JP3629523B2 - Method for treating aqueous liquid containing aromatic compound - Google Patents

Method for treating aqueous liquid containing aromatic compound Download PDF

Info

Publication number
JP3629523B2
JP3629523B2 JP2002051188A JP2002051188A JP3629523B2 JP 3629523 B2 JP3629523 B2 JP 3629523B2 JP 2002051188 A JP2002051188 A JP 2002051188A JP 2002051188 A JP2002051188 A JP 2002051188A JP 3629523 B2 JP3629523 B2 JP 3629523B2
Authority
JP
Japan
Prior art keywords
aqueous liquid
catalyst
aromatic compound
range
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002051188A
Other languages
Japanese (ja)
Other versions
JP2003246992A (en
Inventor
孝一 三浦
一広 前
正宏 三和
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002051188A priority Critical patent/JP3629523B2/en
Publication of JP2003246992A publication Critical patent/JP2003246992A/en
Application granted granted Critical
Publication of JP3629523B2 publication Critical patent/JP3629523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
本発明は、芳香族化合物を含む水性液を処理する方法に関する。本発明において、「芳香族化合物を含む水性液」とは、水に液状および/または固形状の芳香族化合物が溶解し、懸濁し、分散し或いは単に混合して存在している液状物を意味する。本明細書においては、この様な「芳香族化合物を含む水性液」を単に水性液ということがある。
【0002】
【従来技術とその問題点】
従来、芳香族化合物を含む水性液(例えば、化学工場廃水など)の処理は、湿式酸化処理、オゾン処理、活性炭吸着などにより行われている。しかしながら、この様な処理は、処理コストが高く、かつ有用成分として利用出来る筈の芳香族化合物を最終的に二酸化炭素にまで酸化分解してしまう。
【0003】
近年液状有機性廃棄物(本発明が対象とする水性液もその一種である)の発生量が増加し、同時に廃棄物に対する規制が強化されつつある現状において、上記の様な従来技術により各種の液状廃棄物を処理する方法では、次第に対処し難くなっている。
【0004】
また、現今の大きな技術的課題である「限りある資源の有効利用」という視点からは、この様な液状廃棄物を資源として再利用することも必要である。
【0005】
【発明が解決しようとする課題】
従って、本発明は、芳香族化合物を含む水性液を高いガス化効率で処理することにより、燃料ガス、電力、熱エネルギーなどの有用な形態で回収し、再利用するための新たな技術を提供することを主な目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記の様な技術の現状に鑑みて、芳香族化合物を含む水性液を処理する技術について研究を進めた結果、水性液を液状の形態で特定の条件下に湿式加熱処理する場合には、上記の課題をほぼ達成し得ることを見出した。
【0007】
すなわち、本発明は、水性液の処理方法を提供する;
1.芳香族化合物を含む水性液の処理方法において、水性液を下記特性を有するNi担持多孔質炭素触媒の存在下に加熱/加圧処理に供することを特徴とする方法:
(a)触媒の寸法は、0.3−2mmの範囲にある。
(b)触媒中のNi担持量は、35−50重量%の範囲にある。
(c)BET比表面積は、150−200m/gの範囲にある。
(d)炭素担体の細孔径は、1−10nmの範囲にある。
(e)水性液中の有機成分を選択的に細孔内に取り込む機能を有する。
2.水性液の加熱/加圧処理を250℃以上の温度で上記項1に記載の方法。
3.水性液の加熱/加圧処理を1MPa以上の圧力で行う上記項1に記載の方法。
4.水性液の加熱/加圧処理を超臨界条件下に行う上記項1に記載の方法。
【0008】
【発明の実施の形態】
本発明が処理対象とする水性液は、水に液状および固形状の芳香族化合物の少なくとも1種が溶解乃至分散した状態の液状物を全て包含する。
【0009】
この様な水性液に含まれる芳香族化合物としては、特に限定されず、代表的には、ベンゼン、トルエン、キシレン、芳香族カルボン酸、フェノール類、およびそれらの誘導体などの液状化合物およびリグニンなどの固形状物質などが例示される。
【0010】
本発明が処理対象とする水性液は、処理すべき芳香族化合物を含む限り、特に限定されない。具体的には、液状芳香族化合物を含む産業廃水、固形状芳香族化合物廃棄物を粉砕し、粉砕物を水に分散させた分散液などである。或いは、固形状芳香族化合物廃棄物を粉砕した後、液状芳香族化合物を含む産業廃水に分散させ液状物を処理しても良い。また、この様な水性液は、芳香族化合物量を超えない量の炭素−水素系物質(バイオマスなど)を含んでいても良い。以下においては、芳香族化合物と炭素−水素系物質を被処理成分と総称することがある。
【0011】
本発明において使用するNi担持多孔質炭素触媒は、例えば、Miura K. et al. , ” Low−temperature conversion of NO to N by use of a novel Ni loaded porous carbon,” Chemical Engineering Science, 56(2001)1623−1629 に記載された手法により、調製することが出来る。すなわち、硫酸ニッケル(II)水溶液にメタアクリル酸タイプのイオン交換樹脂とアンモニア水とを加え、攪拌して、Niでイオン交換する。次いで、Niを吸着したイオン交換樹脂を窒素雰囲気下、約500℃で焼成して、樹脂を分解させることにより、多孔質炭素担体上にNiを担持した触媒が得られる。触媒の形状は、Niの存在により、焼成後にも当初のイオン交換樹脂の形状をほぼそのまま維持している。例えば、イオン交換樹脂が球状である場合には、触媒も球状となる。なお、上記文献は、得られたNi担持多孔質炭素触媒が芳香族化合物分解用の触媒として有用であることは、一切開示していない。また、本発明で使用する触媒は、所定の要件を備える限り、その製造方法は、上記文献に記載された方法に限定されるものではない。
【0012】
本発明で使用する触媒は、下記の様なパラメーターにより特徴づけることができる。
(a)触媒の寸法は、0.3−2mm程度(より好ましくは0.5〜1mm程度)の範囲にある。
(b)触媒中のNi担持量は、35−50重量%程度(より好ましくは45〜50重量%)の範囲にある。
(c)BET比表面積は、150−200m/g程度と非常に大きい。
(d)炭素担体の細孔径は、1−10nm程度の範囲にあるので、大きな分子もとりこめる。
(e)疎水性の炭素が担体を構成しているので、水性液中の有機成分を選択的に細孔内に取り込んで、有機成分を極めて高い効率で分解する機能を発揮する。
【0013】
さらに、本発明で使用する触媒は、以下の様な性質を具備している。
(f)強度が極めて大きい。
(g)Niが、触媒全体に均一に分散している。
(h)耐酸性および耐アルカリ性に優れている。
(i)耐熱性および耐圧性に優れている。例えば、約500℃における焼成操作において、イオン交換樹脂単独では、溶融し、流動変形するのに対し、Niを担持させた状態では、実質的に変形を生じない。
(j)従って、過酷な条件下において、高効率で被処理物の処理を行うことができる。
(k)触媒製造に際し、焼成終了段階で、Niが金属状態で存在しているので、従来のNi系触媒と異なって、水素還元の必要がない。
【0014】
本発明による水性液の処理方法は、触媒を充填した耐熱反応容器内に水性液を導入して、接触反応を進行させることにより、実施することができる。
【0015】
反応様式としては、連続方式或いはバッチ方式のいずれを採用しても良い。また、接触反応は、固定床或いは流動床のいずれを用いて行っても、良い。
【0016】
反応条件は、芳香族化合物を分解し得る温度および圧力条件を選択する。原理的には、温度と条件との組み合わせにおいて、水性液の少なくとも一部が液相として存在しうる湿式系、水性液がガス化して存在するガス化系、および超臨界系のいずれにおいても、実施可能である。より具体的には、反応時の温度は、250℃程度以上とすることが好ましく、より好ましくは、300〜400℃程度である。圧力は、1MPa程度以上とすることが好ましく、より好ましくは15〜20MPa程度である。
【0017】
水性液処理時の温度が高い程、被処理成分の分解が促進されて、反応時間が短縮されるが、反面において設備費が増大するので、反応温度は、被処理成分の濃度、運転費、建設費などを総合的に考慮して、定めれば良い。
【0018】
本発明によれば、芳香族化合物は、メタン、水素および二酸化炭素に分解される。また、炭素−水素系物質が共存する場合には、これらもメタン、水素および二酸化炭素にまで分解される。メタンおよび水素は、必要に応じて、常法に従って、精製および回収され、燃料などとして利用される。また、高温の反応液から常法に従って熱回収を行うこともできる。
【0019】
【発明の効果】
本発明方法によれば、水性液中の芳香族化合物(および併存することがあるバイオマス)を高い効率で有用なガスに変換させることができるので、水性液の処理製造コストが著しく低減される。
【0020】
また、本発明方法によれば、芳香族化合物を含む液状の廃棄物を資源として再利用することにより、CO削減を含む地球環境の保全に大きく貢献することができる。
【0021】
さらに、本発明方法によれば、ダイオキシンなどの有害物質は発生しないので、大気、土壌などの環境汚染を実質的に解消乃至著しく軽減することができる。
【0022】
さらにまた、本発明方法によれば、従来の焼却処分を主とする処理方法に比して、電力、熱エネルギーなどをより効率良くかつ大量に回収することができる。
【0023】
【実施例】
以下に実施例および参考例を示し、本発明の特徴とするところをより一層明確にする。
実施例1
1.0Nの硫酸ニッケル(II)水溶液100mLにメタアクリル酸タイプのイオン交換樹脂(“WK11”、三菱化学(株)製)10gとアンモニア水30mLとを加え、24時間攪拌して、Niでイオン交換した。次いで、Niを吸着したイオン交換樹脂を窒素雰囲気下、約500℃で20分間焼成して、樹脂を分解させることにより、多孔質炭素担体にNiを担持した触媒を調製した。触媒は、直径350μm、Ni含有量45wt%、表面積170m/gであった。
次いで、上記で調製したNi担持多孔質炭素触媒0.5gを充填した固定床方式の反応容器(内容積6CC)に高圧ポンプを用いて、18MPaに加圧した水を0.75mL/分で連続供給しつつ、10℃/分の昇温速度で350℃まで昇温した後、同温度で30分間定常化操作を行った。
次いで、フェノール含有水性液(濃度600ppm)を反応容器内に導入し、滞留時間4.5分で上記の圧力および温度条件下に処理を行った。
結果は、図1に示す通りである。フェノールが完全に分解されて、メタン、水素および二酸化炭素に転換されていることが明らかである。
実施例2
フェノール含有水性液に代えて、ベンゼン含有水性液(濃度600ppm)を反応容器内に導入する以外は、実施例1と同様の条件下に処理を行った。結果は、図1に示す通りである。ベンゼンが完全に分解されて、メタン、水素および二酸化炭素に転換されていることが明らかである。
実施例3
フェノール含有水性液に代えて、トルエン含有水性液(濃度350ppm)を反応容器内に導入する以外は、実施例1と同様の条件下に処理を行った。結果は、図1に示す通りである。トルエンが完全に分解されて、メタン、水素および二酸化炭素に転換されていることが明らかである。
実施例4
フェノール含有水性液に代えて、フェノール/リグニン含有水性液(いずれも濃度600ppm)を反応容器内に導入する以外は、実施例1と同様の条件下に処理を行った。
【0024】
この場合にも、フェノールとリグニンが完全に分解されて、メタン、水素および二酸化炭素に転換された。
実施例5
フェノール含有水性液に代えて、フェノール/ベンゼン/リグニン/ショ糖含有水性液(いずれも濃度600ppm)を反応容器内に導入する以外は、実施例1と同様の条件下に処理を行った。
【0025】
この場合にも、全ての成分が完全に分解されて、メタン、水素および二酸化炭素に転換された。
参考例1〜2
フェノール含有水性液に代えて、リグニン含有水性液(濃度600ppm:参考例1)或いはショ糖含有水性液(濃度600ppm:参考例2)を反応容器内に導入する以外は、実施例1と同様の条件下に処理を行った。結果は、図1に併せて示す通りである。リグニンおよびショ糖が完全に分解されて、メタン、水素および二酸化炭素に転換されていることが明らかである。
【図面の簡単な説明】
【図1】本発明実施例および参考例による水性液処理の結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating an aqueous liquid containing an aromatic compound. In the present invention, the “aqueous liquid containing an aromatic compound” means a liquid substance in which a liquid and / or solid aromatic compound is dissolved, suspended, dispersed or simply mixed in water. To do. In the present specification, such an “aqueous liquid containing an aromatic compound” may be simply referred to as an aqueous liquid.
[0002]
[Prior art and its problems]
Conventionally, treatment of an aqueous liquid containing an aromatic compound (for example, chemical factory wastewater) is performed by wet oxidation treatment, ozone treatment, activated carbon adsorption, or the like. However, such a treatment is expensive to treat, and the soot aromatic compound that can be used as a useful component is finally oxidized and decomposed to carbon dioxide.
[0003]
In recent years, the amount of liquid organic waste (the aqueous liquid targeted by the present invention is one type) has increased, and at the same time, regulations on waste are being strengthened. The method of treating liquid waste is becoming increasingly difficult to deal with.
[0004]
In addition, from the viewpoint of “effective use of limited resources”, which is a major technical issue now, it is also necessary to reuse such liquid waste as resources.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention provides a new technique for recovering and reusing an aqueous liquid containing an aromatic compound in a useful form such as fuel gas, electric power, thermal energy, etc. by treating with high gasification efficiency. The main purpose is to do.
[0006]
[Means for Solving the Problems]
In light of the current state of the art as described above, the present inventors have conducted research on a technique for treating an aqueous liquid containing an aromatic compound. As a result, the aqueous liquid is wet-heated under specific conditions in a liquid form. In some cases, it has been found that the above problems can be almost achieved.
[0007]
That is, the present invention provides a method for treating an aqueous liquid;
1. In the method for treating an aqueous liquid containing an aromatic compound, the aqueous liquid is subjected to a heating / pressurizing treatment in the presence of a Ni-supporting porous carbon catalyst having the following characteristics:
(A) The size of the catalyst is in the range of 0.3-2 mm.
(B) The amount of Ni supported in the catalyst is in the range of 35-50% by weight.
(C) The BET specific surface area is in the range of 150-200 m 2 / g.
(D) The pore diameter of the carbon support is in the range of 1-10 nm.
(E) It has a function of selectively incorporating organic components in the aqueous liquid into the pores.
2. Item 2. The method according to Item 1, wherein the aqueous liquid is heated / pressurized at a temperature of 250 ° C or higher.
3. Item 2. The method according to Item 1, wherein the aqueous liquid is heated / pressurized at a pressure of 1 MPa or more.
4). Item 2. The method according to Item 1, wherein the aqueous liquid is heated / pressurized under supercritical conditions.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The aqueous liquid to be treated by the present invention includes all liquid substances in which at least one of liquid and solid aromatic compounds is dissolved or dispersed in water.
[0009]
The aromatic compound contained in such an aqueous liquid is not particularly limited and is typically a liquid compound such as benzene, toluene, xylene, aromatic carboxylic acid, phenols, and derivatives thereof, and lignin. Examples include solid substances.
[0010]
The aqueous liquid to be treated by the present invention is not particularly limited as long as it contains an aromatic compound to be treated. Specifically, it is an industrial wastewater containing a liquid aromatic compound, a dispersion obtained by pulverizing a solid aromatic compound waste, and dispersing the pulverized product in water. Alternatively, after the solid aromatic compound waste is pulverized, it may be dispersed in industrial waste water containing a liquid aromatic compound to treat the liquid. Further, such an aqueous liquid may contain an amount of carbon-hydrogen based material (such as biomass) that does not exceed the amount of the aromatic compound. In the following, aromatic compounds and carbon-hydrogen substances may be collectively referred to as components to be treated.
[0011]
Examples of the Ni-supporting porous carbon catalyst used in the present invention include Miura K. et al. et al. , "Low-temperature conversion of NO to N 2 by use of a novel Ni loaded porous carbon," by the method described in Chemical Engineering Science, 56 (2001) 1623-1629, may be prepared. That is, a methacrylic acid type ion exchange resin and aqueous ammonia are added to an aqueous nickel (II) sulfate solution, stirred, and ion exchanged with Ni. Next, the ion-exchange resin having adsorbed Ni is baked at about 500 ° C. in a nitrogen atmosphere to decompose the resin, thereby obtaining a catalyst supporting Ni on a porous carbon support. The shape of the catalyst maintains the original shape of the ion-exchange resin as it is even after firing due to the presence of Ni. For example, when the ion exchange resin is spherical, the catalyst is also spherical. The above document does not disclose that the obtained Ni-supporting porous carbon catalyst is useful as a catalyst for decomposing aromatic compounds. Moreover, as long as the catalyst used by this invention is equipped with a predetermined requirement, the manufacturing method is not limited to the method described in the said literature.
[0012]
The catalyst used in the present invention can be characterized by the following parameters.
(A) The size of the catalyst is in the range of about 0.3-2 mm (more preferably about 0.5-1 mm).
(B) The amount of Ni supported in the catalyst is in the range of about 35-50% by weight (more preferably 45-50% by weight).
(C) The BET specific surface area is as large as about 150-200 m 2 / g.
(D) Since the pore diameter of the carbon support is in the range of about 1-10 nm, large molecules can be incorporated.
(E) Since the hydrophobic carbon constitutes the carrier, the organic component in the aqueous liquid is selectively taken into the pores, and the organic component is decomposed with extremely high efficiency.
[0013]
Furthermore, the catalyst used in the present invention has the following properties.
(F) The strength is extremely high.
(G) Ni is uniformly dispersed throughout the catalyst.
(H) Excellent acid resistance and alkali resistance.
(I) Excellent heat resistance and pressure resistance. For example, in a baking operation at about 500 ° C., the ion exchange resin alone melts and fluidly deforms, but substantially does not deform when Ni is supported.
(J) Therefore, the processing object can be processed with high efficiency under severe conditions.
(K) At the time of catalyst production, since Ni exists in a metal state at the end of firing, there is no need for hydrogen reduction unlike conventional Ni-based catalysts.
[0014]
The method for treating an aqueous liquid according to the present invention can be carried out by introducing the aqueous liquid into a heat-resistant reaction vessel filled with a catalyst and advancing the contact reaction.
[0015]
As the reaction mode, either a continuous method or a batch method may be adopted. The contact reaction may be performed using either a fixed bed or a fluidized bed.
[0016]
As the reaction conditions, temperature and pressure conditions capable of decomposing aromatic compounds are selected. In principle, in any combination of temperature and conditions, in any of a wet system in which at least a part of the aqueous liquid can exist as a liquid phase, a gasification system in which the aqueous liquid is gasified, and a supercritical system, It can be implemented. More specifically, the temperature during the reaction is preferably about 250 ° C. or higher, and more preferably about 300 to 400 ° C. The pressure is preferably about 1 MPa or more, more preferably about 15 to 20 MPa.
[0017]
The higher the temperature during the aqueous liquid treatment, the more the decomposition of the component to be treated is promoted and the reaction time is shortened. On the other hand, the equipment cost increases, so the reaction temperature is the concentration of the component to be treated, It should be determined in consideration of the construction cost.
[0018]
According to the present invention, aromatic compounds are broken down into methane, hydrogen and carbon dioxide. Moreover, when a carbon-hydrogen type material coexists, these are also decomposed | disassembled to methane, hydrogen, and a carbon dioxide. Methane and hydrogen are refined and recovered according to conventional methods as necessary, and used as fuel. In addition, heat recovery can be performed from a high-temperature reaction solution according to a conventional method.
[0019]
【The invention's effect】
According to the method of the present invention, the aromatic compound (and biomass that may coexist) in the aqueous liquid can be converted into a useful gas with high efficiency, so that the production cost of the aqueous liquid is remarkably reduced.
[0020]
Further, according to the method of the present invention, by reusing liquid waste containing aromatic compounds as resources, it can greatly contribute to the preservation of the global environment including CO 2 reduction.
[0021]
Furthermore, according to the method of the present invention, since no harmful substances such as dioxin are generated, environmental pollution such as air and soil can be substantially eliminated or significantly reduced.
[0022]
Furthermore, according to the method of the present invention, electric power, thermal energy, and the like can be recovered more efficiently and in a large amount as compared with the conventional processing method mainly including incineration disposal.
[0023]
【Example】
Examples and reference examples will be shown below to further clarify the features of the present invention.
Example 1
Add 10 g of methacrylic acid type ion exchange resin (“WK11”, manufactured by Mitsubishi Chemical Corporation) and 30 mL of aqueous ammonia to 100 mL of 1.0 N nickel (II) sulfate aqueous solution, stir for 24 hours, and ionize with Ni Exchanged. Next, an ion exchange resin having adsorbed Ni was baked at about 500 ° C. for 20 minutes in a nitrogen atmosphere to decompose the resin, thereby preparing a catalyst having Ni supported on a porous carbon support. The catalyst had a diameter of 350 μm, a Ni content of 45 wt%, and a surface area of 170 m 2 / g.
Subsequently, water pressurized to 18 MPa was continuously added at 0.75 mL / min to the fixed bed type reaction vessel (inner volume 6 CC) filled with 0.5 g of the Ni-supporting porous carbon catalyst prepared above using a high-pressure pump. While being supplied, the temperature was raised to 350 ° C. at a rate of 10 ° C./min, and then a steady operation was performed at the same temperature for 30 minutes.
Next, a phenol-containing aqueous liquid (concentration 600 ppm) was introduced into the reaction vessel, and the treatment was performed under the above pressure and temperature conditions with a residence time of 4.5 minutes.
The results are as shown in FIG. It is clear that the phenol has been completely decomposed and converted to methane, hydrogen and carbon dioxide.
Example 2
The treatment was performed under the same conditions as in Example 1 except that a benzene-containing aqueous liquid (concentration 600 ppm) was introduced into the reaction vessel instead of the phenol-containing aqueous liquid. The results are as shown in FIG. It is clear that benzene has been completely decomposed and converted to methane, hydrogen and carbon dioxide.
Example 3
The treatment was carried out under the same conditions as in Example 1 except that a toluene-containing aqueous liquid (concentration 350 ppm) was introduced into the reaction vessel instead of the phenol-containing aqueous liquid. The results are as shown in FIG. It is clear that toluene has been completely decomposed and converted to methane, hydrogen and carbon dioxide.
Example 4
The treatment was performed under the same conditions as in Example 1 except that a phenol / lignin-containing aqueous solution (both having a concentration of 600 ppm) was introduced into the reaction vessel in place of the phenol-containing aqueous solution.
[0024]
Again, phenol and lignin were completely decomposed and converted to methane, hydrogen and carbon dioxide.
Example 5
The treatment was carried out under the same conditions as in Example 1 except that a phenol / benzene / lignin / sucrose-containing aqueous solution (all concentrations: 600 ppm) was introduced into the reaction vessel instead of the phenol-containing aqueous solution.
[0025]
Again, all components were completely decomposed and converted to methane, hydrogen and carbon dioxide.
Reference Examples 1-2
Instead of the phenol-containing aqueous liquid, a lignin-containing aqueous liquid (concentration 600 ppm: Reference Example 1) or a sucrose-containing aqueous liquid (concentration 600 ppm: Reference Example 2) was introduced into the reaction vessel, and was the same as Example 1. Processing was carried out under conditions. The results are as shown in FIG. It is clear that lignin and sucrose are completely degraded and converted to methane, hydrogen and carbon dioxide.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of an aqueous liquid treatment according to an example of the present invention and a reference example.

Claims (4)

ベンゼン、トルエン、キシレン、芳香族カルボン酸、フェノール類及びそれらの誘導体からなる群から選択される少なくとも1種を含む水性液の処理方法において、水性液を下記特性を有するNi担持多孔質炭素触媒の存在下に加熱及び加圧処理に供することを特徴とする方法:
1.触媒の寸法は、0.3-2mmの範囲にある、
2.触媒中のNi担持量は、35-50重量%の範囲にある、
3.BET比表面積は、150-200m2/gの範囲にある、
4.炭素担体の細孔径は、1-10nmの範囲にある、
5.水性液中の有機成分を選択的に細孔内に取り込む機能を有する。
In a method for treating an aqueous liquid comprising at least one selected from the group consisting of benzene, toluene, xylene, aromatic carboxylic acids, phenols, and derivatives thereof , the aqueous liquid is an Ni-supported porous carbon catalyst having the following characteristics: A method characterized by subjecting to heating and pressure treatment in the presence of:
1. The catalyst dimensions are in the range of 0.3-2mm,
2. The amount of Ni supported in the catalyst is in the range of 35-50% by weight,
3. BET specific surface area is in the range of 150-200m 2 / g,
Four. The pore size of the carbon support is in the range of 1-10 nm,
Five. It has a function of selectively taking organic components in the aqueous liquid into the pores.
水性液の加熱及び加圧処理を250℃以上の温度で行う請求項1に記載の方法。2. The method according to claim 1, wherein the aqueous liquid is heated and pressurized at a temperature of 250 ° C. or higher. 水性液の加熱及び加圧処理を1MPa以上の圧力で行う請求項1に記載の方法。The method according to claim 1, wherein the aqueous liquid is heated and pressurized at a pressure of 1 MPa or more. 水性液の加熱及び加圧処理を超臨界条件下に行う請求項1に記載の方法。The method according to claim 1, wherein the aqueous liquid is heated and pressurized under supercritical conditions.
JP2002051188A 2002-02-27 2002-02-27 Method for treating aqueous liquid containing aromatic compound Expired - Lifetime JP3629523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051188A JP3629523B2 (en) 2002-02-27 2002-02-27 Method for treating aqueous liquid containing aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051188A JP3629523B2 (en) 2002-02-27 2002-02-27 Method for treating aqueous liquid containing aromatic compound

Publications (2)

Publication Number Publication Date
JP2003246992A JP2003246992A (en) 2003-09-05
JP3629523B2 true JP3629523B2 (en) 2005-03-16

Family

ID=28663229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051188A Expired - Lifetime JP3629523B2 (en) 2002-02-27 2002-02-27 Method for treating aqueous liquid containing aromatic compound

Country Status (1)

Country Link
JP (1) JP3629523B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151836B2 (en) * 2007-09-12 2013-02-27 三菱化学株式会社 Metal-supported carbon catalyst and method for decomposing and removing volatile organic compounds
JP5996050B2 (en) * 2015-07-10 2016-09-21 大阪瓦斯株式会社 Method and apparatus for producing metal catalyst

Also Published As

Publication number Publication date
JP2003246992A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
He et al. Hydrothermal and pyrolytic conversion of biomasses into catalysts for advanced oxidation treatments
Ye et al. Refined regulation and nitrogen doping of biochar derived from ramie fiber by deep eutectic solvents (DESs) for catalytic persulfate activation toward non-radical organics degradation and disinfection
JP2006129735A (en) Method for hydrolyzing cellulose using catalyst and method for producing glucose using the catalyst
CN111530465B (en) Preparation method of supported cigarette butt porous carbon material catalyst and application of supported cigarette butt porous carbon material catalyst in nitrocyclohexane hydrogenation reaction
CN110548515A (en) Oil sludge carbon loaded metal catalyst, preparation method and application
CN113061441A (en) Biochar loaded iron material for oxidizing and repairing organic pollution of soil water body and preparation method and application thereof
CN110961450B (en) Method for degrading naphthalene in soil through microwave-induced synergistic catalytic oxidation
CN113546632A (en) Catalyst for treating phenolic wastewater by wet oxidation method and preparation method thereof
JP3629523B2 (en) Method for treating aqueous liquid containing aromatic compound
CN110743524B (en) Surface high-alkalinity spherical active carbon ozone catalyst and application thereof
Goswami et al. Nanobiochar—a green catalyst for wastewater remediation
CN114367278B (en) Method for preparing biochar composite catalytic material and application
CN109626486A (en) A kind of method of coupling processing high concentrated organic wastewater and heavy metal wastewater thereby
JP2003246993A (en) Method for producing fuel gas
JP4010369B2 (en) Hydrothermal gasification catalyst, method for producing the catalyst, and aqueous liquid treatment method using the catalyst
CN113769748A (en) Preparation of FeNi @ corncob activated carbon composite material
JP5078373B2 (en) Wastewater treatment method
JP4402286B2 (en) Organic waste treatment methods
CN113546635B (en) Preparation method and application of cigarette butt derived carbon-based material
CN113477219B (en) Method for preparing carbon-based adsorption material by utilizing waste cigarette butts and application thereof
JPH0967111A (en) Production of activated carbon
CN112479343B (en) Application of graphite carbon prepared from cyanamide waste residue in phenolic wastewater treatment
Pattanshetti et al. Polymer Waste Valorization into Advanced Carbon Nanomaterials for Potential Energy and Environment Applications
CN115025821B (en) Hydrothermal carbon composite material, preparation method thereof, catalytic system and application
Mu et al. Wastewater treatment via hydro-de-heteroatoms using hydrogen donors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Ref document number: 3629523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term