JP3628075B2 - PTC element - Google Patents

PTC element Download PDF

Info

Publication number
JP3628075B2
JP3628075B2 JP22349195A JP22349195A JP3628075B2 JP 3628075 B2 JP3628075 B2 JP 3628075B2 JP 22349195 A JP22349195 A JP 22349195A JP 22349195 A JP22349195 A JP 22349195A JP 3628075 B2 JP3628075 B2 JP 3628075B2
Authority
JP
Japan
Prior art keywords
ptc
electrical resistivity
room temperature
ptc polymer
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22349195A
Other languages
Japanese (ja)
Other versions
JPH0969412A (en
Inventor
貞次郎 森
龍也 林
英夫 堀邊
逸雄 西山
健一 仁科
雅廣 石川
修 長谷川
士郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22349195A priority Critical patent/JP3628075B2/en
Publication of JPH0969412A publication Critical patent/JPH0969412A/en
Application granted granted Critical
Publication of JP3628075B2 publication Critical patent/JP3628075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はPTC(positive temperature coefficient)素子に関する。さらに詳しくは、短絡電流や過電流を限流するために用いられるPTC素子に関する。
【0002】
【従来の技術】
図7は、特開平4−266001号公報に開示された従来のPTC素子を示す断面図である。図7において、21はPTC特性を有するポリマー層であり、22は一対の板状の電極である。ポリマー層21と電極22とは融着されているかまたは図示しないバネにより圧接されている。図8は、ポリマー層21の温度−抵抗率特性を示し、ポリマー層21の抵抗率は図8に示されるように温度Tまでは低く、温度Tを超えると急激に増加し、温度Tを超えると緩やかに増加する。PTCポリマーの一例では、Tは120℃、Tは130℃であり、温度Tにおける抵抗率はTにおける抵抗率の1000倍程度である。
【0003】
つぎにPTC素子の動作について説明する。負荷電流が流れるとジュール熱によりポリマー層21の温度が上昇するが、通電電流が小さいのでポリマー層21の温度はTより低い。短絡電流または過電流が流れて、ポリマー層21の温度上昇が大きくなると、ポリマー層21の温度がTより高くなるので、ポリマー層21の抵抗率が高くなる。したがって、短絡電流または過電流が抑制される。抑制された電流は図示しない開閉器で遮断される。電流が遮断されるとPTC素子においてジュール熱が発生しなくなり、PTC素子内の熱が外部に放散されるので、ポリマー層21の温度が低下する。したがって、PTC素子の温度は低下して初期状態に戻り、負荷電流の再通電が可能となる。なお、PTC素子によって抑制された電流の波高値は限流波高値と呼ばれる。
【0004】
【発明が解決しようとする課題】
従来のPTC素子は上記のように動作するが、連続通電できる電流を大きくするため、常温電気抵抗率が低いPTCポリマーが用いられる。そのため、短絡時におけるPTCポリマーの温度上昇がゆるやかとなるので、限流波高値が高いという問題がある。なお、限流波高値を下げるためPTCポリマーの常温電気抵抗率を高くする方法があるが、PTC素子の抵抗が高くなるので連続して通電できる電流が小さくなるという問題がある。また、PTCポリマー層と電極層が圧接されたばあいと、PTCポリマー層と他のPTCポリマー層が圧接されているばあい、圧接による接触抵抗が高いので連続して流せる負荷電流が小さいという問題点がある。
【0005】
本発明は連続して通電できる電流の低下を極力抑制しつつ限流波高値を下げられるPTC素子をうることを目的とする。
【0006】
【課題を解決するための手段】
本発明にかかわるPTC素子は、PTC特性を有する複数のPTCポリマー層からなる多層構造のPTCポリマー層と、多層構造の最上層の外側表面上と最下層の外側面上にそれぞれ形成された少なくとも一対の電極層を備え、前記複数のPTCポリマー層のそれぞれの常温電気抵抗率が異なり、かつそれぞれのPTCポリマー層が隣合うPTCポリマー層または電極層と融着せしめられたPTC素子であって、前記常温抵抗率の異なる各PTCポリマー層のPTC特性発現温度領域T1〜T2がすべてのPTCポリマー層について等しいことを特徴とする。
【0007】
また、前記複数のPTCポリマー層のうち、常温電気抵抗率の高いPTCポリマー層が前記一対の電極層の少なくとも一方に融着して設けられている。
【0008】
また、前記複数のPTCポリマー層のうち、常温電気抵抗率が他より高いPTCポリマー層を、常温電気抵抗率が低いPTCポリマー層2層のあいだに挟んで設けられている。
【0009】
また、前記複数のPTCポリマー層のうち、常温電気抵抗率が他より高いPTCポリマー層を複数層設けられている。
【0010】
また、前記複数のPTCポリマー層のうち、常温電気抵抗率が他より高いPTCポリマー層を前記電極層の少なくとも一方と接し、かつ常温電気抵抗率が他より低いPTCポリマー層のあいだに設けられている。
【0011】
また、最も常温電気抵抗率が低い層の常温電気抵抗率より常温電気抵抗率が高い層の総厚さが、最も常温電気抵抗率が低い層の総厚さより小さくなるよう構成されている。
【0012】
【発明の実施の形態】
以下、本発明のPTC素子の一実施例を図を参照しながら説明する。
【0013】
[実施例1]
図1は、本発明の一実施例のPTC素子を示す断面図である。図1において、1はPTC特性を有し、常温電気抵抗率が低いPTCポリマー層であり、2は一対の電極層であり、3はPTC特性を有し、常温電気抵抗率がPTCポリマー層1よりも高いPTCポリマー層である。常温電気抵抗率の高い、低いは相対的なものであり、PTCポリマー層3の常温電気抵抗率がPTCポリマー層1のそれよりも高くなる(図6の曲線Bが常に曲線Aよりも上にある方が望ましいが、T以上の温度域ではPTCポリマー層3の抵抗率はPTCポリマー層1のそれよりも低くてよい)ようにPTCポリマー層3の材料を選べばよい。たとえば、PTCポリマー層1が高密度ポリエチレンに粒径0.09μmのカーボンブラックを55重量%混入したものならば、PTCポリマー層3はたとえば、高密度ポリエチレンに粒径0.04μmのカーボンブラックを30重量%混入したものなどが選ばれうる。また、PTCポリマー層1は0.6mm程度の厚さに形成され、電極層2は50μm程度の厚さに形成される。なお、電極層の表面は粗面化され、PTCポリマー層3と電極層2とは融着されている。PTCポリマー層1の抵抗率は、前述のように図6の曲線Aに示されるように温度Tまでは低く、温度Tを超えると急激に増加し、温度Tを超えると緩やかに増加する。PTCポリマー層3の抵抗率は図6の曲線Bに示されるように温度Tまでは低く、温度Tを超えると急激に増加し、温度Tを超えると緩やかに増加する。PTCポリマーの一例ではTは120℃、Tは130℃であり、温度Tにおける抵抗率は温度Tにおける抵抗率の1000倍程度である。
【0014】
つぎに本発明の一実施例であるPTC素子の動作について説明する。負荷電流が流れるとジュール熱の発生によりPTCポリマー層1、3の温度が上昇するが、通電電流が小さいので、PTCポリマー層1、3の温度はともにTより低い。短絡電流または過電流が流れると、PTCポリマー層3の温度上昇が大きくなり、PTCポリマー層3の温度がTより高くなるので、図6の曲線Bに示されるようにPTCポリマー層3の抵抗率が高くなる。また、PTCポリマー層1は電流が流れることによって自身で発熱すると共にPTCポリマー層3によっても加熱される。したがって、温度上昇が大きくなり、PTCポリマー層1の抵抗率が高くなる。したがって、短絡電流または過電流が抑制される。抑制された電流は図示しない開閉器で遮断される。電流が遮断されるとPTC素子において熱が発生しなくなるので、放熱によりPTCポリマー層1、3の温度が低下し、ポリマー層は初期状態に戻り負荷電流の再通電が可能となる。
【0015】
本発明では常温電気抵抗率が高いPTCポリマー層3が設けられているので、従来のPTC素子と比べ、限流波高値を低減することができる。
【0016】
本実施例では、常温電気抵抗率が高いPTCポリマー層3が設けられているが、その層の厚さは、たとえば0.2mm程度であり小さいので、PTC素子の上下の電極層間の合成抵抗の増加はわずかである。したがって、通電性能の低下はわずかで、限流波高値を低減することができる。このように常温電気抵抗率が高いPTCポリマー層3の総厚さを常温電気抵抗率が低いPTCポリマー層1の総厚さより小さくすれば、電極層間の合成抵抗の増加がわずかとなり、より大きい負荷電流を連続して通電することができる。なお、常温電気抵抗率が高いPTCポリマー層3を単相とすれば合成抵抗の増加をよりわずかにすることができる。
【0017】
本実施例では、常温電気抵抗率が高いPTCポリマー層3が電極層に接するように設けられているので、常温電気抵抗率が高いPTCポリマー層3に発生する熱は内部に蓄積されることなく、容易に外部に放散される。したがって、通電性能の低下はわずかで、限流波高値を低減することができる。
【0018】
[実施例2]
図2は、本発明の第2の実施例であるPTC素子の断面図である。
【0019】
図2に示されるように、本実施例2では常温電気抵抗率が低いPTCポリマー層11aと11bに挟まれるサンドイッチ構造になるように常温電気抵抗率が高いPTCポリマー層13が形成されている。常温電気抵抗率が低いPTCポリマー層11a、11bとしては、たとえば、高密度ポリエチレンに粒径0.09μm程度のカーボンブラックを55重量%程度配合して厚さ0.6mm程度で抵抗率が0.17Ω・cm程度のPTCポリマーが用いられ、常温電気抵抗率が低いPTCポリマー層11よりも常温電気抵抗率が高いPTCポリマー層13たとえば、高密度ポリエチレンに粒径0.04μm程度のカーボンブラックを30重量%程度配合して厚さ0.2mm程度で抵抗率が1Ω・cm程度のPTCポリマーが用いられている。本実施例では常温電気抵抗率が高いPTCポリマー層は、電極と比べ熱伝導率が劣る常温電気抵抗率が低いPTCポリマー層にはさまれている。したがって、短絡事故時、常温電気抵抗率が高いPTCポリマー層13に発生するジュール熱は電極層に放散されにくい。したがって常温電気抵抗率が高いPTCポリマー層13の抵抗上昇が速くなる。したがって、限流波高値がより低減される。
【0020】
[実施例3]
図3は、本発明の第3の実施例であるPTC素子の断面図である。
【0021】
図3に示されるように、本実施例3では常温電気抵抗率が低いPTCポリマー層11aと11bに挟まれるようにして常温電気抵抗率が高いPTCポリマー層13aが設けられ、常温電気抵抗率が低いPTCポリマー層11bと11cのあいだに挟まれるようにして常温電気抵抗率が高いPTCポリマー層13bが設けられている。すなわち、図2における常温電気抵抗率が高いPTCポリマー層13が1層であるのに対して、本実施例では常温電気抵抗率が高いPTCポリマー層を13aと13bの2層にわけて設けてあるので、実施例2のばあいと比べ、常温電気抵抗率が高いPTCポリマー層13aと13bの抵抗上昇がいっそう速くなる。したがって、限流波高値がいっそう低減される。
【0022】
常温電気抵抗率の高いPTCポリマー層は、2層より多い複数層でもよい。常温電気抵抗率の高いPTCポリマー層を複数にすることによって、常温電気抵抗率の高いPTCポリマー層の抵抗上昇がいっそう速くなる。また、前記複数の常温電気抵抗率の高いPTCポリマー層の常温電気抵抗率は、常温電気抵抗率が低いPTCポリマー層11よりも高い常温電気抵抗率を有する材料であればよく、異なっていてもよい。
【0023】
[実施例4]
図4および図5は、本発明の第4の実施例であるPTC素子の断面図である。
【0024】
図4に示されるように、本実施例4ではそれぞれの電極層2に接する常温電気抵抗率がたとえば、1Ω・cmと高いPTCポリマー層14a、14bと、常温電気抵抗率がたとえば0.2Ω・cmと低いPTCポリマー層11a、11bのあいだに常温電気抵抗率がたとえば2Ω・cmと高いPTCポリマー層13が設けられている。この実施例では常温電気抵抗率が高いPTCポリマー層の数が多いので、常温電気抵抗率が高いPTCポリマー層の抵抗上昇がいっそう速くなる。したがって、限流波高値がいっそう低減される。なお、常温電気抵抗率が低いPTCポリマー層11a、11bに融着によって挟まれるようにして形成された常温電気抵抗率が高いPTCポリマー層13は複数層設けられてもよい。
【0025】
また、常温電気抵抗率が高い複数のPTCポリマー層の常温電気抵抗率は同一(たとえば1Ω・cm)であってもよいし、たとえば1Ω・cm、1.2Ω・cm、0.8Ω・cmなどのように互いに異っていてもよい。
【0026】
さらに、本実施例では、常温電気抵抗率の高いPTCポリマー層14aと14bの両方が電極層2に接するように設けられている例について説明したが、少なくとも一方の電極層に常温電気抵抗率の高いPTCポリマー層に常温電気抵抗率の高いPTCポリマー層が融着されていればよい。
【0027】
本発明において用いられるPTCポリマーは結晶性ポリマー中に導電性粒子を分散させたものである。結晶性ポリマーとしては、前述のように、その融点において結晶が融解する際に急激な体積膨脹を起こし、この結晶性ポリマー中に分散させた導電性粒子の間隔を広げる作用を有するものであれば特に限定されない。結晶化度は20%以上が好ましく、40%以上がより好ましい。具体例としては、たとえば特公昭64−3322号公報、特公平4−28744号公報、特公平5−66001号公報などに開示されるような結晶性ポリマーがあげられ、それらのうち、より好ましい例としてたとえば高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンなどのポリエチレン、ポリプロピレン、ポリ−ブテン−1、ポリメチルペンチン(TPX)、エチレンプロピレンゴムなどのポリオレフィン類;ポリビニリデンフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン、ポリクロロトリフルオロエチレンなどのフルオロカーボンポリマー類;ポリアミド、ポリアセタール、シンジオクタチック−ポリスチレン、飽和ポリエステルなどの他の結晶性高分子などの1種または2種以上の混合物があげられる。これらの中で結晶化度が高いことにより、高い抵抗増加率がえられるという観点からポリエレフィン類の中のポリエチレンが好ましい。導電性粒子としては、粒径が0.02〜200μm程度のたとえば、カーボンブラック、グラファイト、金属繊維、カーボンファイバー、金属粒子などを、結晶性ポリマー中に40〜80重量%混入することが常温電気抵抗率を0.5Ω・cm程度以下に保つために好ましい。さらに、実用面およびコスト面のバランスからは、粒径0.03〜0.2μm程度のカーボンブラックを、結晶性ポリマー中に50〜70重量%混入することがより好ましい。
【0028】
本発明の電極層としては、銀が用いられてよいが低コストの点からニッケルメッキ銅、銀、銀メッキ銅、銅などが好ましい。
【0029】
本発明において好ましい一例としては、高密度ポリエチレンに粒径0.09μm程度のカーボンブラックを55重量%程度配合して厚さ0.6mm程度のPTCポリマー層とし、該PTCポリマー層の両表面に高密度ポリエチレンに粒径0.04μm程度のカーボンブラックを30重量%配合して厚さ0.2mm程度の該PTCポリマー層の常温電気抵抗率よりも高いPTCポリマー層とし、粗面化された銅を電極とし、後者のPTCポリマー層を融着したものがあげられる。このように構成された素子では、優れた限流特性がえられることが実験により確認されている。
【0030】
【発明の効果】
発明にかかわるPTC素子によれば、複数のPTCポリマー層を常温電気抵抗率が異なるPTCポリマー層が隣合うPTCポリマー層または電極層と融着されていることにより限流波高値を低減できる。
【0031】
また、常温電気抵抗率が高いPTCポリマー層が電極層の少なくとも一方に融着して設けたことにより限流波高値を低減できる。
【0032】
また、常温電気抵抗率が高いPTCポリマー層を、常温電気抵抗率が他より低いPTCポリマー層2層のあいだに挟んで設けたことにより限流波高値を低減できる。
【0033】
また、常温電気抵抗率が他より高いPTCポリマー層を複数設けたことにより限流波高値を低減できる。
【0034】
また、常温電気抵抗率が他より高いPTCポリマー層を、電極層の少なくとも一方と接し、かつ常温電気抵抗率が低いPTCポリマー層のあいだに設けたことにより限流波高値を低減できる。
【0035】
また、常温電気抵抗率が低い層の常温電気抵抗率より常温電気抵抗率が高い層の総厚さが、最も常温電気抵抗率が低い層の総厚さより小さくなるよう構成されたことにより電極層間の合成抵抗を極力小さくでき、限流波高値を低減できる。
【図面の簡単な説明】
【図1】本発明の一実施例であるPTC素子を示す断面図である。
【図2】本発明の他の実施例であるPTC素子を示す断面図である。
【図3】本発明のさらに他の実施例であるPTC素子を示す断面図である。
【図4】本発明のさらに他の実施例であるPTC素子を示す断面図である。
【図5】本発明のさらに他の実施例であるPTC素子を示す断面図である。
【図6】PTC素子の温度−電気抵抗率の関係説明図である。
【図7】従来のPTC素子を示す断面図である。
【図8】PTC素子の温度−電気抵抗率の関係説明図である。
【符号の説明】
1 PTCポリマー層、2 電極層、3 PTCポリマー層、11a、11b、11c 常温電気抵抗率が低いPTCポリマー層、13、13a、13b、14a、14b 常温電気抵抗率が高いPTCポリマー層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive temperature coefficient (PTC) element. More specifically, the present invention relates to a PTC element used for limiting a short-circuit current or an overcurrent.
[0002]
[Prior art]
FIG. 7 is a cross-sectional view showing a conventional PTC element disclosed in Japanese Patent Laid-Open No. 4-266001. In FIG. 7, 21 is a polymer layer having PTC characteristics, and 22 is a pair of plate-like electrodes. The polymer layer 21 and the electrode 22 are fused or pressed by a spring (not shown). 8, the temperature of the polymer layer 21 - shows the resistivity properties, the resistivity of the polymer layer 21 until temperatures T 1, as shown in FIG. 8 is low, rapidly increases when exceeding temperatures T 1, the temperature T When it exceeds 2 , it increases slowly. In one example of the PTC polymer, T 1 is 120 ° C., T 2 is 130 ° C., and the resistivity at temperature T 2 is about 1000 times the resistivity at T 1 .
[0003]
Next, the operation of the PTC element will be described. The temperature of the load current flows through the polymer layer 21 by Joule heat increases, the temperature of the polymer layer 21 so energizing current is small less than T 1. When a short circuit current or an overcurrent flows and the temperature rise of the polymer layer 21 becomes large, the temperature of the polymer layer 21 becomes higher than T 2 , so that the resistivity of the polymer layer 21 becomes high. Therefore, a short circuit current or an overcurrent is suppressed. The suppressed current is interrupted by a switch (not shown). When the current is interrupted, Joule heat is not generated in the PTC element, and the heat in the PTC element is dissipated to the outside, so that the temperature of the polymer layer 21 decreases. Therefore, the temperature of the PTC element is lowered to return to the initial state, and the load current can be re-energized. Note that the peak value of the current suppressed by the PTC element is called a current-limiting peak value.
[0004]
[Problems to be solved by the invention]
Although the conventional PTC element operates as described above, a PTC polymer having a low room temperature electrical resistivity is used in order to increase a current that can be continuously energized. Therefore, since the temperature rise of the PTC polymer at the time of a short circuit becomes moderate, there exists a problem that a current-limiting wave high value is high. Although there is a method of increasing the room temperature electrical resistivity of the PTC polymer in order to lower the current limiting peak value, there is a problem that the current that can be continuously energized decreases because the resistance of the PTC element increases. Further, in the case the PTC polymer layer and the electrode layers are pressed, if the P TC polymer layer and another PTC polymer layer is pressed against, that the load current can flow in succession because of the high contact resistance due to pressing is less There is a problem.
[0005]
It is an object of the present invention to obtain a PTC element that can reduce the current-crest peak value while suppressing a decrease in current that can be continuously energized as much as possible.
[0006]
[Means for Solving the Problems]
A PTC element according to the present invention includes a PTC polymer layer having a multilayer structure composed of a plurality of PTC polymer layers having PTC characteristics, and at least a pair formed on an outer surface of the uppermost layer and an outer surface of the lowermost layer of the multilayer structure. A plurality of PTC polymer layers having different electrical resistivity at room temperature, and each PTC polymer layer being fused with an adjacent PTC polymer layer or electrode layer, The PTC characteristic expression temperature regions T 1 to T 2 of the PTC polymer layers having different room temperature resistivities are equal for all the PTC polymer layers.
[0007]
Also, among the pre-Symbol plurality of PTC polymer layer, it provided high PTC polymer layer of the normal temperature electrical resistivity is fused to at least one of the pair of electrode layers.
[0008]
Further , among the plurality of PTC polymer layers, a PTC polymer layer having a higher room temperature electrical resistivity than other layers is provided between two PTC polymer layers having a lower room temperature electrical resistivity.
[0009]
Further , among the plurality of PTC polymer layers, a plurality of PTC polymer layers having higher room temperature electrical resistivity than the others are provided.
[0010]
Further , among the plurality of PTC polymer layers, a PTC polymer layer having a higher room temperature electrical resistivity than the other is in contact with at least one of the electrode layers and provided between the PTC polymer layers having a lower room temperature electrical resistivity than the other. Yes.
[0011]
In addition , the total thickness of the layer having a room temperature electrical resistivity higher than the room temperature electrical resistivity of the layer having the lowest room temperature electrical resistivity is configured to be smaller than the total thickness of the layer having the lowest room temperature electrical resistivity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the PTC element of the present invention will be described below with reference to the drawings.
[0013]
[Example 1]
FIG. 1 is a cross-sectional view showing a PTC element according to an embodiment of the present invention. In FIG. 1, 1 is a PTC polymer layer having PTC characteristics and low room temperature electrical resistivity, 2 is a pair of electrode layers, 3 is PTC characteristics, and room temperature electrical resistivity is PTC polymer layer 1 Higher PTC polymer layer. High and low room temperature electrical resistivity are relative, and the room temperature electrical resistivity of the PTC polymer layer 3 is higher than that of the PTC polymer layer 1 (the curve B in FIG. 6 is always above the curve A). there is desirable, the resistivity of the PTC polymer layer 3 is T 2 above temperature range may be selected lower or) material of the PTC polymer layer 3 as than that of the PTC polymer layer 1. For example, if the PTC polymer layer 1 is a high-density polyethylene in which 55% by weight of carbon black having a particle size of 0.09 μm is mixed, the PTC polymer layer 3 may be, for example, 30% carbon black having a particle size of 0.04 μm. Those mixed with weight% can be selected. The PTC polymer layer 1 is formed with a thickness of about 0.6 mm, and the electrode layer 2 is formed with a thickness of about 50 μm. The surface of the electrode layer is roughened, and the PTC polymer layer 3 and the electrode layer 2 are fused. As described above, the resistivity of the PTC polymer layer 1 is low up to the temperature T 1 as shown by the curve A in FIG. 6, increases rapidly when the temperature exceeds T 1 , and increases slowly when the temperature exceeds T 2. To do. The resistivity of the PTC polymer layer 3 is low up to the temperature T 1 as shown by the curve B in FIG. 6, increases rapidly when the temperature exceeds T 1 , and increases slowly when the temperature exceeds T 2 . In an example of the PTC polymer, T 1 is 120 ° C., T 2 is 130 ° C., and the resistivity at the temperature T 2 is about 1000 times the resistivity at the temperature T 1 .
[0014]
Next, the operation of the PTC element which is an embodiment of the present invention will be described. When the load current flows through the temperature of the PTC polymer layers 1 and 3 by the generation of Joule heat is increased, since the energizing current is small, the temperature of the PTC polymer layers 1 and 3 are both less than T 1. When a short-circuit current or an overcurrent flows, the temperature rise of the PTC polymer layer 3 becomes large and the temperature of the PTC polymer layer 3 becomes higher than T 2 , so that the resistance of the PTC polymer layer 3 is shown as curve B in FIG. The rate is high. Moreover, the PTC polymer layer 1 generates heat by itself when a current flows, and is also heated by the PTC polymer layer 3. Therefore, the temperature rise is increased and the resistivity of the PTC polymer layer 1 is increased. Therefore, a short circuit current or an overcurrent is suppressed. The suppressed current is interrupted by a switch (not shown). When the current is cut off, heat is not generated in the PTC element, so that the temperature of the PTC polymer layers 1 and 3 decreases due to heat dissipation, the polymer layer returns to the initial state, and the load current can be re-energized.
[0015]
In the present invention, since the PTC polymer layer 3 having a high room temperature electrical resistivity is provided, the current limiting peak value can be reduced as compared with the conventional PTC element.
[0016]
In this embodiment, the PTC polymer layer 3 having a high room temperature electrical resistivity is provided, but the thickness of the layer is, for example, about 0.2 mm, so that the combined resistance between the upper and lower electrode layers of the PTC element is small. The increase is slight. Therefore, the current-carrying performance is hardly lowered, and the current-limiting peak value can be reduced. Thus, if the total thickness of the PTC polymer layer 3 having a high room temperature electrical resistivity is made smaller than the total thickness of the PTC polymer layer 1 having a low room temperature electrical resistivity, the increase in the combined resistance between the electrode layers becomes small, resulting in a larger load. It is possible to energize continuously. In addition, if the PTC polymer layer 3 having a high room temperature electrical resistivity is a single phase, the increase in the combined resistance can be further reduced.
[0017]
In this embodiment, since the PTC polymer layer 3 having a high room temperature electrical resistivity is provided in contact with the electrode layer, the heat generated in the PTC polymer layer 3 having a high room temperature electrical resistivity is not accumulated inside. Easily dissipated outside. Therefore, the current-carrying performance is hardly lowered, and the current-limiting peak value can be reduced.
[0018]
[Example 2]
FIG. 2 is a sectional view of a PTC element according to a second embodiment of the present invention.
[0019]
As shown in FIG. 2, in Example 2, the PTC polymer layer 13 having a high room temperature electrical resistivity is formed so as to have a sandwich structure sandwiched between the PTC polymer layers 11a and 11b having a low room temperature electrical resistivity. As the PTC polymer layers 11a and 11b having a low room temperature electrical resistivity, for example, about 55% by weight of carbon black having a particle size of about 0.09 μm is blended in high-density polyethylene, and the resistivity is about 0.6 mm. A PTC polymer of about 17 Ω · cm is used, and a PTC polymer layer 13 having a higher room temperature electrical resistivity than the PTC polymer layer 11 having a lower room temperature electrical resistivity. For example, 30 carbon black having a particle size of about 0.04 μm is added to high density polyethylene. A PTC polymer having a thickness of about 0.2 mm and a resistivity of about 1 Ω · cm mixed with about wt% is used. In this embodiment, the PTC polymer layer having a high room temperature electrical resistivity is sandwiched between the PTC polymer layers having a low room temperature electrical resistivity that is inferior in thermal conductivity to the electrode. Therefore, Joule heat generated in the PTC polymer layer 13 having a high normal temperature electrical resistivity at the time of a short circuit accident is not easily dissipated to the electrode layer. Therefore, the resistance increase of the PTC polymer layer 13 having a high normal temperature electrical resistivity is accelerated. Therefore, the current limiting peak value is further reduced.
[0020]
[Example 3]
FIG. 3 is a sectional view of a PTC element according to a third embodiment of the present invention.
[0021]
As shown in FIG. 3, in Example 3, a PTC polymer layer 13a having a high room temperature electrical resistivity is provided so as to be sandwiched between PTC polymer layers 11a and 11b having a low room temperature electrical resistivity. A PTC polymer layer 13b having a high room temperature electrical resistivity is provided so as to be sandwiched between the low PTC polymer layers 11b and 11c. That is, the PTC polymer layer 13 having a high room temperature electrical resistivity in FIG. 2 is a single layer, whereas in this embodiment, the PTC polymer layer having a high room temperature electrical resistivity is provided in two layers 13a and 13b. Therefore, the resistance increase of the PTC polymer layers 13a and 13b having a high room temperature electrical resistivity is further accelerated as compared with the case of the second embodiment. Therefore, the current limiting peak value is further reduced.
[0022]
The PTC polymer layer having a high room temperature electrical resistivity may be a multi-layer having more than two layers. By using a plurality of PTC polymer layers having a high room temperature electrical resistivity, the resistance increase of the PTC polymer layer having a high room temperature electrical resistivity is further accelerated. The room temperature electrical resistivity of the plurality of PTC polymer layers having a high room temperature electrical resistivity may be any material having a room temperature electrical resistivity higher than that of the PTC polymer layer 11 having a low room temperature electrical resistivity, and may be different. Good.
[0023]
[Example 4]
4 and 5 are sectional views of a PTC element according to a fourth embodiment of the present invention.
[0024]
As shown in FIG. 4, in Example 4, PTC polymer layers 14a and 14b having a high room temperature electrical resistivity in contact with each electrode layer 2 of, for example, 1 Ω · cm and a room temperature electrical resistivity of, for example, 0.2 Ω · A PTC polymer layer 13 having a high room temperature electrical resistivity of, for example, 2 Ω · cm is provided between the PTC polymer layers 11a and 11b having a low cm. In this embodiment, since the number of PTC polymer layers having a high room temperature electrical resistivity is large, the resistance increase of the PTC polymer layer having a high room temperature electrical resistivity is further accelerated. Therefore, the current limiting peak value is further reduced. Note that a plurality of PTC polymer layers 13 having a high room temperature electrical resistivity formed so as to be sandwiched between the PTC polymer layers 11a and 11b having a low room temperature electrical resistivity may be provided.
[0025]
Moreover, the room temperature electrical resistivity of a plurality of PTC polymer layers having a high room temperature electrical resistivity may be the same (for example, 1 Ω · cm), for example, 1 Ω · cm, 1.2 Ω · cm, 0.8 Ω · cm, etc. May be different from each other.
[0026]
Furthermore, in the present embodiment, an example in which both the PTC polymer layers 14a and 14b having a high room temperature electrical resistivity are provided so as to be in contact with the electrode layer 2 has been described, but at least one of the electrode layers has a room temperature electrical resistivity. A PTC polymer layer having a high room temperature electrical resistivity only needs to be fused to the high PTC polymer layer.
[0027]
The PTC polymer used in the present invention is obtained by dispersing conductive particles in a crystalline polymer. As described above, as long as the crystalline polymer has a function of expanding the interval between the conductive particles dispersed in the crystalline polymer as described above, the crystal rapidly melts at the melting point. There is no particular limitation. The crystallinity is preferably 20% or more, more preferably 40% or more. Specific examples include crystalline polymers as disclosed in, for example, Japanese Patent Publication No. 64-33322, Japanese Patent Publication No. 4-28744, Japanese Patent Publication No. 5-66001, and the like. For example, polyethylenes such as high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene, poly-butene-1, polymethylpentine (TPX), ethylene propylene rubber, etc .; polyvinylidene fluoride, tetrafluoroethylene- 1 fluorocarbon polymers such as hexafluoropropylene copolymer, tetrafluoroethylene, polychlorotrifluoroethylene; other crystalline polymers such as polyamide, polyacetal, syndiocta-polystyrene, saturated polyester, etc. Or a mixture of two or more thereof. Among these, polyethylene in polyelephins is preferable from the viewpoint that a high rate of increase in resistance can be obtained due to high crystallinity. As the conductive particles, for example, carbon black, graphite, metal fibers, carbon fibers, metal particles having a particle size of about 0.02 to 200 μm may be mixed in the crystalline polymer in an amount of 40 to 80 wt%. This is preferable in order to keep the resistivity below about 0.5 Ω · cm. Furthermore, it is more preferable that carbon black having a particle size of about 0.03 to 0.2 μm is mixed in the crystalline polymer in an amount of 50 to 70% by weight from the balance between practical use and cost.
[0028]
As the electrode layer of the present invention, silver may be used, but nickel-plated copper, silver, silver-plated copper, copper and the like are preferable from the viewpoint of low cost.
[0029]
As a preferred example in the present invention, about 55% by weight of carbon black having a particle size of about 0.09 μm is blended with high density polyethylene to form a PTC polymer layer having a thickness of about 0.6 mm. 30% by weight of carbon black having a particle size of about 0.04 μm is blended with density polyethylene to form a PTC polymer layer having a PTC polymer layer having a thickness higher than the room temperature electrical resistivity of the PTC polymer layer having a thickness of about 0.2 mm. Examples of the electrode include those obtained by fusing the latter PTC polymer layer. It has been experimentally confirmed that the element configured as described above has excellent current limiting characteristics.
[0030]
【The invention's effect】
According to the PTC element of the present invention , the current limiting wave height can be reduced by fusing a plurality of PTC polymer layers with adjacent PTC polymer layers or electrode layers with different PTC polymer layers having different room temperature electrical resistivity.
[0031]
Moreover , the current limiting wave height value can be reduced by providing the PTC polymer layer having a high room temperature electrical resistivity fused to at least one of the electrode layers.
[0032]
Moreover , the current limiting wave peak value can be reduced by providing a PTC polymer layer having a high room temperature electrical resistivity sandwiched between two PTC polymer layers having a room temperature electrical resistivity lower than others.
[0033]
Moreover , the current limiting wave height value can be reduced by providing a plurality of PTC polymer layers having higher room temperature electrical resistivity than others.
[0034]
Moreover , the current limiting peak value can be reduced by providing a PTC polymer layer having a higher room temperature electrical resistivity than the other in contact with at least one of the electrode layers and between the PTC polymer layers having a lower room temperature electrical resistivity.
[0035]
In addition , since the total thickness of the layer having a higher room temperature electrical resistivity than the room temperature electrical resistivity of the layer having a lower room temperature electrical resistivity is smaller than the total thickness of the layer having the lowest room temperature electrical resistivity, The combined resistance can be reduced as much as possible, and the peak current limit value can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a PTC element according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a PTC element according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a PTC element according to still another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a PTC element which is still another embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a PTC element according to still another embodiment of the present invention.
FIG. 6 is an explanatory diagram of a relationship between temperature and electrical resistivity of a PTC element.
FIG. 7 is a cross-sectional view showing a conventional PTC element.
FIG. 8 is a graph for explaining the relationship between temperature and electrical resistivity of a PTC element.
[Explanation of symbols]
1 PTC polymer layer, 2 electrode layer, 3 PTC polymer layer, 11a, 11b, 11c PTC polymer layer with low normal temperature electrical resistivity, 13, 13a, 13b, 14a, 14b PTC polymer layer with high normal temperature electrical resistivity.

Claims (1)

PTC特性を有する複数のPTCポリマー層からなる多層構造のPTCポリマー層と、多層構造の最上層の外側表面上と最下層の外側表面上にそれぞれ形成された少なくとも一対の電極層を備え、前記複数のPTCポリマー層のそれぞれの常温電気抵抗率が異なり、かつそれぞれのPTCポリマー層が隣合うPTCポリマー層または電極層と融着せしめられたPTC素子であって、
前記常温抵抗率の異なる各PTCポリマー層のPTC特性発現温度領域T1〜T2がすべてのPTCポリマー層について等しく、最も常温電気抵抗率が低い層の常温電気抵抗率より常温電気抵抗率が高い層の総厚さが、最も常温電気抵抗率が低い層の総厚さより小さくなるよう構成されていることを特徴とするPTC素子。
A plurality of PTC polymer layers having a plurality of PTC polymer layers having PTC characteristics, and at least a pair of electrode layers respectively formed on the outermost surface of the uppermost layer and the outermost surface of the lowermost layer of the multilayer structure, Each PTC polymer layer has a different room temperature electrical resistivity, and each PTC polymer layer is fused to an adjacent PTC polymer layer or electrode layer,
The equal PTC characteristic expression temperature range T 1 through T 2 cold resistivity different each PTC polymer layer for all of the PTC polymer layer, a high ambient temperature electrical resistivity than the room temperature electrical resistivity of most normal temperature electrical resistivity lower layer A PTC element characterized in that the total thickness of the layers is smaller than the total thickness of the layers having the lowest room temperature electrical resistivity.
JP22349195A 1995-08-31 1995-08-31 PTC element Expired - Fee Related JP3628075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22349195A JP3628075B2 (en) 1995-08-31 1995-08-31 PTC element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22349195A JP3628075B2 (en) 1995-08-31 1995-08-31 PTC element

Publications (2)

Publication Number Publication Date
JPH0969412A JPH0969412A (en) 1997-03-11
JP3628075B2 true JP3628075B2 (en) 2005-03-09

Family

ID=16798977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22349195A Expired - Fee Related JP3628075B2 (en) 1995-08-31 1995-08-31 PTC element

Country Status (1)

Country Link
JP (1) JP3628075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099431A (en) * 2012-11-13 2014-05-29 Nobuhiko Ishida Composite ptc thermistor member

Also Published As

Publication number Publication date
JPH0969412A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US4919744A (en) Method of making a flexible heater comprising a conductive polymer
US4352083A (en) Circuit protection devices
EP3761325A1 (en) Pptc device having resistive component
JPH0461578B2 (en)
US6074576A (en) Conductive polymer materials for high voltage PTC devices
CN1413350A (en) Improvements to circuit protection devices
US11984285B2 (en) PPTC device having low melting temperature polymer body
JP2003506862A (en) Conductive polymer composition
WO1999005689A1 (en) Electrical device comprising a conductive polymer
US5896264A (en) Device for current limitation and protection against short-circuit currents in an electric installation
US20020125982A1 (en) Surface mount electrical device with multiple ptc elements
JP3628075B2 (en) PTC element
TW201842515A (en) Hybrid device structures including negative temperature coefficient/positive temperature coefficient device
CN109694514A (en) PPTC composition and device with resistance to thermal deterioration
JP2004006963A (en) Circuit protection device
CN109637762B (en) PPTC material with mixed conductive filler composition
JP3739444B2 (en) PTC element
WO1994006128A1 (en) An electric device which utilizes conductive polymers having a positive temperature coefficient characteristic
JP3828238B2 (en) Current limiter
JPS6046789B2 (en) electric heating device
JPH10241841A (en) Heating/heat insulating device using heat-accumulating materials
JPH0969411A (en) Ptc element
JP4368039B2 (en) Thermal fuse having a self-heating element and a battery pack incorporating the thermal fuse
JP2001358306A (en) Current limiter
KR100381917B1 (en) Electrical device with 3-layer conducting compounds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees