig-zag patterns that provide improved structural integrity
KR20150043967A (en) Injection molding machine
CN113811431A (en) Injection molding apparatus with integrated actuator electronic drive
JP2004154961A (en) Drive control device of electromotive injection molding machine having regenerative function
EP2552011A2 (en) Injection molding machine
EP2552010B1 (en) Injection molding machine
JPS61132319A (en) Injection molding machine
JP5512584B2 (en) Control device for injection molding machine and power converter
JP2005096470A (en) Motor controller for injection molding machine
JP7305403B2 (en) Injection molding machine, control panel and cooling unit
JP6895789B2 (en) Power components
JP2002113737A (en) Unit and method for controlling injection molding machine and recording medium having control program of injection molding machine recorded thereon
JP2008230002A (en) Injection molding machine utilizing regenerative electric power
JPH04207989A (en) Injection molding machine provided with drive motor having variable torque characteristic
JP5800938B2 (en) Control device for injection molding machine having power converter control unit
JP2024053385A (en) Injection molding machine
US5034169A (en) Injection control method in an electrically-operated injection molding machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees