JP3627749B2 - Rare earth silicate single crystal - Google Patents
Rare earth silicate single crystal Download PDFInfo
- Publication number
- JP3627749B2 JP3627749B2 JP2003315670A JP2003315670A JP3627749B2 JP 3627749 B2 JP3627749 B2 JP 3627749B2 JP 2003315670 A JP2003315670 A JP 2003315670A JP 2003315670 A JP2003315670 A JP 2003315670A JP 3627749 B2 JP3627749 B2 JP 3627749B2
- Authority
- JP
- Japan
- Prior art keywords
- plane
- single crystal
- rare earth
- earth silicate
- silicate single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013078 crystal Substances 0.000 title claims description 51
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 26
- -1 Rare earth silicate Chemical class 0.000 title claims description 25
- 238000003776 cleavage reaction Methods 0.000 claims description 26
- 230000007017 scission Effects 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 150000000921 Gadolinium Chemical class 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、シンチレータ等に用いられる希土類珪酸塩単結晶に関する。 The present invention relates to a rare earth silicate single crystal used for scintillators and the like.
珪酸ガドリニウム単結晶等の希土類珪酸塩単結晶は、シンチレータ、蛍光体等として広く用いられている。この単斜晶系に属する珪酸ガドリニウム単結晶等は、シンチレータ等に用いられる場合、一般に円柱あるいは直方体の形状のものが使用される。実際には更に、1面〜全面を鏡面研磨し、鏡面研磨を施した一面を除いて反射材を塗布あるいは巻き付けた状態で、反射材の無い面を光電子増倍管に密着させて使用される。この単結晶はへき開性が強く(100)面に沿って割れ易い等の性質を持ち、比較的脆弱な結晶である。そのため、結晶育成冷却時や加工時に割れが発生し易く、一般に、へき開面に平行な平面を有する形状に加工する方法が用いられる。 Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. When the gadolinium silicate single crystal belonging to the monoclinic system is used for a scintillator or the like, a cylinder or a rectangular parallelepiped is generally used. Actually, one surface to the entire surface is mirror-polished, and the surface without the reflecting material is used in close contact with the photomultiplier tube in a state where the reflecting material is applied or wound except for one surface subjected to the mirror-polishing. . This single crystal is a relatively fragile crystal that has a high cleavage property and is easily broken along the (100) plane. Therefore, cracks are likely to occur during crystal growth cooling and during processing, and generally a method of processing into a shape having a plane parallel to the cleavage plane is used.
しかし、この従来法では、へき開面に平行な平面を切断したり研磨したりする際に、この加工面がへき開面((100)面)に完全に一致しないことによる、へき開面の剥がれが発生する場合があり、平滑な加工面が得られないという問題があった。本発明は、希土類珪酸塩単結晶を加工する場合に、へき開面近傍の切断面の角度を選択して加工を行うことにより、剥がれの無い平滑な加工面を持つ単結晶を提供するものである。 However, in this conventional method, when the plane parallel to the cleaved surface is cut or polished, the processed surface does not completely coincide with the cleaved surface ((100) surface), and the cleaved surface peels off. In some cases, a smooth processed surface cannot be obtained. The present invention provides a single crystal having a smooth processed surface without peeling by selecting an angle of a cut surface near the cleavage plane when processing a rare earth silicate single crystal. .
上記目的を達成するために、本発明者らは、希土類珪酸塩単結晶を切断する場合の、加工面のへき開面((100)面)からの傾きの角度と剥がれの発生状況の関係について検討した。その結果、加工面がへき開面((100)面)からずれていても、傾きの角度が5°以上であればへき開面の剥がれを防止できることを見だすことによって、以下の本発明が成されたものである。 In order to achieve the above object, the present inventors examined the relationship between the angle of inclination of the processed surface from the cleavage plane ((100) plane) and the state of peeling when the rare earth silicate single crystal is cut. did. As a result, even if the machined surface is deviated from the cleaved surface ((100) surface), the following invention can be achieved by finding that the cleaved surface can be prevented from peeling off if the inclination angle is 5 ° or more. It is a thing.
少なくとも1面以上の平面を有する形状に加工した希土類珪酸塩単結晶であって、(100)面に最も近い平面が、(100)面から5°以上傾いていることを特徴とする希土類珪酸塩単結晶。(100)面に最も近い平面が、(100)面から5°以上傾いているように加工することを特徴とする少なくとも1面以上の平面を有する希土類珪酸塩単結晶の製造法。少なくとも1面以上の平面を有する希土類珪酸塩単結晶であって、(100)面に最も近い平面が(100)面から[001]軸と傾きを成さない方向に5°以上傾いており、研磨されていることを特徴とする希土類珪酸塩単結晶。(100)面に最も近い平面が(100)面から[001]軸と傾きを成さない方向に5°以上傾いているように加工し、その後研磨することを特徴とする少なくとも1面以上の平面を有する希土類珪酸塩単結晶の製造法。少なくとも1面以上の平面を有する形状に加工し、且つ研磨した希土類珪酸塩単結晶において、上記少なくとも1面以上の平面の(100)面に最も近い平面を、(100)面から[001]軸と傾きを成さない方向に5°以上傾けることを特徴とする、希土類珪酸塩単結晶のへき開面の剥れを防止する方法。
Rare earth silicate single crystal processed into a shape having at least one plane, wherein the plane closest to the (100) plane is inclined at least 5 ° from the (100) plane Single crystal. A method for producing a rare earth silicate single crystal having at least one plane, wherein the plane closest to the (100) plane is inclined by 5 ° or more from the (100) plane. A rare earth silicate single crystal having at least one or more planes, the plane closest to the (100) plane being tilted by 5 ° or more from the (100) plane in a direction not inclined with respect to the [001] axis , Rare earth silicate single crystal characterized by being polished. It is processed so that the plane closest to the (100) plane is inclined by 5 ° or more from the (100) plane in a direction not inclined with respect to the [001] axis, and then polished, and then polished. A method for producing a rare earth silicate single crystal having a flat surface. In the rare earth silicate single crystal processed into a shape having at least one plane and polished, the plane closest to the (100) plane of the at least one plane is the [001] axis from the (100) plane. A method of preventing the cleavage of the cleavage plane of the rare earth silicate single crystal, which is tilted by 5 ° or more in a direction that does not tilt.
本発明の単結晶の加工方法により、へき開面のある単結晶について、へき開面の剥がれの無いへき開面に近い加工面を持つ試料を採取することができる。また、一般にへき開性のある単結晶は、引上軸をへき開面に平行にして育成されるため、容易にへき開面の方向を把握でき、面倒な方位だしをすること無く、かつ形状的に採取効率良く試料を加工採取することができる。上記のへき開面からの傾きは、5°以上であれば最大の90°まで、加工時のへき開面の剥がれ等は発生しない。 According to the method for processing a single crystal of the present invention, a sample having a processed surface close to a cleaved surface with no cleavage of the cleaved surface can be collected for a single crystal having a cleaved surface. In general, cleaved single crystals are grown with the pulling axis parallel to the cleaved surface, so the direction of the cleaved surface can be easily grasped, and it is collected in a shape without any troublesome orientation. Samples can be processed and collected efficiently. If the inclination from the cleaved surface is 5 ° or more, the cleaved surface is not peeled off during processing until the maximum 90 °.
希土類珪酸塩単結晶を加工する場合において、へき開面((100)面)に最も近い加工面のへき開面からの傾きの角度を5°以上にし加工を行うことによりへき開面の剥がれを防止できる原因は次のように考えられる。希土類珪酸塩単結晶の材料力学特性を調べた結果、希土類珪酸塩単結晶には塑性変形を示す方向があることがわかった。その塑性変形は、単結晶のへき開面((100)面)に垂直方向に荷重し[001]軸方向に引っ張りの応力が作用する場合に発生する。また、へき開割れの破壊靱性値は(010)面よりも(001)−17°面([001]軸を法線方向とする面)の方が約1桁小さく、へき開割れは(010)面側からよりも(001)−17°面側から発生し易いこともわかった。希土類珪酸塩単結晶のこれらの材料特性から、へき開面((100)面)は(100)面((001)−17°面)側から非常に剥がれ易い。したがって、切断加工する場合に加工面がへき開面((100)面)からわずかにずれた面(特に[001]軸と傾きを成す方向にずれた面)であると、へき開面の剥がれが非常に発生し易いと考えられる。しかし、切断加工面がへき開面からずれるほど加工面におけるへき開面の剥がれは発生しなくなると考えられる。実際には一定角度以上ずらすことにより、へき開面の剥がれの発生は防止することができる。すなわち、へき開面((100)面)との傾きの角度が5°以上の面を加工面に選択して加工することによって、加工面におけるへき開面の剥がれを確実に防止することができた。 Causes of cleaving of the cleaved surface can be prevented by processing the rare earth silicate single crystal at a 5 ° or more angle of inclination from the cleaved surface of the processed surface closest to the cleaved surface ((100) surface). Is considered as follows. As a result of examining the material mechanical properties of the rare earth silicate single crystal, it was found that the rare earth silicate single crystal has a direction of plastic deformation. The plastic deformation occurs when a tensile stress is applied in the [001] axial direction when a load is applied perpendicularly to the cleavage plane ((100) plane) of the single crystal. In addition, the fracture toughness value of cleavage cracks is about an order of magnitude smaller on the (001) -17 ° plane (plane with the [001] axis as the normal direction) than on the (010) plane, and the cleavage crack is (010) plane. It was also found that it is more likely to occur from the (001) -17 ° plane side than from the side. From these material properties of the rare earth silicate single crystal, the cleavage plane ((100) plane) is very easy to peel off from the (100) plane ((001) -17 ° plane) side. Accordingly, when the cut surface is a surface slightly shifted from the cleaved surface ((100) surface) (particularly a surface shifted in a direction inclined with respect to the [001] axis), the cleaved surface is extremely peeled off. It is thought that it is easy to occur. However, it is considered that peeling of the cleaved surface in the processed surface does not occur as the cut surface is displaced from the cleaved surface. Actually, the occurrence of peeling of the cleaved surface can be prevented by shifting by a certain angle or more. That is, it was possible to reliably prevent the cleavage surface from being peeled off on the processed surface by selecting and processing the surface having an inclination angle of 5 ° or more with the cleavage surface ((100) surface).
珪酸ガドリニウム単結晶以外の、化1の一般式
[化1]R2 SiO5
(但し、RはLa、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Scから選ばれて成る1種以上の希土類元素)で示される希土類珪酸塩単結晶についても、結晶の力学特性は同様であり、同様の結果となる。更に、これらの希土類珪酸塩単結晶にCe等の希土類元素やCr等の鉄属遷移金属をドープした場合も、効果は同様である。以上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の結晶構造と同じ結晶構造を持ち、その構造は空間群P2/cに属する。
General formula of chemical formula 1 other than gadolinium silicate single crystal
[Chemical formula 1] R 2 SiO 5
(Wherein R is one or more rare earth elements selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc) As for the rare earth silicate single crystal, the mechanical properties of the crystal are the same, and the same result is obtained. Furthermore, the same effect is obtained when these rare earth silicate single crystals are doped with a rare earth element such as Ce or an iron group transition metal such as Cr. The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure belongs to the space group P2 / c.
(比較例1)
セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2 SiO5 )の場合の例を説明する。寸法20×20×10mm3で20×20mm3 面が2面鏡面の直方体の試料を加工した。目的とするサイズの試料が十分採取できる大きさの、へき開面に平行な引上軸で育成した結晶ブロックについて、結晶ブロックの端部に発生した或いは発生させたへき開面((100)面)の割れ、またはシードのへき開面に互いに垂直になるような2対向面でブロックを切断した。そして、最後にへき開面に平行に1対向面(20×20mm3)を切断した。しかし、へき開面に平行に切断したはずの面には、切断後面の端部に剥がれが発生した。その後この面の研磨を行ったが、新たに剥がれが発生し、平滑な加工面が得られなかった(図2)。そこで、その面をX線カット面検査機によって調べた結果、任意のx及びy方向についてそれぞれ2°及び1°30’ずつずれていた。
(Comparative Example 1)
An example in the case of a cerium-activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 ) will be described. A rectangular parallelepiped sample having a dimension of 20 × 20 × 10 mm 3 and a 20 × 20 mm 3 surface being a double mirror surface was processed. For a crystal block grown with a pull-up axis parallel to the cleavage plane that is large enough to collect a sample of the desired size, the cleavage plane ((100) plane) generated or generated at the end of the crystal block The block was cut at two opposing surfaces that were perpendicular to the cracked or cleaved surface of the seed. Finally, one opposing surface (20 × 20 mm 3 ) was cut parallel to the cleavage plane. However, the surface that should have been cut parallel to the cleavage plane was peeled off at the end of the cut surface. Thereafter, this surface was polished, but new peeling occurred and a smooth processed surface could not be obtained (FIG. 2). Therefore, as a result of examining the surface with an X-ray cut surface inspection machine, the surface was shifted by 2 ° and 1 ° 30 ′ in any x and y directions, respectively.
(比較例2)
比較例1と同様に、セリウム付活珪酸ガドリニウム単結晶について、寸法20×20×10mm3 で20×20mm3 面が2面鏡面の直方体の試料を加工した。目的とするサイズの試料が十分採取できる大きさの、へき開面に平行な引上軸で育成した結晶ブロックについて、結晶ブロックの端部に発生した或いは発生させたへき開面((100)面)の割れ、またはシードのへき開面に平行になるように、結晶ブロックの表面を薄く切断した。切断した面をX線カット面検査機によって調べた結果、任意のx及びy方向についてそれぞれ1°40’及び2°10’ずつずれていた。そこで正確なへき開面に互いに垂直な2対向面でブロックを切断し、最後に正確なへき開面に平行に1対向面(20×20mm3)を切断した。その結果、切断後のへき開面の剥がれが無く、その後の鏡面研磨加工でも剥がれが発生しない試料を作成することができた(図2)。
(Comparative Example 2)
In the same manner as in Comparative Example 1, a cerium-activated gadolinium silicate single crystal was processed into a rectangular parallelepiped sample having a dimension of 20 × 20 × 10 mm 3 and a 20 × 20 mm 3 surface having a two-sided mirror surface. For a crystal block grown with a pull-up axis parallel to the cleavage plane that is large enough to collect a sample of the desired size, the cleavage plane ((100) plane) generated or generated at the end of the crystal block The surface of the crystal block was thinly cut so as to be parallel to the crack or the cleavage plane of the seed. As a result of examining the cut surface with an X-ray cut surface inspection machine, it was shifted by 1 ° 40 ′ and 2 ° 10 ′ in any x and y directions, respectively. Therefore, the block was cut with two opposing surfaces perpendicular to the accurate cleavage surface, and finally one opposing surface (20 × 20 mm 3 ) was cut in parallel with the accurate cleavage surface. As a result, it was possible to produce a sample in which the cleaved surface was not peeled after cutting, and no peeling occurred even in the subsequent mirror polishing process (FIG. 2).
(実施例1)
比較例と同様に、セリウム付活珪酸ガドリニウム単結晶について、寸法20×20×10mm3 で20×20mm3 面が2面鏡面の直方体の試料を加工した。目的とするサイズの試料が十分採取できる大きさの、へき開面に平行な引上軸で育成した結晶ブロックについて、結晶ロックの端部に発生した或いは発生させたへき開面((100)面)の割れに平行な面から任意の方向に適当に傾けた面に、互いに垂直な2対向面でブロック切断し、最後にこの傾けた面に平行に1対向面、(20×20mm3)を切断した。このへき開面に最も近い加工面には、へき開面の剥がれが発生しなかった。また、その後の鏡面研磨によっても、剥がれは発生することなく、平滑な加工面が得られた(図1)。そこで、その面をX線カット面検査機によって調べた結果、(100)面から任意のx及びy方向に、それぞれ5°及び2°ずつずれていた。
(Example 1)
In the same manner as in the comparative example, a cerium-activated gadolinium silicate single crystal was processed into a rectangular parallelepiped sample having dimensions of 20 × 20 × 10 mm 3 and a 20 × 20 mm 3 plane having a two-sided mirror surface. For a crystal block grown with a pull-up shaft parallel to the cleavage plane that is large enough to collect a sample of the desired size, the cleavage plane ((100) plane) generated or generated at the end of the crystal lock Block cutting was performed with two opposing surfaces perpendicular to each other on a surface appropriately inclined in an arbitrary direction from a surface parallel to the crack, and finally one opposing surface (20 × 20 mm 3 ) was cut in parallel with this inclined surface. . No peeling of the cleaved surface occurred on the processed surface closest to the cleaved surface. Further, even with the subsequent mirror polishing, a smooth processed surface was obtained without causing peeling (FIG. 1). Therefore, as a result of examining the surface with an X-ray cut surface inspection machine, the surface was shifted by 5 ° and 2 ° in arbitrary x and y directions from the (100) surface, respectively.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003315670A JP3627749B2 (en) | 2003-09-08 | 2003-09-08 | Rare earth silicate single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003315670A JP3627749B2 (en) | 2003-09-08 | 2003-09-08 | Rare earth silicate single crystal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5967394A Division JP3914269B2 (en) | 1994-03-30 | 1994-03-30 | Rare earth silicate single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004043302A JP2004043302A (en) | 2004-02-12 |
JP3627749B2 true JP3627749B2 (en) | 2005-03-09 |
Family
ID=31712688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003315670A Expired - Fee Related JP3627749B2 (en) | 2003-09-08 | 2003-09-08 | Rare earth silicate single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3627749B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4622329B2 (en) * | 2003-07-24 | 2011-02-02 | 日立化成工業株式会社 | Rare earth silicate single crystal and method for producing rare earth silicate single crystal |
-
2003
- 2003-09-08 JP JP2003315670A patent/JP3627749B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004043302A (en) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Becher et al. | Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size | |
Sun et al. | Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives | |
Goyal et al. | Anisotropic hardness and fracture toughness of highly aligned YBa2Cu3O7− δ | |
EP1712662A1 (en) | Substrate for thin-film formation, thin-film substrate and light emitting element | |
EP1972599B1 (en) | Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material | |
EP3113211B1 (en) | Handle substrate for composite substrate for semiconductor and composite substrate for semiconductor | |
JP2005327997A (en) | Composite laser element and laser oscillator using the element | |
EP2916346A1 (en) | Handle substrate for composite substrate for semiconductor | |
JP3627749B2 (en) | Rare earth silicate single crystal | |
JP3914269B2 (en) | Rare earth silicate single crystal | |
EP2647742B1 (en) | Bismuth-substituted rare earth iron garnet crystal film and optical isolator | |
JP4518069B2 (en) | Rare earth silicate single crystals for scintillators | |
JP3892489B2 (en) | Processing method of rare earth silicate single crystal | |
JP7536518B2 (en) | Reaction vessel and biochemical analyzer | |
WO2004070091A1 (en) | Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same | |
US5667583A (en) | Method of producing a single crystal of a rare-earth silicate | |
JP3587262B2 (en) | Method for producing columnar rare earth silicate single crystal | |
JP4889155B2 (en) | High-strength alumina sintered body having free machinability and corrosion-resistant member using the same | |
US20060109880A1 (en) | Wafer laser crystal | |
JP2503758B2 (en) | Method for growing rare earth silicate single crystal | |
JP3536290B2 (en) | Method for producing columnar rare earth silicate single crystal | |
JP3971539B2 (en) | Alumina plasma corrosion resistant material | |
USH557H (en) | Epitaxial strengthening of crystals | |
Kashiwagura et al. | Ultrasonic study of machinable ceramic over temperature range from room temperature to 1000° C | |
Sakai et al. | Effect of silver addition on mechanical properties of melt-processed Sm-Ba-Cu-O bulk superconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |