JP3628458B2 - Effective use of heat for continuous coolers - Google Patents

Effective use of heat for continuous coolers Download PDF

Info

Publication number
JP3628458B2
JP3628458B2 JP29723896A JP29723896A JP3628458B2 JP 3628458 B2 JP3628458 B2 JP 3628458B2 JP 29723896 A JP29723896 A JP 29723896A JP 29723896 A JP29723896 A JP 29723896A JP 3628458 B2 JP3628458 B2 JP 3628458B2
Authority
JP
Japan
Prior art keywords
cooling
water
cooler
heat
continuous cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29723896A
Other languages
Japanese (ja)
Other versions
JPH10122697A (en
Inventor
憲光 若林
良典 秋鹿
正己 小浜
富士夫 小松
義史 川畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Showa Denko Gas Products Co Ltd
Original Assignee
Mayekawa Manufacturing Co
Showa Tansan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co, Showa Tansan Co Ltd filed Critical Mayekawa Manufacturing Co
Priority to JP29723896A priority Critical patent/JP3628458B2/en
Publication of JPH10122697A publication Critical patent/JPH10122697A/en
Application granted granted Critical
Publication of JP3628458B2 publication Critical patent/JP3628458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は連続式クーラを利用した高温処理冷却システムにおける熱有効利用方法に係り、特に加熱工程後における冷却工程時に連続式クーラより排出される温排水ないし排熱をクローズサイクルで利用可能にした連続式クーラの熱有効利用方法に関する。
【0002】
【従来の技術】
従来より、ペットボトル、飲料缶、食品を可撓性包装体に充填した密封包装食品、缶及び瓶詰め食品等(以下これらを総称して高温被加熱被体という)、の高温熱処理システムの一環として連続式クーラを使用した冷却ラインは周知である。
【0003】
この種の冷却システムにおいては、120℃前後の熱水による加熱高温処理された略85℃前後の被加熱体を、界面活性剤の水溶性潤滑剤を使用したスライダー洗浄部による前処理をした後、連続式クーラに搬入し、シャワーまたはその他の手段により冷却水を導入して加温被加熱体の冷却を行うわけであるが、環境の面よりこの被加熱体の冷却後の温排水はクローズサイクルにて再度略25〜30℃前後に冷却して再利用されるのが好ましい。
【0004】
図4は、かかるクローズサイクルのシステムフロー図を示し、連続式クーラ10の入り口側より加熱ペットボトル等が搬入され、連続式クーラ10内での前記加熱ペットボトル等の冷却により排出される排熱を冷却するため、前記連続式クーラの出口側槽101の冷却水を冷凍圧縮機100で冷却する。
また、冷却された冷却水は、前記連続式クーラの下流側より上流側に向け前記排熱により昇温しながら、図示してないポンプにより矢印H方向にそれぞれ向流循環するようにしてある。
一方、連続式クーラの入り口側槽部102と下流の出口側槽部101との間には上流側から下流側に向け、前記昇温した冷却水を還流させるバイパス103を設け、且つ、該バイパス上に設けた大気放熱用のクーリングタワー104により還流する昇温冷却空気を冷却して降温させるようにしてある。
上記のように従来の連続式クーラの熱利用の手段は、前記クーリングタワー104と冷凍圧縮機100とにより形成された、二つの熱的閉サイクルにより前記連続式クーラの排熱処理をしている。
なお、図中105は冷却塔であり、冷媒の凝縮用として機能している。
【0005】
【発明が解決しようとする課題】
しかしながら前記従来システムにおいては、圧縮式冷凍機を用いる構成の為に必要動力が大きくなり、ランニングコストが無用に増大するという欠点を内蔵している問題がある。
【0006】
かかる欠点を解消するために、吸収式若しくは吸着式冷凍機を用いることも考えられる。
しかしながら吸収式若しくは吸着式冷凍機は、50〜85℃前後のなるべく安定した熱源水を必要とする。
一方、連続式クーラの温排水からは、加熱殺菌体の搬入入り口部位で、約70〜60℃前後の熱源を得られるので、この排熱の有効利用を使用すれば前記問題の解決も可能と考えられる。
【0007】
本発明は、上記問題点に鑑みなされたもので、連続式クーラより安定熱源を得るようにし、吸着式冷凍機を介在させ、連続式クーラの熱有効利用方法を提供するものである。
【0008】
そこで、本発明の請求項1記載の発明は、
連続式クーラより排出される冷却後の温排水を使用して、吸着式冷凍機の熱源側に前記温排水に含まれる排熱を導入して、冷却側で温度制御された冷熱の温度のバラツキを小さく押さえ、この冷熱を連続式クーラに供給して熱的閉サイクルの形成により、連続式クーラの熱有効利用方法の提供を目的としたものである。
【0009】
また、請求項2記載の発明は、請求項1記載の発明の目的に加え、
連続式クーラの温排水の温度温度レベルの嵩上をして、吸着式冷凍機が低温温排水にも対応できるようにした、連続式クーラの熱有効利用方法の提供を目的としたものである。
【0010】
また、請求項3記載の発明は、請求項1記載の発明の目的に加え、
前記連続式クーラ内部に、冷却水の冷却循環還流系により熱的閉サイクルを形成させた、連続式クーラの熱有効利用方法の提供を目的としたものである。
【0011】
また、請求項4記載の発明は、請求項1記載の発明の目的に加え、
連続式クーラの前段位設けた、加熱殺菌体の前処理用スライダー洗浄工程に使用される洗浄液の再利用することにより、加熱殺菌冷却システムの省水化を図るとともに冷却効率の向上を図った、連続式クーラの熱有効利用方法の提供を目的としたものである。
【0012】
また、請求項5記載の発明は、請求項1記載の発明の目的に加え、
連続式クーラの温排水を使用して、吸着式冷凍機を駆動させ、冷却側より得られる冷熱の温度バラツキをできるだけ押さえ、前記連続式クーラの冷却水に対する高精度の温度制御を可能とした、連続式クーラの熱有効利用方法の提供を目的としたものである。
【0013】
【課題を解決するための手段】
請求項1記載の発明は、
加熱殺菌したペットボトル、飲料缶、食品を可撓性包装体に充填した密封包装食品、缶及び瓶詰め食品(以下容器入り飲食品という)に対し、連続式クーラを介して冷却した後の該クーラよりの50〜85℃前後の温排水を、冷凍機により冷却しながら主としてクローズサイクルにより前記温排水の再利用を図る、連続式クーラの熱有効利用方法において、
連続式クーラの内部で、入り口側より投入される容器入り飲食品は冷却水のシャワーにより冷却されて該冷却水は順次下流側より上流側へ向け昇温しながら容器入り飲食品に対して向流し、該連続式クーラの入り口側より排出された前記温排水を吸着式冷凍機の熱源水として利用して吸着式冷凍機を駆動させ、一方前記吸着式冷凍機の冷却側より得られた冷却水を前記連続式クーラの下流側に導入するとともに、前記連続式クーラの下流側より上流側に冷却水を循環させて熱的閉サイクルを形成するようにした、ことを特徴としたものである。
【0014】
特に本発明は、前記加熱部により連続式クーラの低温温排水の温度保障をして、保障された好適温度の温排水を吸着式冷凍機の熱源水に使用するようにしたため、前記吸着式冷凍機の効率的駆動を常時確保維持できる。
また、前記連続式クーラの上流入り口側の温排水を吸着式冷凍機の熱源側に導入し、その導入により得られた該吸着式冷凍機の冷却側の冷却水を、前記連続式クーラの下流側に導入するようにし、且つ導入された冷却水は下流側より上流側に向流循環するようにしたため、連続式クーラの上流側と下流側とは前記吸着式冷凍機を介して熱的閉サイクルを形成し、効率の良い熱有効利用を図ることができる。
【0015】
また、請求項2記載の発明は、
請求項1記載の連続式クーラの温排水を加熱部により加熱した後、吸着式冷凍機の熱源水として利用することを特徴としたものである。
【0016】
上記したように、連続式クーラの温排水を加熱部により加熱して低温温排水の温度保障をするようにしてあるため、該温度保障により好適温度の熱源水を前記吸着式冷凍機の熱源側に導入することができ、前記熱的閉サイクルを形成する吸着式冷凍機の効率的常時駆動を可能とし、連続式クーラの効率的熱有効利用を図ることができる。
【0017】
また、請求項3記載の発明は、
請求項1記載のクーリングタワーを介して前記連続式クーラの上流側より下流側に冷却水が再循環させるとととともに前記クーリングタワーは連続式クーラの次段上流側槽と、最下流側手前の槽との間に冷却水の外部還流路を形成した、ことを特徴としたものである。
【0018】
上記のように、前記連続式クーラの上流側より下流側に向け冷却水の還流用バイパスを設け、且つ該バイパスに設けた大気放熱用クーリングタワーを設けるようにしてあるため、
前記冷却水が向流するにつれ昇温する向流循環式の連続式クーラに、冷却水の冷却還流路を付加して連続式クーラ自体にも熱的還流循環系を形成でき、連続式クーラの冷却効率の向上を図ることができる。
【0019】
また、請求項4記載の発明は、
請求項1記載の加熱殺菌したカン、壜もしくはペットボトル等を冷却する連続式クーラの熱有効利用方法において、
前記連続式クーラの入り口側の前処理部にエアレーション部を設け、加熱殺菌部で利用した石鹸水等の洗浄もしくは滑り補助剤の除去をし、除去した洗浄液を連続式クーラの冷却水に合流再利用を図った、ことを特徴としたものである。
【0020】
カン、壜もしくはペットボトル等の加熱殺菌体の冷却システムでは、冷却工程の前処理として、石鹸水に使用されている界面活性剤や滑り剤等の水溶性洗浄液を大量に使用するスライダー洗浄部を設けてあるが、
上記のように、この洗浄廃液より前記界面活性剤や滑り剤を除去するエアレーション部を設け、該エアレーション部により界面活性剤や滑り剤等を除去した洗浄液を連続式クーラの冷却水に合流再利用させるようにしたため、
前記連続式クーラの冷却効率の向上と省水化を図ることができる。
【0021】
また、請求項5記載の発明は、
請求項1記載の第1、第2の吸着式冷凍機を直列に接続し、
連続式クーラの入り口側より排出された温排水を第1の吸着式冷凍機の熱源水として利用し、第1の吸着式冷凍機の熱源水として利用後の温排水を第2の吸着式冷凍機の熱源水として利用し、第2の吸着式冷凍機の熱源水として利用後の温排水を第2の前記吸着式冷凍機の冷却側に導入して第1の冷却を行った後、該第1の冷却後の予冷水を第1の吸着式冷凍機の冷却側に導入して本冷却した冷却水を前記連続式クーラの下流側に導入するようにした、ことを特徴としたものである。
【0022】
即ち、第1、第2の吸着式冷凍機を用意し、それを直列に接続し、
連続式クーラの入り口側より排出された例えば65℃の温排水を第1の吸着式冷凍機の熱源水として利用して該冷凍機の熱源側で1段目の奪熱により、60℃の奪熱温水に変換し、さらに該60℃の奪熱温水を第2の吸着式冷凍機の熱源水として利用し該冷凍機の熱源側での2段目の奪熱により55℃の奪熱温水に変換する。
ついで、上記奪熱温水を適当の降温手段により30℃に降温して、第2吸着式冷凍機の冷却側に導入する。該冷却部で1段目の温度制御による予冷却をさせ、さらに第1吸着式冷凍機の冷却側に導入して、2段目の温度制御による本冷却をさせて、20℃の冷却水を得るようにしてある。
即ち、上記2基の吸着式冷凍機の直列的処理により、2段階の奪熱と2段階の温度制御により最終段においてバラツキの少ない25℃前後の冷却水を生成することができる。
【0023】
【発明の実施の形態】
但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
図1は本発明の基本構成を示す連続式クーラの熱有効利用システムであり、本実施例では特にカン、壜、もしくはペットボトル等の熱水殺菌後の加熱殺菌体を冷却する、冷却工程における温排水利用システムに好適に適用されるものである。
【0024】
そして本実施例において、10は連続式クーラで、12は加熱部で、11aは凝縮器13aを持つ吸着式冷凍機で、30aはクーリングタワーである。
上記連続式クーラは10は、入り口側よりワークである略85℃前後の加熱殺菌体が連続的に搬入され、前記連続式クーラ10の出口側槽では略40℃前後に冷却されて搬出される。
前記冷却のため前記出口側より略20℃の冷却水が供給され上流側に向け図示してないポンプにより供給され、シャワーまたはその他の手段により上流側より搬送されてくるワークに対し適当の冷却を行いながら向流循環され、前記連続式クーラの入り口側の最初の冷却部では略65℃程度の排熱を持つ温排水になっている。
又、この連続式クーラの次段上流側槽より、図示してないポンプにより前記クーリングタワー30aを経由大気放熱をしながら下流側手前の槽に還流され、熱的閉サイクルを形成している。
【0025】
上記吸着式冷凍機11aは、一般に冷媒として水、アルコール等を使用し、又はシリカゲル、ゼオライト、活性炭、活性アルミナ等の固体吸着剤を収設した吸着剤熱交換器(不図示)を複数基並設し、
前記連続式クーラの温排水の排熱と、凝縮器13aより放熱された放熱水を前記熱交換器の熱源水側Aと冷却側Bに交互に供給しながら、前記吸着剤への冷媒の吸着と脱着を繰り返し、該冷媒の蒸発潜熱を利用して放熱水の冷却を行なう構成にしている。
凝縮器13aで、冷却側Bより蒸発した冷媒を外気と間接接触させて凝縮を行うとともに、吸着剤熱交換器における吸着熱を大気放熱する。
加熱部12は、吸着式冷凍機11aの熱源水側Aに導入する前記連続式クーラの温排水の排熱の加熱用に設けたもので、該排熱が低温の場合使用する。
【0026】
そして連続式クーラ10の入り口側槽部より排出された温排水の排熱は、加熱部12を経由して吸着式冷凍機11aの熱源水側Aに導入し、吸着式冷凍機を駆動させる。
一方、吸着式冷凍機11aの冷却側Bには所定温度(20℃)に温度制御された冷却水が生成され、該冷却水は連続式クーラ10の下流側に導入され、連続式クーラ10の上流側と下流側は前記吸着式冷凍機11aを介して熱的閉サイクルを形成し、熱の有効利用を可能にしている。
なお、前記クーリングタワー30aは連続式クーラの次段上流側槽と、下流側手前の槽との間に冷却水の外部還流路を形成し、図示してないポンプにより該還流路を還流させ、且つ大気放熱による冷却水の降温を行なっている。
一方、連続式クーラの内部では、図示してないポンプにより冷却水は矢印Cの方向に順次下流側より上流側へ向け昇温しながら向流し、前記還流路とともに熱的閉サイクルを形成するようにしてある。
【0027】
図2に示す第2の実施例は、吸着式冷凍機11aと11bの2基を直列に配設し、熱源水の熱源側の奪熱過程を1A、2Aの2段に分け、且つ冷却側の温度制御過程も2B、1Bの2段階に分け、連続式クーラ10の温排水の一層の効率的利用と冷却水の一層の緻密な制御を図ったものである。
以下前記実施例との差異を中心に説明する。
図に示すように、本システムは、連続式クーラ10と、温排水加熱部14と、吸着式冷凍部15と、冷却液供給部16と、より構成してある。
連続式クーラは10は前述のように、矢印D方向に85℃前後のペットボトル等の加熱殺菌処理をした加温ワークが搬入され、85℃から40℃に降温冷却される。
前記冷却過程での排熱により、連続式クーラの入口で加熱ペットボトルとの熱交換により約60℃に昇温した温排水は、温流路35を介して温排水加熱部14に送られるようにしてある。
温排水加熱部14は、ボイラ余剰熱源27と熱交換器26と温排水タンク25とポンプp−8とよりなり、後述する奪熱温水の一部を前記ポンプp−8により流路42を介して還流させ、熱交換器26でボイラ余剰熱源27と熱交換して流路43を介して温排水タンク25に供給する。該温排水タンクでは前記連続式クーラ10よりの温排水と混合させて、温排水温度を約60℃を65℃に昇温させ好適な熱源水として吸着式冷凍部に供給する構成にしてある。
【0028】
上記吸着式冷凍部15は、凝縮器として機能するクーリングタワー13bを共有する吸着式冷凍機11bと11cとを直列に配設したもので、前記温排水加熱部14より流路36を介して導出された65℃の温排水は、第1吸着式冷凍機11bの熱源側1Aで1段目の奪熱を受け、60℃の奪熱温水に変換される。
さらに、タンク28、流路57を介して第2吸着式冷凍機11cの熱源側2Aに導入され、2段目の奪熱を受け、55℃の奪熱温水に変換され分離タンク31に導入される。
該分離タンク31より奪熱温水の一部は前述のように温排水加熱部14に供給され、他の一部はポンプp−3、流路38を介してクーリングタワー30bを経由して大気放熱により30℃に降温させられ、第2吸着式冷凍機の冷却側2Bに導入される。
上記冷却側2Bで1段目の温度制御をさせ、さらに第1吸着式冷凍機11bの冷却側1Aに導入させ、該冷却側1Aで2段目の温度制御をさせて、20℃の冷却水を得るようにしてある。
上記20℃の冷却水は流路40と補給源水タンク34を経由し、ポンプp−7と流路41を介して連続式クーラ10の出口側槽に還流するようにしてある。
斯くして低級の60℃の温排水を利用して20℃の冷却水を得ることができるとともに、熱的閉サイクルを形成して連続式クーラの熱有効利用を可能にしてある。
また、温排水加熱部14の加熱熱源は殺菌用ボイラの余剰熱源を使用する構成としてあるため、この点からも熱有効利用を図ることができる。
【0029】
図3に示す第3の実施例は、連続式クーラの殺菌加熱ボトルの搬入側である連続式クーラ10の上流側より、冷却時の排熱を吸着式冷凍機の熱源側3Aに導入駆動させ、冷却側3Bで所定温度に温度制御させた冷熱を前記連続式クーラ10の下流側に導入して、前記連続式クーラ内の循環冷却水を直接冷却するようにしたものであり、且つスライダー洗浄水の再利用を図った省水システムである。
【0030】
図に示すように本実施例は、連続式クーラ10と、吸着式冷凍機11dと、クーリングタワー30dと、小型冷凍機60と、エアレーション部57と、スライダー洗浄部56とより構成してある。
連続式クーラ10は、下流側より上流側に向け冷却水を向流循環させるようにしたクーラで、上流側入り口より85℃に昇温させた殺菌加熱ペットボトルを矢印E方向に連続的に搬入させ下流側出口で40℃に降温させた冷却ボトルを得るようにしてある。
【0031】
吸着式冷凍機11dは、凝縮器13dを持ち、熱源側3Aに連続式クーラの上流側1槽目の冷却槽51の60〜65℃前後の排熱を流路58を介して導入させ、冷却側3Bで冷却された20〜30℃前後の冷熱は流路59を介して前記連続式クーラ10の最下流槽52に導入させ、連続式クーラ10の上流側と下流側とを前記吸着式冷凍機10を介して熱的閉サイクルを形成させ、熱有効利用を可能にしてある。
また、下流側冷却槽55より上流側3槽目の冷却槽54までの間の図示してないポンプにより矢印F方向にそれぞれ向流させ、前記上流側の冷却槽54より下流側冷却槽55との間には大気放熱用のクーリングタワー30dを持つ還流用バイパス61を設け、形成された冷却水の矢印方向Gの循環還流路により中間部に熱的閉サイクルを構成して、熱有効利用を図るとともに冷却効率の向上を図る構成にしてある。
殺菌ボトル洗浄用のスライダー洗浄部56は連続式クーラ10の前工程に設けられ、エアレーション部57により界面活性剤や滑り剤を除去し前記中間部の冷却水と合流させ、大量の洗浄水の再利用を図る構成にしてある。
図中の60は、小型冷凍機で次段の冷却槽53で冷却後のペットボトルを冷却する補助的冷却源として利用するようにしてある。
【0032】
【発明の効果】
以上記載のごとく本発明によれば、60〜70℃と時系列的に変化する温排水を熱源として有効に利用して必要動力の大幅低減を可能にするとともに、連続式クーラに精度の高い冷却水を供給し、連続式クーラの効率的熱有効利用方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の基本構成を示す連続式クーラの熱有効利用システム図である。
【図2】本発明の第2の実施例を示す連続式クーラの熱有効利用システムのフロー図である。
【図3】本発明の第3の実施例を示す連続式クーラの熱有効利用システムのフロー図である。
【図4】従来のクローズサイクルにおける連続式クーラによる冷却システムのシステムフロー図である。
【符号の説明】
10 連続式クーラ
11a、11b、11c、11d 吸着式冷凍機
12 加熱部
13a、13d 凝縮器
13b 冷却塔(クーリングタワー)
14 温排水加熱部
15 吸着式冷凍部
16 冷却液供給部
30a、30b、30d クーリングタワー(CT)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of effectively using heat in a high-temperature treatment cooling system using a continuous cooler, and in particular, continuous drainage or exhaust heat discharged from a continuous cooler during a cooling process after a heating process can be used in a closed cycle. The present invention relates to a method for effectively using heat in a cooler.
[0002]
[Prior art]
Conventionally, as a part of high-temperature heat treatment systems for PET bottles, beverage cans, hermetically sealed foods filled with flexible packagings, cans and bottling foods (hereinafter collectively referred to as high-temperature heated objects) Cooling lines using continuous coolers are well known.
[0003]
In this type of cooling system, a heated object at approximately 85 ° C. that has been heated and heated with hot water at approximately 120 ° C. is pretreated by a slider cleaning unit that uses a water-soluble lubricant as a surfactant. However, it is carried into a continuous cooler, and cooling water is introduced by shower or other means to cool the heated object, but the heated waste water after cooling the heated object is closed from the environmental point of view. It is preferable to reuse it by cooling it to about 25-30 ° C. again in the cycle.
[0004]
FIG. 4 shows a system flow diagram of such a closed cycle, in which a heated PET bottle or the like is carried from the inlet side of the continuous cooler 10 and is exhausted by cooling the heated PET bottle or the like in the continuous cooler 10. The cooling water in the outlet side tank 101 of the continuous cooler is cooled by the refrigeration compressor 100.
The cooled cooling water is circulated counter-currently in the direction of arrow H by a pump (not shown) while the temperature is raised by the exhaust heat from the downstream side to the upstream side of the continuous cooler.
On the other hand, a bypass 103 is provided between the inlet side tank portion 102 and the downstream outlet side tank portion 101 of the continuous cooler to recirculate the raised cooling water from the upstream side toward the downstream side, and the bypass The temperature rising and cooling air recirculated by the cooling tower 104 for heat radiation provided above is cooled and lowered.
As described above, the heat utilization means of the conventional continuous cooler performs the exhaust heat treatment of the continuous cooler by two thermal closed cycles formed by the cooling tower 104 and the refrigeration compressor 100.
In the figure, reference numeral 105 denotes a cooling tower, which functions as a refrigerant for condensing.
[0005]
[Problems to be solved by the invention]
However, the conventional system has a problem that a necessary power is increased due to the configuration using the compression refrigerator, and the running cost is unnecessarily increased.
[0006]
In order to eliminate such drawbacks, it is also conceivable to use an absorption type or adsorption type refrigerator.
However, absorption or adsorption refrigerators require heat source water as stable as possible at around 50 to 85 ° C.
On the other hand, from the hot drainage of the continuous cooler, a heat source of about 70 to 60 ° C. can be obtained at the carry-in entrance site of the heat sterilized body. Therefore, if this exhaust heat is used effectively, the above problem can be solved. Conceivable.
[0007]
The present invention has been made in view of the above problems, and provides a method for effectively utilizing heat of a continuous cooler by obtaining a stable heat source from a continuous cooler and interposing an adsorption refrigerator.
[0008]
Therefore, the invention described in claim 1 of the present invention is
Using the cooled hot wastewater discharged from the continuous cooler, the exhaust heat contained in the warm wastewater is introduced to the heat source side of the adsorption refrigerator, and the temperature variation of the temperature controlled on the cooling side It is intended to provide a method for effectively using the heat of the continuous cooler by supplying the cold heat to the continuous cooler and forming a thermal closed cycle.
[0009]
In addition to the object of the invention described in claim 1, the invention described in claim 2
The purpose is to provide an effective heat utilization method for the continuous cooler that increases the temperature and temperature level of the hot water in the continuous cooler, and that the adsorption refrigeration machine can handle low temperature hot water. .
[0010]
In addition to the object of the invention described in claim 1, the invention described in claim 3
An object of the present invention is to provide an effective heat utilization method for a continuous cooler in which a thermal closed cycle is formed inside the continuous cooler by a cooling circulation return system of cooling water.
[0011]
In addition to the object of the invention described in claim 1, the invention described in claim 4
By reusing the cleaning liquid used in the slider cleaning process for pretreatment of the heat sterilized body provided in the previous stage of the continuous cooler, the heat sterilization cooling system was saved water and the cooling efficiency was improved. The purpose is to provide a method for effectively using heat in a continuous cooler.
[0012]
In addition to the object of the invention described in claim 1, the invention described in claim 5
Using the hot water of the continuous cooler, driving the adsorption type refrigerator, suppressing the temperature variation of the cold heat obtained from the cooling side as much as possible, enabling highly accurate temperature control for the cooling water of the continuous cooler, The purpose is to provide a method for effectively using heat in a continuous cooler.
[0013]
[Means for Solving the Problems]
The invention described in claim 1
Heated and sterilized PET bottles, beverage cans, sealed packaged foods filled with flexible packaging, cans, and bottled foods (hereinafter referred to as foods and drinks in containers) after cooling through a continuous cooler In a method of effectively using heat of a continuous cooler, which is intended to reuse the warm drainage mainly by a closed cycle while cooling the warm drainage at around 50 to 85 ° C.
Inside the continuous cooler, the food and drink contained in the container introduced from the inlet side is cooled by a shower of cooling water, and the cooling water is directed toward the food and drink contained in the container while gradually raising the temperature from the downstream side to the upstream side. flow, the heated effluent discharged from the inlet side of the continuous cooler utilizing drives the adsorption refrigerator as a heat source water of the adsorption refrigerating machine, whereas the obtained from the cooling side of the adsorption refrigerator cooling Water is introduced to the downstream side of the continuous cooler, and the cooling water is circulated from the downstream side to the upstream side of the continuous cooler to form a thermal closed cycle. .
[0014]
In particular, according to the present invention, the temperature of the low-temperature hot drain of the continuous cooler is secured by the heating unit, and the warm drainage having a guaranteed suitable temperature is used as the heat source water of the adsorption-type refrigerator. Efficient driving of the machine can be secured and maintained at all times.
In addition, hot waste water on the upstream inlet side of the continuous cooler is introduced to the heat source side of the adsorption refrigerator, and the cooling water on the cooling side of the adsorption refrigerator obtained by the introduction is supplied downstream of the continuous cooler. Since the introduced cooling water circulates counter-currently from the downstream side to the upstream side, the upstream side and the downstream side of the continuous cooler are thermally closed via the adsorption refrigerator. A cycle can be formed, and efficient and efficient use of heat can be achieved.
[0015]
The invention according to claim 2
The hot water of the continuous cooler according to claim 1 is heated by a heating unit and then used as heat source water for an adsorption refrigerator.
[0016]
As described above, the temperature of the low temperature hot water is ensured by heating the hot water of the continuous cooler by the heating unit, so that the heat source water of a suitable temperature is supplied to the heat source side of the adsorption type refrigerator by the temperature guarantee. The adsorption type refrigerator that forms the thermal closed cycle can be efficiently driven at all times, and the efficient heat utilization of the continuous cooler can be achieved.
[0017]
The invention according to claim 3
The cooling water is recirculated from the upstream side of the continuous cooler to the downstream side via the cooling tower according to claim 1, and the cooling tower includes a next stage upstream tank of the continuous cooler, a tank on the most downstream side, and An external reflux path for cooling water is formed between the two.
[0018]
As described above, a cooling water recirculation bypass is provided from the upstream side to the downstream side of the continuous cooler, and the atmospheric heat radiation cooling tower provided in the bypass is provided.
A cooling recirculation path for cooling water can be added to a continuous flow circulation type cooler that rises in temperature as the cooling water flows countercurrently to form a thermal recirculation system in the continuous cooler itself. The cooling efficiency can be improved.
[0019]
The invention according to claim 4
In the heat effective use method of the continuous cooler for cooling the heat-sterilized can, jar or plastic bottle according to claim 1,
An aeration part is provided in the pre-treatment part on the inlet side of the continuous cooler to clean the soapy water used in the heat sterilization part or to remove the sliding aid, and to rejoin the removed cleaning liquid into the cooling water of the continuous cooler. It is intended to be used.
[0020]
In the cooling system for heat sterilized bodies such as cans, jars, and plastic bottles, a slider cleaning unit that uses a large amount of water-soluble cleaning liquids such as surfactants and slip agents used in soapy water is used as a pretreatment for the cooling process. It is provided,
As described above, an aeration section is provided to remove the surfactant and slip agent from the cleaning waste liquid, and the cleaning liquid from which the surfactant and slip agent have been removed by the aeration section is joined and reused as cooling water for the continuous cooler. So that
It is possible to improve the cooling efficiency of the continuous cooler and save water.
[0021]
The invention according to claim 5
Connecting the first and second adsorption refrigerators according to claim 1 in series;
The hot waste water discharged from the inlet side of the continuous cooler is used as the heat source water of the first adsorption refrigerator, and the hot waste water after being used as the heat source water of the first adsorption refrigerator is the second adsorption refrigeration. After the first cooling is performed by introducing the hot waste water after being used as the heat source water of the second adsorption refrigeration machine to the cooling side of the second adsorption refrigeration machine, The precooled water after the first cooling is introduced to the cooling side of the first adsorption refrigeration machine, and the main cooling water is introduced to the downstream side of the continuous cooler. is there.
[0022]
That is, prepare first and second adsorption refrigerators, connect them in series,
For example, 65 ° C warm drainage discharged from the inlet side of the continuous cooler is used as the heat source water of the first adsorption refrigerator, and the heat source side of the refrigerator is deprived of 60 ° C by the first stage heat removal. It is converted into hot water, and the 60 ° C deprived hot water is used as the heat source water for the second adsorption refrigerator, and the second stage deprivation on the heat source side of the refrigerator is converted to 55 ° C deprived hot water. Convert.
Next, the deprived hot water is cooled to 30 ° C. by an appropriate temperature lowering means and introduced into the cooling side of the second adsorption type refrigerator. In the cooling section, precooling is performed by temperature control at the first stage, and further introduced into the cooling side of the first adsorption refrigeration machine, main cooling is performed by temperature control at the second stage, and cooling water at 20 ° C. is supplied. To get.
That is, by the serial processing of the above two adsorption refrigerators, cooling water at around 25 ° C. with little variation in the final stage can be generated by two stages of heat removal and two stages of temperature control.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.
FIG. 1 shows an effective heat utilization system for a continuous cooler showing the basic configuration of the present invention. In this embodiment, in particular, in a cooling process for cooling a heat-sterilized body after hot water sterilization such as cans, straws, or PET bottles. It is suitably applied to a hot wastewater utilization system.
[0024]
In this embodiment, 10 is a continuous cooler, 12 is a heating unit, 11a is an adsorption refrigerator having a condenser 13a, and 30a is a cooling tower.
The continuous cooler 10 is continuously loaded with a heat sterilized body of approximately 85 ° C., which is a workpiece, from the entrance side, and is cooled to approximately 40 ° C. and discharged from the outlet side tank of the continuous cooler 10. .
Cooling water of approximately 20 ° C. is supplied from the outlet side for the cooling, and is supplied to the upstream side by a pump (not shown), and appropriate cooling is performed on the workpiece conveyed from the upstream side by a shower or other means. It is circulated counter-currently while being performed, and is a warm drainage having a waste heat of about 65 ° C. in the first cooling section on the inlet side of the continuous cooler.
Further, from the upstream side tank of the next stage of the continuous cooler, it is returned to the tank on the downstream side while being radiated to the atmosphere via the cooling tower 30a by a pump (not shown) to form a thermally closed cycle.
[0025]
The adsorption refrigerator 11a generally uses a plurality of adsorbent heat exchangers (not shown) in which water, alcohol, or the like is used as a refrigerant, or a solid adsorbent such as silica gel, zeolite, activated carbon, or activated alumina is placed. Set up
Adsorption of refrigerant to the adsorbent while alternately supplying the waste heat of the hot water of the continuous cooler and the facility water radiated from the condenser 13a to the heat source water side A and the cooling side B of the heat exchanger And desorption are repeated, and the facility water is cooled using the latent heat of vaporization of the refrigerant.
In the condenser 13a, the refrigerant evaporated from the cooling side B is brought into indirect contact with the outside air to condense, and the adsorption heat in the adsorbent heat exchanger is radiated to the atmosphere.
The heating unit 12 is provided for heating the exhaust heat of the hot water of the continuous cooler introduced into the heat source water side A of the adsorption refrigerator 11a, and is used when the exhaust heat is low temperature.
[0026]
And the exhaust heat of the warm waste water discharged | emitted from the entrance side tank part of the continuous cooler 10 is introduce | transduced into the heat-source water side A of the adsorption-type refrigerator 11a via the heating part 12, and drives an adsorption-type refrigerator.
On the other hand, cooling water whose temperature is controlled to a predetermined temperature (20 ° C.) is generated on the cooling side B of the adsorption refrigerator 11a, and the cooling water is introduced to the downstream side of the continuous cooler 10, and the continuous cooler 10 The upstream side and the downstream side form a thermal closed cycle via the adsorption refrigerator 11a, thereby enabling effective use of heat.
The cooling tower 30a forms an external reflux path for cooling water between the upstream tank on the next stage of the continuous cooler and the tank on the downstream side, and refluxes the reflux path with a pump (not shown). Cooling water is cooled by air heat radiation.
On the other hand, inside the continuous cooler, the cooling water is counter-flowed in the direction of arrow C while gradually rising from the downstream side to the upstream side by a pump (not shown) so as to form a thermal closed cycle together with the reflux path. It is.
[0027]
In the second embodiment shown in FIG. 2, the adsorption refrigerators 11a and 11b are arranged in series, the heat removal process on the heat source side of the heat source water is divided into two stages 1A and 2A, and the cooling side This temperature control process is also divided into two stages, 2B and 1B, in order to achieve more efficient use of the warm drainage of the continuous cooler 10 and more precise control of the cooling water.
Hereinafter, the difference from the above embodiment will be mainly described.
As shown in the figure, the present system includes a continuous cooler 10, a warm drainage heating unit 14, an adsorption refrigeration unit 15, and a coolant supply unit 16.
As described above, the continuous cooler 10 is loaded with a warmed work such as a PET bottle having a temperature of about 85 ° C. in the direction of arrow D and cooled down from 85 ° C. to 40 ° C.
The warm waste water heated to about 60 ° C. by heat exchange with the heated PET bottle at the inlet of the continuous cooler due to the exhaust heat in the cooling process is sent to the warm waste water heating unit 14 via the temperature channel 35. It is.
The warm drainage heating unit 14 includes a boiler surplus heat source 27, a heat exchanger 26, a warm drainage tank 25, and a pump p-8. A part of the deprived hot water described later is passed through the flow path 42 by the pump p-8. Then, the heat is exchanged with the boiler surplus heat source 27 by the heat exchanger 26 and is supplied to the warm drainage tank 25 through the flow path 43. The warm drainage tank is mixed with the warm drainage from the continuous cooler 10 so that the temperature of the warm drainage is increased from about 60 ° C. to 65 ° C. and supplied to the adsorption refrigeration unit as a suitable heat source water.
[0028]
The adsorption refrigeration unit 15 includes adsorption chillers 11b and 11c sharing a cooling tower 13b functioning as a condenser arranged in series. The adsorption refrigeration unit 15 is led out from the warm drainage heating unit 14 through a flow path 36. The 65 ° C. warm waste water receives the first stage of heat removal at the heat source side 1A of the first adsorption refrigerator 11b and is converted to 60 ° C. deprived hot water.
Furthermore, it is introduced into the heat source side 2A of the second adsorption refrigeration machine 11c via the tank 28 and the flow path 57, receives the second stage heat removal, is converted to 55 ° C. deprived hot water, and is introduced into the separation tank 31. The
A part of the deprived hot water is supplied from the separation tank 31 to the hot drainage heating unit 14 as described above, and the other part is released to the atmosphere via the cooling tower 30b via the pump p-3 and the flow path 38. The temperature is lowered to 30 ° C. and introduced into the cooling side 2B of the second adsorption refrigerator.
The first stage temperature control is performed on the cooling side 2B, and further introduced into the cooling side 1A of the first adsorption refrigeration machine 11b, and the second stage temperature control is performed on the cooling side 1A, thereby cooling water at 20 ° C. To get.
The cooling water at 20 ° C. is returned to the outlet side tank of the continuous cooler 10 via the flow path 40 and the replenishment source water tank 34 and via the pump p-7 and the flow path 41.
Thus, 20 ° C. cooling water can be obtained by using a low temperature 60 ° C. warm waste water, and a thermal closed cycle is formed to enable effective use of the continuous cooler.
Moreover, since the heating heat source of the warm waste water heating part 14 is set as the structure which uses the surplus heat source of the sterilization boiler, heat utilization can be aimed at also from this point.
[0029]
In the third embodiment shown in FIG. 3, the exhaust heat at the time of cooling is introduced and driven to the heat source side 3A of the adsorption refrigeration machine from the upstream side of the continuous cooler 10, which is the carry-in side of the sterilization heating bottle of the continuous cooler. Cooling heat whose temperature is controlled to a predetermined temperature on the cooling side 3B is introduced to the downstream side of the continuous cooler 10 so that the circulating cooling water in the continuous cooler is directly cooled, and slider cleaning is performed. This is a water-saving system designed to reuse water.
[0030]
As shown in the figure, the present embodiment is composed of a continuous cooler 10, an adsorption refrigerator 11 d, a cooling tower 30 d, a small refrigerator 60, an aeration unit 57, and a slider cleaning unit 56.
The continuous cooler 10 is a cooler in which cooling water is counter-circulated from the downstream side toward the upstream side, and the sterilized and heated PET bottle heated to 85 ° C. from the upstream side inlet is continuously carried in the direction of arrow E. The cooling bottle is cooled to 40 ° C. at the downstream outlet.
[0031]
The adsorption refrigeration machine 11d has a condenser 13d, and introduces the exhaust heat at around 60 to 65 ° C. of the first cooling tank 51 upstream of the continuous cooler to the heat source side 3A via the flow path 58 to cool the cooling system. The cooling heat of about 20-30 ° C. cooled on the side 3B is introduced into the most downstream tank 52 of the continuous cooler 10 via the flow path 59, and the upstream and downstream sides of the continuous cooler 10 are introduced into the adsorption refrigeration. A thermal closed cycle is formed through the machine 10 to enable effective use of heat.
Further, a pump (not shown) between the downstream side cooling tank 55 and the upstream side third cooling tank 54 is caused to counter-flow in the direction of arrow F, and the upstream side cooling tank 54 and the downstream side cooling tank 55 Between them, a reflux bypass 61 having a cooling tower 30d for heat radiation is provided, and a thermal closed cycle is formed in the intermediate portion by the circulating circulation path in the arrow direction G of the formed cooling water for effective use of heat. In addition, the cooling efficiency is improved.
The slider cleaning unit 56 for cleaning the sterilization bottle is provided in the previous process of the continuous cooler 10, and the aeration unit 57 removes the surfactant and the slip agent, and merges it with the cooling water in the intermediate part, so that a large amount of cleaning water is reused. It is configured to be used.
60 in the figure is a small refrigerator and is used as an auxiliary cooling source for cooling the plastic bottle after cooling in the cooling tank 53 in the next stage.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to drastically reduce the required power by effectively using the hot waste water that changes in time series as 60 to 70 ° C. It is possible to supply water and provide an efficient heat effective utilization method of the continuous cooler.
[Brief description of the drawings]
FIG. 1 is a heat efficient utilization system diagram of a continuous cooler showing a basic configuration of the present invention.
FIG. 2 is a flow diagram of a continuous cooler effective heat utilization system according to a second embodiment of the present invention.
FIG. 3 is a flow diagram of a continuous cooler effective heat utilization system according to a third embodiment of the present invention.
FIG. 4 is a system flow diagram of a cooling system using a continuous cooler in a conventional closed cycle.
[Explanation of symbols]
10 Continuous Coolers 11a, 11b, 11c, 11d Adsorption Refrigerator 12 Heating Units 13a, 13d Condenser 13b Cooling Tower (Cooling Tower)
14 Warm drain heating unit 15 Adsorption type freezing unit 16 Coolant supply unit 30a, 30b, 30d Cooling tower (CT)

Claims (5)

加熱殺菌したペットボトル、飲料缶、食品を可撓性包装体に充填した密封包装食品、缶及び瓶詰め食品(以下容器入り飲食品という)に対し、連続式クーラを介して冷却した後の該クーラよりの50〜85℃前後の温排水を、冷凍機により冷却しながら主としてクローズサイクルにより前記温排水の再利用を図る、連続式クーラの熱有効利用方法において、
連続式クーラの内部で、入り口側より投入される容器入り飲食品は冷却水のシャワーにより冷却されて該冷却水は順次下流側より上流側へ向け昇温しながら容器入り飲食品に対して向流し、該連続式クーラの入り口側より排出された前記温排水を吸着式冷凍機の熱源水として利用して吸着式冷凍機を駆動させ、一方前記吸着式冷凍機の冷却側より得られた冷却水を前記連続式クーラの下流側に導入するとともに、前記連続式クーラの下流側より上流側に冷却水を循環させて熱的閉サイクルを形成するようにしたことを特徴とする連続式クーラの熱有効利用方法。
Heated and sterilized PET bottles, beverage cans, sealed packaged foods filled with flexible packagings, cans, and bottled foods (hereinafter referred to as container foods and drinks) after being cooled through a continuous cooler In a method of effectively using heat of a continuous cooler, which is intended to reuse the warm drainage mainly by a closed cycle while cooling the warm drainage at around 50 to 85 ° C.
Inside the continuous cooler, the food and drink contained in the container introduced from the inlet side is cooled by a shower of cooling water, and the cooling water is directed toward the food and drink contained in the container while gradually raising the temperature from the downstream side to the upstream side. flow, the heated effluent discharged from the inlet side of the continuous cooler utilizing drives the adsorption refrigerator as a heat source water of the adsorption refrigerating machine, whereas the obtained from the cooling side of the adsorption refrigerator cooling A continuous cooler characterized in that water is introduced to the downstream side of the continuous cooler and the cooling water is circulated from the downstream side to the upstream side of the continuous cooler to form a thermal closed cycle . Effective use of heat.
前記連続式クーラの温排水を加熱部により加熱した後、吸着式冷凍機の熱源水として利用することを特徴とする請求項1記載の連続式クーラの熱有効利用方法。The method for effectively using heat of a continuous cooler according to claim 1, wherein the hot water of the continuous cooler is heated by a heating unit and then used as heat source water of an adsorption refrigerator. クーリングタワーを介して前記連続式クーラの上流側より下流側に冷却水が再循環させるとともに、前記クーリングタワーは連続式クーラの次段上流側槽と、最下流側手前の槽との間に冷却水の外部還流路を形成した請求項1記載の連続式クーラの熱有効利用方法。Cooling water is recirculated from the upstream side of the continuous cooler to the downstream side via the cooling tower, and the cooling tower is connected between the next upstream stage tank of the continuous cooler and the tank on the most downstream side. The method for effectively utilizing heat of a continuous cooler according to claim 1, wherein an external reflux path is formed . 加熱殺菌したカン、壜もしくはペットボトルに対し、連続式クーラを介して冷却した後の該クーラよりの温排水を、冷凍機により冷却しながら主としてクローズサイクルにより前記温排水の再利用を図る、連続式クーラの熱有効利用方法において、
連続式クーラの入り口側より排出された温排水を吸収式若しくは吸着式冷凍機(以下吸着式冷凍機等という)の熱源水として利用し、一方前記吸着式冷凍機等の冷却側より得られた冷却水を前記連続式クーラの下流側に導入するとともに、前記連続式クーラの下流側より上流側に冷却水が循環するようにするとともに、
前記連続式クーラの入り口側の前処理部にエアレーション部を設け、加熱殺菌部で利用した石鹸水等の洗浄もしくは滑り補助剤の除去をし、除去した洗浄液を連続式クーラの冷却水に合流再利用を図った、請求項1記載の連続式クーラの熱有効利用方法。
For the heat-sterilized can, bottle, or plastic bottle , the hot waste water from the cooler after cooling through the continuous cooler is reused mainly by the closed cycle while being cooled by the refrigerator. In the method of effective use of heat of the air conditioner,
Hot drainage discharged from the inlet side of the continuous cooler was used as heat source water for an absorption type or adsorption type refrigerator (hereinafter referred to as an adsorption type refrigerator), while obtained from the cooling side of the adsorption type refrigerator, etc. While introducing the cooling water downstream of the continuous cooler, the cooling water is circulated from the downstream side of the continuous cooler to the upstream side,
An aeration part is provided in the pre-treatment part on the inlet side of the continuous cooler to clean the soapy water used in the heat sterilization part or to remove the sliding aid, and to rejoin the removed cleaning liquid into the cooling water of the continuous cooler. The heat utilization method of the continuous type cooler of Claim 1 which aimed at utilization.
高温熱処理をした高温被加熱体に対し、連続式クーラを介して冷却した後の該クーラよりの温排水を、冷凍機により冷却しながら主としてクローズサイクルにより前記温排水の再利用を図る、連続式クーラの熱有効利用方法において、
連続式クーラの入り口側より排出された温排水を吸収式若しくは吸着式冷凍機(以下吸着式冷凍機等という)の熱源水として利用し、一方前記吸着式冷凍機等の冷却側より得られた冷却水を前記連続式クーラの下流側に導入するとともに、前記連続式クーラの下流側より上流側に冷却水が循環するように第1、第2の吸着式冷凍機を直列に接続し、
連続式クーラの入り口側より排出された温排水を第1の吸着式冷凍機の熱源水として利用し、第1の吸着式冷凍機の熱源水として利用後の温排水を第2の吸着式冷凍機の熱源水として利用し、第2の吸着式冷凍機の熱源水として利用後の温排水を第2の前記吸着式冷凍機の冷却側に導入して第1の冷却を行った後、該第1の冷却後の予冷水を第1の吸着式冷凍機の冷却側に導入して本冷却した冷却水を前記連続式クーラの下流側に導入するようにしたことを特徴とする連続式クーラの熱有効利用方法。
For the high-temperature heated object that has been subjected to high-temperature heat treatment, the warm wastewater from the cooler after cooling through the continuous cooler is intended to be reused mainly by the closed cycle while being cooled by the refrigerator. In the heat efficient use method of the cooler,
Hot drainage discharged from the inlet side of the continuous cooler was used as heat source water for an absorption type or adsorption type refrigerator (hereinafter referred to as an adsorption type refrigerator), while obtained from the cooling side of the adsorption type refrigerator, etc. The cooling water is introduced downstream of the continuous cooler, and the first and second adsorption refrigerators are connected in series so that the cooling water circulates from the downstream side of the continuous cooler to the upstream side ,
The hot waste water discharged from the inlet side of the continuous cooler is used as the heat source water of the first adsorption refrigerator, and the hot waste water after being used as the heat source water of the first adsorption refrigerator is the second adsorption refrigeration. After the first cooling is performed by introducing the hot waste water after being used as the heat source water of the second adsorption refrigeration machine to the cooling side of the second adsorption refrigeration machine, A continuous cooler characterized in that precooled water after the first cooling is introduced into the cooling side of the first adsorption refrigeration machine, and the cooled water is introduced into the downstream side of the continuous cooler. Effective use of heat.
JP29723896A 1996-10-18 1996-10-18 Effective use of heat for continuous coolers Expired - Fee Related JP3628458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29723896A JP3628458B2 (en) 1996-10-18 1996-10-18 Effective use of heat for continuous coolers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29723896A JP3628458B2 (en) 1996-10-18 1996-10-18 Effective use of heat for continuous coolers

Publications (2)

Publication Number Publication Date
JPH10122697A JPH10122697A (en) 1998-05-15
JP3628458B2 true JP3628458B2 (en) 2005-03-09

Family

ID=17843960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29723896A Expired - Fee Related JP3628458B2 (en) 1996-10-18 1996-10-18 Effective use of heat for continuous coolers

Country Status (1)

Country Link
JP (1) JP3628458B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568027B2 (en) * 2011-01-21 2014-08-06 月桂冠株式会社 Cooling system

Also Published As

Publication number Publication date
JPH10122697A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
ES2449488T3 (en) Preheating of products with heat pump
US6205796B1 (en) Sub-dew point cooling of electronic systems
ES2064410T3 (en) COMBINED CRYO-MECHANICAL FREEZER.
WO2001089327A1 (en) Pasteurizer
JP3628458B2 (en) Effective use of heat for continuous coolers
JP3738993B2 (en) Cooling apparatus and process cooling wastewater recovery method using the apparatus
CN211608091U (en) Fruit and vegetable heat treatment, precooling and storage integrated machine
CN1749389A (en) Full heat utilizing device of beer pasteurizing
CN210736165U (en) Low-temperature flue gas waste heat comprehensive utilization system in bottled beverage production
JPH02243797A (en) Electrodeposition coating device utilizing heat pump
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JP3628457B2 (en) Waste heat recovery aseptic line
US20090165474A1 (en) Hybrid container cooler
ATE418052T1 (en) METHOD AND DEVICE FOR STORING AND REGENERATING A TWO-PHASE COLD CARRIER
ATE238965T1 (en) BEVERAGE COOLER
JPS6346356A (en) Method of operating adsorption type refrigeration system
JP3528944B2 (en) Utilization method and system of retort kettle hot drainage
CN217377607U (en) Instant cooling type ice water system
JPS572943A (en) Snow melting, heat accumulating and cooling apparatus according to latent heat exchange system
KR920007601B1 (en) Absorption type refrigerator
JPH0621723B2 (en) Heat pump device for dehumidifying and drying air
JP2001324242A (en) Heating/processing apparatus for foods
JPS5939583Y2 (en) Cooling system
JP4212084B2 (en) Exhaust heat input type single-effect absorption chiller / heater
JP2004322295A (en) Freezing chuck cooling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees