JP3629530B2 - Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores - Google Patents

Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores Download PDF

Info

Publication number
JP3629530B2
JP3629530B2 JP2000238585A JP2000238585A JP3629530B2 JP 3629530 B2 JP3629530 B2 JP 3629530B2 JP 2000238585 A JP2000238585 A JP 2000238585A JP 2000238585 A JP2000238585 A JP 2000238585A JP 3629530 B2 JP3629530 B2 JP 3629530B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange material
allophane
hollow spherical
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000238585A
Other languages
Japanese (ja)
Other versions
JP2002053849A (en
Inventor
正哉 鈴木
文彦 大橋
恵一 犬飼
雅喜 前田
信治 渡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000238585A priority Critical patent/JP3629530B2/en
Publication of JP2002053849A publication Critical patent/JP2002053849A/en
Application granted granted Critical
Publication of JP3629530B2 publication Critical patent/JP3629530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、アロフェン又はアロフェン様構造をもつ中空球状構造体粒子を構成要素とする熱交換材に関するものであり、更に詳しくは、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造を持つ微細粒子を熱交換材として利用することを特徴とする、特に低温領域での熱交換材として有用な新しい熱交換材に関するものである。
本発明の熱交換材は、小さな細孔を有する中空球状構造をもつ微細粒子からなり、当該微粒子は、吸着能やイオン交換能に優れた性質に加え、高比表面積や細孔を有しており、水の吸着速度が速く、また、低温領域において脱水量・吸水量が多く熱交換能力が高いこと、更に、その形態を利用し得ること、熱交換材として特に低温熱源を利用する上で最適な特性を持つことから、特にヒートポンプの熱交換材に好適に利用されるものである。
【0002】
【従来の技術】
従来利用されている熱交換材としては、主にゼオライトが広く利用されているが、中でも水和エンタルピーの絶対値が大きく吸水量が多いA型ゼオライトが熱交換材として利用されている。このように、ゼオライトは熱交換材として最も優れているとされていた。
上記の如く、従来、熱交換材としてはゼオライトが広く利用されており、優れた熱交換性能を有しているが、ゼオライトは低温領域においては脱水量・吸水量が少ないという欠点をもっていた。
そこで、当技術分野においては、ゼオライトのようなミクロな細孔をもち、しかも、上記ゼオライトのもつ欠点を克服し得るような、特に低温領域において水の脱水量・吸水量の多い新しい材料の開発が強く求められていた。
【0003】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記問題を解消し得る新しい熱交換材を開発することを目標として、ゼオライトのようなミクロな細孔をもち、低温領域において脱水量・吸水量の多い物質を種々探索した結果、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する中空球状構造をもつ微細粒子が、低温熱源を利用した熱交換材として最適なものであるという知見を得て、更に研究を重ねて、本発明を完成するに至った。
本発明は、熱交換材の特性として従来のものよりも特に低温領域において脱水量・吸水量が多く、また同等の水和エンタルピー値をもつゼオライトのようなミクロな細孔を有し、かつ中空球状粒子の外壁に水分子が出入りできるミクロな水蒸気透過性細孔を有する中空球状構造をもつ微細粒子からなる新規な熱交換材を提供することを目的とするものである。
本発明は、上記中空球状構造をもつ微細粒子の熱交換材としての用途を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)80℃より低温熱源を利用するヒートポンプによる熱交換(但し、デシカント空調における熱交換を含まない)に用いるための熱交換材であり、真空脱気したアロフェン又はアロフェン様構造をもつ中空球状構造体粒子であって、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造をもつ微細粒子からなることを特徴とする熱交換材。
(2)微細粒子が、アロフェンである、前記(1)に記載の熱交換材。
(3)40〜80℃の低温領域での熱源を利用する、前記(1)に記載の熱交換材。
(4)水分子が出入りできるミクロな細孔が、0.3〜0.5nmの孔である、前記(1)に記載の熱交換材。
【0005】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明者らは、低温領域での脱水量・吸水量を多くするため、吸着された水が内部で拡散しやすい構造をもち、かつ絶対値の大きな水和エンタルピー値をもつゼオライトのような1.0nm以下のミクロな細孔を有する物質の探索を種々試みた。その結果、中空球状粒子の外壁に水分子が出入りできるミクロな水蒸気透過性細孔を有する中空球状構造をもつ微細粒子は、最も熱交換材として優れているとされるゼオライトと比較した場合、40℃で真空脱気した試料に対し、約2.4倍の吸水量をもち、また、ほぼ同等の水和エンタルピー値をもつこと、そして、実質熱交換量として約2.2倍、最大熱交換可能量として約2.8倍の熱交換能力があることがわかった。また、60℃真空脱気した試料に対しても実質熱交換量は約1.3倍、80℃真空脱気試料に対してもほぼ同等の能力があること、特に40〜80℃の低温領域での熱交換材として最適なものであること、がわかり、本発明に至った。
【0006】
本発明では、熱交換材の構成要素として、アロフェン又はアロフェン様構造をもつ中空球状構造体粒子であって、中空球状粒子の外壁に水分子が出入りできる小さな細孔を有する中空球状構造をもつ微細粒子が使用される。例えば、天然に存在している、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する中空球状構造をもつ微細粒子としては、アルミニウムの含水ケイ酸塩鉱物のアロフェンが例示される。アロフェンは3.5〜5nmの大きさを有する中空球状アルミニウムケイ酸塩であり、その外壁には0.3〜0.5nmの大きさの細孔を有している。その形態の概略図を図1に示す。
【0007】
また、天然のアロフェンだけでなく、更に、純度の高い合成アロフェンを用いることができる。合成アロフェンは、例えば、オルトケイ酸ナトリウム水溶液と塩化アルミニウム水溶液を混合後、水酸化ナトリウム水溶液を滴下し、前駆体を形成した後、脱塩し、加熱することにより合成される。
【0008】
本発明で使用できる微細粒子としては、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する中空球状構造をもつ微細粒子であればよく、上記アロフェンに限定されるものではない。本発明では、アロフェンの他に、アロフェンのように中空球状で、かつその壁に0.3〜0.5nm程度の孔が空いているアロフェン様構造をもつ物質、即ち、例えば、アルミニウムシリケートのアルミニウムを他の元素で置換したもの、シリコンをゲルマニウム等の他の元素で置換したもので、アロフェンと同類の構造をもつもの、が適宜使用される。
本発明において、熱交換材とは、上記中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造をもつ微細粒子を特定の熱交換材として用いる用途発明としての熱交換材であることを意味するものである。
また、本発明の熱交換材の製造方法及び使用法としては、上記微細粒子をそのまま利用することができるが、その他に、適切なシリカゲル、セメント、ベントナイト等の成形助剤、高分子繊維やデンプン等の有機バインダー等を加えて成形したり、あるいは適当な疎水性高分子等に含浸させて使用することが可能である。本発明の熱交換材を製造するための、これらの製剤の例としては、好適には、例えば、造粒体、錠剤、フィルム、繊維などの形態があげられるが、これらは、その使用目的に応じて適宜選択すればよく、特に制限されるものではない。
このように本発明の熱交換材は、低温領域において脱水量・吸水量が多く、ミクロな細孔を有するため、絶対値の大きな水和エンタルピー値を有し、高い熱交換能力をもつという特性を有し、特に、ヒートポンプの熱交換材として有用である。
【0009】
【実施例】
次に、本発明を実施例に基づいて具体的に説明するが、本発明は当該実施例により何ら限定されるものではない。
実施例
(1)試料
本実施例では、試験試料の中空球状構造の微細粒子として、大分産の天然アロフェンを用いた。また、比較試料として、従来の熱交換材として最も優れている合成ゼオライト(Na−A型ゼオライトのNaを50%Mgにイオン交換したもの)を用いた。
【0010】
(2)脱水量・吸水量、水和エンタルピーの測定及び評価
各試料を飽和臭化ナトリウム水溶液の入ったビーカーとともにデシケーター内に置き、湿度約58%の条件下で1日放置し、脱水前の試料とした。この各試料約0.25gを試料容器に入れ、各温度にて加熱しながら真空脱気を1時間行った。脱気前後の重量の差を脱水量とした。各温度にて真空脱気をした試料を、断熱型水和熱測定装置により水和熱測定を行い、水和エンタルピーを求めた。また、この水和熱測定前後の重量の差を吸水量とした。
【0011】
本発明の上記実施例で得られたアロフェン及びゼオライトの脱水率、吸水率、水和エンタルピー、実質熱交換量、及び熱交換最大量、を表1に示す。
表1に示すように、40℃で真空脱気した試料に対し、アロフェンの吸水率は7.24%であり、ゼオライトの吸水率2.98%と比較して、約2.4倍の吸水量をもち、また、水和エンタルピーは、アロフェンが−55.9kJ/molに対し、ゼオライトの水和エンタルピーは−60.5kJ/molとほぼ同等の水和エンタルピー値を有している。これらの値から、実質熱交換量及び最大熱交換可能量を求めると、アロフェンの実質熱交換量は224.8kJ/kgであり、ゼオライトの実質熱交換量100.2kJ/kgと比較して、約2.2倍の実質熱交換量を有しており、また、アロフェンの最大熱交換可能量は453.4kJ/kgであり、ゼオライトの最大熱交換可能量163.4kJ/kgと比較して、約2.8倍の最大熱交換可能量をもっていることがわかった。
【0012】
【表1】

Figure 0003629530
【0013】
60℃で真空脱気した試料では、アロフェンの実質熱交換量は325.8kJ/kgであり、ゼオライトの実質熱交換量256.8kJ/kgと比較して、約1.3倍、最大熱交換可能量としても約1.9倍の値を有していた。また、80℃で真空脱気した試料でも、アロフェンの実質熱交換量は419.9kJ/kgであり、ゼオライトの実質熱交換量435.1kJ/kgと、ほぼ同等の熱交換量を有し、最大熱交換量としては約1.4倍の値を有しており、特に低温領域での熱交換材として最適な熱交換量を有していた。
【0014】
(3)結果
以上の試験結果により、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造をもつ微細粒子は、低温領域における熱交換材として格別の効果を有することがわかった。
【0015】
【発明の効果】
以上詳述したように、本発明は、アロフェン又はアロフェン様構造をもつ中空球状構造体粒子を構成要素とする熱交換材であって、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造をもつ微細粒子からなることを特徴とする熱交換材に係わるものであり、本発明により、1)従来の材料よりも特に低温領域において脱水量・吸水量が多く、また、それと同等の水和エンタルピー値を有する、2)そのため、40℃で真空脱気した試料においては、実質熱交換量として約2.2倍、最大熱交換可能量として約2.8倍の能力を有しており、低温熱源を利用する上で最適な熱交換材を提供するものである、3)ミクロな細孔を有する中空球状構造をもつ粒子は高い熱交換量をもつばかりでなく、水の吸着速度が速いため熱交換のサイクルを早めることができ、更なるヒートポンプの効率をあげることができる、4)省エネルギーの観点からも本発明による業界に寄与するところは極めて大きいものである、という格別の効果が奏される。
【図面の簡単な説明】
【図1】本発明の実施例で使用されたアロフェンの概略図を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchange material comprising hollow spherical structure particles having allophane or an allophane-like structure as a constituent element. More specifically, the present invention has micro pores through which water molecules can enter and leave the outer wall of the hollow spherical particles. The present invention relates to a new heat exchange material useful as a heat exchange material particularly in a low temperature region, characterized by using fine particles having a structure as a heat exchange material.
The heat exchange material of the present invention comprises fine particles having a hollow spherical structure having small pores, and the fine particles have a high specific surface area and pores in addition to properties excellent in adsorption ability and ion exchange ability. The water adsorption rate is fast, the amount of dehydration and water absorption is large in the low temperature region, the heat exchange capacity is high, the form can be used, and the low temperature heat source is used as a heat exchange material. Since it has optimum characteristics, it is particularly suitably used as a heat exchange material for heat pumps.
[0002]
[Prior art]
As a heat exchange material that has been conventionally used, zeolite is mainly widely used. Among them, type A zeolite having a large absolute value of hydration enthalpy and a large amount of water absorption is used as a heat exchange material. Thus, zeolite was considered to be the most excellent heat exchange material.
As described above, conventionally, zeolite has been widely used as a heat exchange material, and has excellent heat exchange performance. However, zeolite has a drawback of low dehydration and water absorption in a low temperature region.
Therefore, in this technical field, development of a new material having a large amount of water dehydration and water absorption, particularly in a low temperature region, having micro pores like zeolite and capable of overcoming the drawbacks of the above zeolite. Was strongly sought after.
[0003]
[Problems to be solved by the invention]
In such a situation, in view of the prior art, the present inventors have the goal of developing a new heat exchange material that can solve the above problems, with microscopic pores such as zeolite, As a result of various searches for substances with a large amount of dehydration and water absorption in the low-temperature region, fine particles with a hollow spherical structure with microscopic pores that allow water molecules to enter and exit the outer wall of the hollow spherical particle are heat exchange using a low-temperature heat source Obtaining the knowledge that it is the most suitable material, further research was conducted, and the present invention was completed.
In the present invention, the heat exchange material has a larger amount of dehydration and water absorption especially in the low-temperature region than conventional ones, and has micropores such as zeolite having the same hydration enthalpy value, and is hollow. It is an object of the present invention to provide a novel heat exchange material comprising fine particles having a hollow spherical structure having microscopic water vapor permeable pores through which water molecules can enter and leave the outer wall of the spherical particles.
The object of the present invention is to provide a use of the fine particles having the hollow spherical structure as a heat exchange material.
[0004]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) heat exchange by the heat pump to utilize the low temperature of the heat source than 80 ° C. (however, not including the heat exchange in the desiccant air conditioning) and heat exchange materials for use in hollow with vacuum degassed allophane or allophane-like structure a globular structure grains element, heat exchange materials, characterized in that a fine particle having a structure with micro pores capable out the water molecules in the outer wall of the hollow spherical particles.
(2) The heat exchange material according to (1), wherein the fine particles are allophane.
(3) The heat exchange material according to (1), wherein a heat source in a low temperature region of 40 to 80 ° C. is used.
(4) The heat exchange material according to (1), wherein the micropores through which water molecules can enter and exit are pores of 0.3 to 0.5 nm.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
In order to increase the amount of dehydration and water absorption in the low temperature region, the present inventors have a structure in which the adsorbed water easily diffuses inside and has a hydration enthalpy value with a large absolute value. Various attempts were made to search for substances having micropores of 0.0 nm or less. As a result, the fine particles having a hollow spherical structure having microscopic water vapor permeable pores capable of allowing water molecules to enter and exit the outer wall of the hollow spherical particles, when compared with zeolite that is considered to be the most excellent heat exchange material, It has a water absorption of about 2.4 times that of the sample vacuum degassed at ℃, has almost the same hydration enthalpy value, and is about 2.2 times the actual heat exchange amount, maximum heat exchange It has been found that there is about 2.8 times the heat exchange capacity as possible. In addition, the heat exchange amount is about 1.3 times that of a sample that has been vacuum degassed at 60 ° C., and has almost the same capacity as that of an 80 ° C. vacuum degassed sample. As a result, the present invention was found to be optimal as a heat exchange material.
[0006]
In the present invention, hollow spherical structure particles having an allophane or allophane-like structure as a constituent element of the heat exchange material and having a hollow spherical structure having small pores that allow water molecules to enter and exit the outer wall of the hollow spherical particles. Particles are used. For example, as a fine particle having a hollow spherical structure having a microscopic pore that allows water molecules to enter and exit from the outer wall of the hollow spherical particle that exists in nature, aluminum hydrated silicate mineral allophane is exemplified. Allophane is a hollow spherical aluminum silicate having a size of 3.5 to 5 nm and has outer pores having a size of 0.3 to 0.5 nm. A schematic diagram of the configuration is shown in FIG.
[0007]
Further, not only natural allophane, but also synthetic allophane having high purity can be used. Synthetic allophane is synthesized, for example, by mixing a sodium orthosilicate aqueous solution and an aluminum chloride aqueous solution, dropping a sodium hydroxide aqueous solution to form a precursor, desalting, and heating.
[0008]
The fine particles that can be used in the present invention are not limited to the above-mentioned allophane, as long as the fine particles have a hollow spherical structure having microscopic pores that allow water molecules to enter and exit the outer wall of the hollow spherical particles. In the present invention, in addition to allophane, a substance having an allophane-like structure having a hollow spherical shape and having pores of about 0.3 to 0.5 nm in the wall, such as allophane, for example, aluminum of aluminum silicate. Are substituted with other elements, silicon is substituted with other elements such as germanium, and those having a structure similar to allophane are used as appropriate.
In the present invention, the heat exchange material is a heat exchange material as a use invention in which fine particles having a structure having microscopic pores that allow water molecules to enter and exit the outer wall of the hollow spherical particles are used as a specific heat exchange material. It means that.
Further, as the production method and use method of the heat exchange material of the present invention, the fine particles can be used as they are, but in addition, suitable molding aids such as silica gel, cement and bentonite, polymer fibers and starch It can be formed by adding an organic binder or the like, or impregnated with a suitable hydrophobic polymer. Examples of these preparations for producing the heat exchange material of the present invention preferably include forms such as granules, tablets, films, fibers, etc. It may be appropriately selected depending on the case, and is not particularly limited.
As described above, the heat exchange material of the present invention has a large amount of dehydration and water absorption in a low temperature region, and has microscopic pores, so that it has a large absolute hydration enthalpy value and a high heat exchange capability. In particular, it is useful as a heat exchange material for heat pumps.
[0009]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the said Example.
Example (1) Sample In this example, natural allophane produced in Oita was used as the fine particles of the hollow spherical structure of the test sample. Further, as a comparative sample, synthetic zeolite (the Na-A zeolite Na which was ion-exchanged with 50% Mg) which was the most excellent as a conventional heat exchange material was used.
[0010]
(2) Measurement and evaluation of dehydration amount / water absorption amount and hydration enthalpy Each sample was placed in a desiccator with a beaker containing saturated sodium bromide aqueous solution and left for 1 day under a condition of about 58% humidity. A sample was used. About 0.25 g of each sample was placed in a sample container, and vacuum deaeration was performed for 1 hour while heating at each temperature. The difference in weight before and after deaeration was taken as the amount of dehydration. The sample evacuated at each temperature was subjected to a heat of hydration measurement with an adiabatic heat of hydration measuring device to determine the hydration enthalpy. The difference in weight before and after the measurement of heat of hydration was taken as the amount of water absorption.
[0011]
Table 1 shows the dehydration rate, water absorption rate, hydration enthalpy, substantial heat exchange amount, and maximum heat exchange amount of allophane and zeolite obtained in the above examples of the present invention.
As shown in Table 1, the water absorption rate of allophane is 7.24% with respect to the sample vacuum-degassed at 40 ° C., which is about 2.4 times the water absorption rate of zeolite, which is 2.98%. In addition, the hydration enthalpy has a hydration enthalpy value substantially equal to -60.5 kJ / mol, while the hydration enthalpy of zeolite is -55.9 kJ / mol, and the hydration enthalpy of zeolite is -60.5 kJ / mol. From these values, when the real heat exchange amount and the maximum heat exchange amount are determined, the real heat exchange amount of allophane is 224.8 kJ / kg, compared with the real heat exchange amount of zeolite of 100.2 kJ / kg. It has a substantial heat exchange amount of about 2.2 times, and the maximum heat exchangeable amount of allophane is 453.4 kJ / kg, compared with the maximum heat exchangeable amount of zeolite of 163.4 kJ / kg. The maximum heat exchange amount was about 2.8 times.
[0012]
[Table 1]
Figure 0003629530
[0013]
In the sample that was vacuum degassed at 60 ° C., the real heat exchange amount of allophane was 325.8 kJ / kg, which was about 1.3 times the maximum heat exchange amount of the real heat exchange amount of zeolite of 256.8 kJ / kg. The possible amount was about 1.9 times. Further, even in the sample vacuum degassed at 80 ° C., the allophane has a substantial heat exchange amount of 419.9 kJ / kg, and the zeolite has a substantially equal heat exchange amount of 435.1 kJ / kg, The maximum heat exchange amount has a value of about 1.4 times, and has an optimum heat exchange amount as a heat exchange material particularly in a low temperature region.
[0014]
(3) Results From the above test results, it was found that fine particles having a structure having micro pores that allow water molecules to enter and exit the outer wall of the hollow spherical particles have a special effect as a heat exchange material in a low temperature region. .
[0015]
【The invention's effect】
As described above in detail, the present invention is a heat exchange material comprising allophane or hollow spherical structure particles having an allophane-like structure as constituent elements, and has microscopic pores that allow water molecules to enter and exit the outer wall of the hollow spherical particles. In accordance with the present invention, the present invention relates to a heat exchange material characterized by comprising 1) a higher amount of dehydration and water absorption than conventional materials, especially in the low temperature region, and equivalent to that. 2) Therefore, the sample degassed under vacuum at 40 ° C. has a capacity of about 2.2 times as a substantial heat exchange amount and about 2.8 times as a maximum heat exchange amount. 3) Particles with a hollow spherical structure with micro pores not only have a high heat exchange amount, but also water adsorption, providing an optimal heat exchange material for using a low-temperature heat source. Heat exchange due to high speed Can accelerate the cycle, it is possible to increase the efficiency of the further heat pump, 4) where also contribute to the industry according to the invention from the viewpoint of energy saving is extremely large, special effect can be attained.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of allophane used in the examples of the present invention.

Claims (4)

80℃より低温熱源を利用するヒートポンプによる熱交換(但し、デシカント空調における熱交換を含まない)に用いるための熱交換材であ、真空脱気したアロフェン又はアロフェン様構造をもつ中空球状構造体粒子であって、中空球状粒子の外壁に水分子が出入りできるミクロな細孔を有する構造をもつ微細粒子からなることを特徴とする熱交換材。 Heat exchanger from 80 ° C. by the heat pump to utilize the low temperature of the heat source (excluding the heat exchange in the desiccant air conditioning) heat exchange materials der for use in is, the hollow sphere structure having vacuum degassed allophane or allophane-like structure a body particle element, heat exchange materials, characterized in that a fine particle having a structure with micro pores capable out the water molecules in the outer wall of the hollow spherical particles. 微細粒子が、アロフェンである、請求項1に記載の熱交換材。The heat exchange material according to claim 1, wherein the fine particles are allophane. 40〜80℃の低温領域での熱源を利用する、請求項1に記載の熱交換材。The heat exchange material according to claim 1, wherein a heat source in a low temperature range of 40 to 80 ° C. is used. 水分子が出入りできるミクロな細孔が、0.3〜0.5nmの孔である、請求項1に記載の熱交換材。The heat exchange material according to claim 1, wherein the micropores through which water molecules can enter and exit are pores of 0.3 to 0.5 nm.
JP2000238585A 2000-08-07 2000-08-07 Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores Expired - Lifetime JP3629530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238585A JP3629530B2 (en) 2000-08-07 2000-08-07 Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238585A JP3629530B2 (en) 2000-08-07 2000-08-07 Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores

Publications (2)

Publication Number Publication Date
JP2002053849A JP2002053849A (en) 2002-02-19
JP3629530B2 true JP3629530B2 (en) 2005-03-16

Family

ID=18730269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238585A Expired - Lifetime JP3629530B2 (en) 2000-08-07 2000-08-07 Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores

Country Status (1)

Country Link
JP (1) JP3629530B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240956A (en) * 2005-03-07 2006-09-14 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
JP4830623B2 (en) * 2006-05-15 2011-12-07 日産自動車株式会社 Absorbing and dissipating material, manufacturing method of absorbing and dissipating material, and chemical heat pump system using this absorbing and dissipating material

Also Published As

Publication number Publication date
JP2002053849A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
CN102744036B (en) Activated carbon/silica-gel/cacl2 composite adsorbent material for air-conditioning applications and a method of preparing the same
CN101195079A (en) Hollow glass drying agent and method for producing the same
CN101961641B (en) Porous oxide xerogel absorbing material and preparation method thereof
JPH06277440A (en) Material for drying agent for use in device for cooling and dehumidifying combustion gas
CN106543974B (en) A kind of composite shape-setting phase-change material and preparation method
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
CN102407093A (en) Composite silica gel humidity adjusting agent
CN102976347B (en) Method for preparing rectorite aerogel
CN106587101B (en) A kind of synthetic method of molecular sieve of Nano zeolite suitable for VOCs absorption
Zeng et al. Adsorption/desorption behaviors of acetone over micro-/mesoporous SBA-16 silicas prepared from rice husk agricultural waste
Salehi et al. Adsorption selectivity of CO 2 and CH 4 on novel PANI/Alkali-Exchanged FAU zeolite nanocomposites
Zhang et al. Inorganic composite adsorbent CaCl 2/MWNT for water vapor adsorption
Liu et al. Dehumidification performance of aluminum fumarate metal organic framework and its composite
Rajamani et al. Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant
Yang et al. Investigation on water vapor adsorption performance of carbon based composite adsorption material ACF-silica sol-LiCl
JP3629530B2 (en) Heat exchange material with hollow spherical structure particles with microscopic water vapor permeable pores
Li et al. Water vapor sorption on surfactant-templated porous silica xerogels
JP3785455B2 (en) Heat exchange material for heat pump
White Literature review on adsorption cooling systems
CN103933931A (en) Low-pressure methane-adsorbed stratified molecular sieve adsorbent and preparation method thereof
JP3341045B2 (en) Heat exchange material using hollow fibrous structure with micro pores
CN101962192A (en) High-adsorbability porous silicon dioxide absorbing agent and preparation method and application thereof
JP3793809B2 (en) Porous material comprising hollow fiber aluminum silicate and method for producing the same
JP2002200425A (en) Quick-acting desiccant of hollow fiber-like structure having micropore
CN107973316A (en) The preparation method of multi-stage porous modenite

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3629530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term