JP3627334B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP3627334B2
JP3627334B2 JP34402095A JP34402095A JP3627334B2 JP 3627334 B2 JP3627334 B2 JP 3627334B2 JP 34402095 A JP34402095 A JP 34402095A JP 34402095 A JP34402095 A JP 34402095A JP 3627334 B2 JP3627334 B2 JP 3627334B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
correction coefficient
region
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34402095A
Other languages
Japanese (ja)
Other versions
JPH09184441A (en
Inventor
禎明 吉岡
初雄 永石
和重 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34402095A priority Critical patent/JP3627334B2/en
Publication of JPH09184441A publication Critical patent/JPH09184441A/en
Application granted granted Critical
Publication of JP3627334B2 publication Critical patent/JP3627334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の空燃比制御装置に関し、詳しくは、例えば希薄(リーン)燃焼エンジン等の適正空燃比制御による運転性向上技術に関する。
【0002】
【従来の技術】
従来、車両に搭載されるエンジンとして、理論空燃比よりも希薄(リーン)な空燃比で燃焼させる所謂希薄燃焼機関(以下、リーンバーンエンジン)が知られている。
かかるリーンバーンエンジンにおいて、本出願人は、エンジン負荷としての機関に吸入される質量空気量相当の燃料噴射量Tp,回転速度Ne,水温Tw,スロットルバルブ開度TVOにより総合的にリーン領域を設定し、これらTp,Ne,Tw,TVOに基づいてリーン領域を判定することを提案している。
【0003】
即ち、図5(A)〜(C)の全てを満足した場合にリーン領域であると判定する。
そして、リーン領域と判定された場合には、図5(A)に示すマップから、TpとNeとにより目標空燃比を決定するようにしており、又、同図(A)に示す如く、エンジン負荷(Tp)が高くなるにつれて、目標空燃比をリッチにして、リーン運転とストイキ運転との切換時のトルクショックを軽減するようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、このようなリーンバーンエンジンの空燃比制御技術にあっては、低地では良好な運転性が得られるが、高地では空気密度が薄いため、良好な運転性が得られないという問題点があり、改善の余地があった。
即ち、低地の場合は、図5(A)に示すようなリーンマップにおいて、燃料噴射量Tp若しくは回転速度Neの上昇にしたがって、空燃比は24→23→22→21と徐々に変化するため、トルクショックは小さい。
【0005】
一方、高地ではスロットルバルブ開度大となっても質量空気量が上がらないため、スロットルバルブ開度が図6(A)に示すようにaだけ異なり、従って、質量空気量相当のTpも上がらないことから、図5(A)のマップからリーン領域を判定するが、図5(C)のマップにおける判定はリーン領域から外れてしまう。
【0006】
このため、スロットルバルブ開度大をトリガして、例えば空燃比が24から15へと切り換わり、大きなトルクショックが発生する。
即ち、図6(B)に示すスロットルバルブ開度TVOと目標空燃比を得るための空燃比補正係数DMLのマップ上では、一点鎖線で示されるDML変化となるが、実際には、スロットルバルブ開度TVO大によるリーン・ストイキの切り換えが起こるため、この切換時の目標空燃比の段差が同図(B)に示すb´(低地ではb)と大きくなり、トルクショックが大となる。
【0007】
尚、大気圧センサを設けて、高地判断を行えば、上記の問題点を解決できるが、大気圧センサは高価であり、これの使用は避けたいところである。
又、大気圧センサを設けずに、大気圧を推定する技術もあるが、この推定では誤差が大きく、推定に時間がかかると言う問題点があり、好ましいものとは言えない。
【0008】
そこで、本発明は以上のような従来の問題点に鑑み、例えばリーン・ストイキの切り換え時の目標空燃比の段差を小さく抑える制御を行って、切換時のトルクショックの軽減を図ることを目的とする。
【0009】
【課題を解決するための手段】
このため、請求項1に係る発明は、図1に示すように、内燃機関の吸気通路に介装されたスロットルバルブのスロットルバルブ開度、機関回転速度及び機関に吸入される質量空気量相当の基本燃料供給量を含む機関運転条件を検出する機関運転条件検出手段と、前記機関運転条件検出手段により検出された機関運転条件に基づいて、第1の濃度の空燃比で燃焼させる領域であるか該第1の濃度の空燃比領域よりも濃い第2の濃度の空燃比で燃焼させる領域であるかを判定する燃焼領域判定手段と、前記燃焼領域判定手段で判定された燃焼領域毎に、少なくとも機関に吸入される質量空気量に基づいて決定される目標空燃比を得るための空燃比補正係数を前記機関回転速度及び前記基本燃料供給量により演算する空燃比補正係数演算手段と、検出されたスロットルバルブ開度に対応する空燃比補正係数下限値を演算する空燃比補正係数下限値演算手段と、前記空燃比補正係数を前記空燃比補正係数下限値に制限する空燃比補正係数制限手段と、前記制限手段により制限された空燃比補正係数で補正して得た目標空燃比となるように燃料供給量を演算する燃料供給量演算手段と、前記燃料供給量演算手段により演算された燃料供給量となるように燃料供給手段を制御する制御手段と、を含んで構成した。
【0010】
請求項2に係る発明は、前記第1の濃度の空燃比で燃焼させる領域を、理論空燃比より希薄なリーン燃焼領域とし、第2の濃度の空燃比で燃焼させる領域を、理論空燃比のストイキ燃焼領域又は理論空燃比より過濃なリッチ燃焼領域とした。
【0011】
請求項に係る発明は、前記機関運転条件検出手段として、機関温度を検出する機関温度検出手段を設けるようにした。
請求項に係る発明は、前記空燃比補正係数下限値を、演算された空燃比補正係数の値をスロットルバルブ開度の全開付近で乗り越える値に設定するようにした。
【0012】
請求項に係る発明は、前記空燃比補正係数下限値を、前記第1の濃度の空燃比で燃焼させる領域から前記第2の濃度の空燃比で燃焼させる領域へと徐々に変化させるようにした。
【0013】
【発明の効果】
以上の請求項1及びに係る発明によれば、スロットルバルブ開度に対応する空燃比補正係数下限値を演算し、空燃比補正係数を前記空燃比補正係数下限値に制限することにより、例えば、リーン・ストイキの切り換え時に空燃比補正係数が徐々に変化するようにして、目標空燃比の段差を小さく抑えることが可能となり、トルクショックの軽減を図ることができ、低地、高地共に良好な運転性を確保することができる。
【0014】
請求項2に係る発明によれば、理論空燃比よりも希薄(リーン)な空燃比で燃焼させる希薄燃焼機関において、低地、高地共に良好な運転性を確保することができる。
請求項3に係る発明によれば、機関回転速度、質量空気量相当の基本燃料供給量更には機関温度に基づいて総合的に空燃比領域を設定でき、これらの要素からリーン領域を的確に判定できる。
【0015】
請求項に係る発明によれば、第1の濃度の空燃比で燃焼させる領域(希薄燃焼機関ではリーン領域)を最大限に活かすことができる。
【0016】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図2は、本発明の内燃機関の一実施形態としての、リーンバーンエンジンのシステム構成図であり、エンジン1には、エアフローメータ2で計量された空気が吸引され、かかる空気と燃料供給手段としての燃料噴射弁3から噴射される燃料とによって所定空燃比の混合気が形成される。
【0017】
エンジン1からの排気は、排気通路4途中に設けられた触媒装置5で浄化されて排出される。
前記燃料噴射弁3による燃料噴射量は、コントロールユニット6から出力される噴射パルス信号のパルス幅に応じて制御される。
前記コントロールユニット6には、機関運転条件検出手段として、前記エアフローメータ2からの吸入空気量(質量空気量)信号Qa、クランク軸又はカム軸からの回転信号を取り出す回転センサ7からの機関回転速度信号Ne、触媒装置5の上流側の排気通路4に設けられて排気中の酸素濃度を検出する酸素センサ(空燃比検出手段)8からの酸素濃度信号、スロットルバルブ9のバルブ開度の検出手段としてのスロットルセンサ10からのスロットルバルブ開度信号TVO、機関温度としてのエンジン冷却水温度を検出する水温センサ11からの水温信号Tw等が入力される。
【0018】
尚、酸素センサ8は、例えば、基準酸素濃度は排気中の酸素濃度との比に応じた起電力を発生する酸素濃淡電池であり、理論空燃比を境に酸素濃度が急変することに対応して、理論空燃比によりもリッチ側では出力が高くなり、リーン側では出力が低くなることで理論空燃比を検出できるセンサである。
ここで、本実施形態のエンジン1は、空燃比=22程度のリーン空燃比で燃焼を行わせるリーンバーンエンジンであり、リーン空燃比燃焼での運転と、理論空燃比付近でのストイキ燃焼運転と、理論空燃比より濃いリッチ空燃比燃焼での運転と、を運転条件(例えば、回転速度Ne,基本噴射パルス幅Tp)に応じて切り換えるようになっている。
【0019】
従って、コントロールユニット11は、リーン制御とリーン制御以外のストイキ制御及びリッチ制御とを適宜選択する機能を装備しており、目標空燃比を得るための空燃比補正係数DMLは、図3のフローチャートの如く演算され、図4のフローチャートの如く燃料噴射制御が実行される。
即ち、本発明の実施形態においては、回転速度Ne,基本噴射パルス幅Tp、スロットルバルブ開度TVO、水温Twに基づいて、第1の濃度の空燃比としての前記リーン空燃比で燃焼させるリーン領域であるか該第1の濃度の空燃比領域よりも濃い第2の濃度の空燃比としての前記ストイキ空燃比又はリッチ空燃比で燃焼させるストイキ領域又はリッチ領域であるかを判定する燃焼領域判定手段と、この燃焼領域判定手段で判定された燃焼領域毎に、少なくとも機関に吸入される質量空気量に基づいて決定される目標空燃比を得るための空燃比補正係数DMLを前記回転速度Ne及び基本噴射パルス幅Tpにより演算する空燃比補正係数演算手段と、スロットルセンサにより検出されたスロットルバルブ開度TVOに対応する空燃比補正係数下限値DLMNを演算する空燃比補正係数下限値演算手段と、前記空燃比補正係数DMLを前記下限値DLMNに制限する空燃比補正係数制限手段と、この制限手段により制限された空燃比補正係数DMLで補正して得た目標空燃比となるように燃料噴射量Tiを演算する燃料供給量演算手段と、この燃料供給量演算手段により演算された燃料供給量となるように燃料噴射弁3を制御する制御手段と、を含んで構成され,、これらの各手段の機能は、コントロールユニット6にソフトウェア的に装備されている。
【0020】
次に、上述した図3のフローチャートに基づいて、目標空燃比を得るための空燃比補正係数DMLの演算の様子を説明する。
即ち、フローチャートにおいて、ステップ1(図ではS1、以下同様)では、回転速度Neと基本噴射パルス幅Tpとに基づいて、リーン領域条件が成立しているか、ストイキ領域,リッチ領域条件が成立しているかを判定する。この場合、図5(A)のマップを参照して、条件判定を行う。
【0021】
ステップ2では、スロットルバルブ開度TVOに基づいて、リーン領域条件が成立しているか、ストイキ領域,リッチ領域条件が成立しているかを判定する。この場合、図5(C)のマップを参照して、条件判定を行う。
ステップ3では、エンジン水温Twに基づいて、リーン領域条件が成立しているか、ストイキ領域,リッチ領域条件が成立しているかを判定する。この場合、図5(B)のマップを参照して、条件判定を行う。
【0022】
ステップ1〜3の全てにおいて、リーン領域条件が成立している判定されると、ステップ4に進み、ステップ1〜3のいずれかがストイキ領域,リッチ領域条件が成立していると判定されると、ステップ5に進む。
ステップ4においては、リーン領域運転を行う際の目標空燃比を得るための空燃比補正係数DMLを前記回転速度Ne及び基本噴射パルス幅Tpにより演算する。
【0023】
この場合、図5(A)のマップから参照される目標空燃比を得るための空燃比補正係数DML(例えば空燃比22相当値)を演算する。
ステップ5においては、ストイキ領域,リッチ領域運転を行う際の目標空燃比を得るための空燃比補正係数DMLを前記回転速度Ne及び基本噴射パルス幅Tpにより演算する。
【0024】
この場合、図5(A)のマップから参照される目標空燃比を得るための空燃比補正係数DML(例えば空燃比15相当値)を演算する。
ステップ6においては、スロットルセンサ10により検出されたスロットルバルブ開度TVOに対応する空燃比補正係数下限値(リミッタ値)DLMNを演算する。
【0025】
このリミッタ値は、スロットルバルブ開度TVOにより図6(C)のマップの実線で示すように割り付けられ、実際のスロットルバルブ開度TVOから読み出される。
次のステップ7及びステップ8では、空燃比補正係数DMLを前記リミッタ値DLMNに制限する。
【0026】
即ち、ステップ7では、DMLとDLMNとを比較し、DML>DLMNであれば、そのときのDMLを空燃比補正係数として設定し、DML≦DLMNであれば、ステップ8に進んで、空燃比補正係数DMLをリミッタ値DLMNに制限する(DML=DLMN)。
次に、上述した図4のフローチャートに基づいて、燃料噴射制御の様子を説明する。
【0027】
即ち、フローチャートにおいて、ステップ11では、目標空燃比相当量TFBYAを(1)式に基づいて演算し、ステップ12では、基本噴射パルス幅Tpを(2)式に基づいて演算する。
TFBYA=DML+KAS+KTW+KHOT─(1)
但し、DML:空燃比補正係数
KAS:始動後増量補正係数
KTW:水温増量補正係数
KHOT:暖機後増量補正係数
Tp=(Qa/Ne)×K─(2)
但し、Qa:吸入空気量
Ne:エンジン回転速度
K:ベース空燃比を定める定数
ステップ13では、燃料噴射弁に与える燃料噴射パルス幅Tiを(3)式で求め、これをステップ14で出力レジスターに転送する。
【0028】
Ti=Tp×TFBYA×α×2+Ts─(3)
但し、Tp:基本噴射パルス幅
TFBYA:目標空燃比相当量
α:空燃比フィードバック補正係数
Ts:無効パルス幅
以上説明した本実施形態の制御内容によると、次のような効果を奏する。
【0029】
即ち、従来技術の項で述べたように、高地では、図6(B)に示すスロットルバルブ開度TVOと目標空燃比を得るための空燃比補正係数DMLのマップ上では、一点鎖線で示されるDML変化となるが、実際には、スロットルバルブ開度TVO大をトリガして、リーン・ストイキの切り換えが行われてしまい、この切換時の目標空燃比の段差が図6(B)に示すb´と大きくなり、トルクショックが大となる。
【0030】
上記のように、スロットルバルブ開度に対応する空燃比補正係数下限値(リミッタ値)DLMNを演算し、空燃比補正係数DMLを前記リミッタ値DLMNに制限することにより、リーン・ストイキの切り換え時に空燃比補正係数DMLは、図6(C)の実線で示すリミッタ値DLMNに沿って徐々に変化する結果、目標空燃比相当量TFBYAの段差を小さく抑えることが可能となり、トルクショックの軽減を図ることができる。
【0031】
この結果、低地、高地共に良好な運転性を確保することができる。
尚、リーン領域運転の判定に際する条件として、エンジン回転速度Ne及び基本噴射パルス幅Tpに加え、機関温度としての冷却水温Twを加えたことにより、より総合的にリーン領域判定が行える。
又、空燃比補正係数下限値は、図6(C)に示すように、スロットルバルブ開度の全開付近(A点)で演算された空燃比補正係数DMLの値を乗り越える値に設定するのが好ましく、これにより、リーン領域を最大限に活かすことができる。
【0032】
ところで、上記の実施形態においては、理論空燃比よりも希薄(リーン)な空燃比で燃焼させるリーンバーンエンジンに本発明を適用した例について説明したが、理論空燃比で燃焼させる通常のエンジンにも本発明を適用できる。
この場合、図7に示すように、点線で示す如くストイキからリッチに切り換わる際の急激変化する空燃比補正係数を、同図の実線で示すようなリミッタ値による空燃比補正係数の制限によって、徐々に変化するように設定すれば良い。
【図面の簡単な説明】
【図1】本発明の構成を示すブロック図
【図2】本発明の一実施形態のシステム図
【図3】空燃比補正係数DMLの演算ルーチンを示すフローチャート
【図4】燃料噴射制御ルーチンを示すフローチャート
【図5】リーン領域判定条件を説明するマップ
【図6】従来技術の問題点と本発明の作用を説明する特性図
【図7】他の実施形態を説明する特性図
【符号の説明】
1 エンジン
2 エアフローメータ
3 燃料噴射弁
6 コントロールユニット
7 回転センサ
10 スロットルセンサ
11 水温センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine, and more particularly to a drivability improvement technique by appropriate air-fuel ratio control such as a lean combustion engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a so-called lean burn engine (hereinafter referred to as a lean burn engine) that burns at an air / fuel ratio leaner than a stoichiometric air / fuel ratio is known as an engine mounted on a vehicle.
In such a lean burn engine, the applicant sets a comprehensive lean region based on the fuel injection amount Tp equivalent to the mass air amount sucked into the engine as the engine load, the rotational speed Ne, the water temperature Tw, and the throttle valve opening TVO. Then, it has been proposed to determine the lean region based on these Tp, Ne, Tw, and TVO.
[0003]
That is, when all of FIGS. 5A to 5C are satisfied, it is determined that the region is a lean region.
If the lean region is determined, the target air-fuel ratio is determined from Tp and Ne from the map shown in FIG. 5 (A), and as shown in FIG. As the load (Tp) increases, the target air-fuel ratio is made rich so as to reduce torque shock when switching between lean operation and stoichiometric operation.
[0004]
[Problems to be solved by the invention]
However, such lean burn engine air-fuel ratio control technology has a problem that good drivability can be obtained at low altitudes, but good drivability cannot be obtained because the air density is low at high altitudes. There was room for improvement.
That is, in the case of a lowland, in the lean map as shown in FIG. 5A, the air-fuel ratio gradually changes from 24 → 23 → 22 → 21 as the fuel injection amount Tp or the rotational speed Ne increases. Torque shock is small.
[0005]
On the other hand, since the mass air amount does not increase even when the throttle valve opening is large at high altitudes, the throttle valve opening differs by a as shown in FIG. 6A, and therefore Tp corresponding to the mass air amount does not increase. Therefore, the lean region is determined from the map of FIG. 5A, but the determination in the map of FIG. 5C is out of the lean region.
[0006]
For this reason, a large throttle valve opening is triggered, for example, the air-fuel ratio is switched from 24 to 15, and a large torque shock is generated.
That is, on the map of the throttle valve opening TVO and the air-fuel ratio correction coefficient DML for obtaining the target air-fuel ratio shown in FIG. 6B, the DML change indicated by the alternate long and short dash line is shown. Since the lean / stoichiometric change occurs due to the degree of TVO, the step of the target air-fuel ratio at the time of this change becomes large as b ′ (b in the lowland) shown in FIG. 5B, and the torque shock becomes large.
[0007]
Although the above problem can be solved by providing an atmospheric pressure sensor and making a high altitude judgment, the atmospheric pressure sensor is expensive and the use of this is to be avoided.
There is also a technique for estimating the atmospheric pressure without providing an atmospheric pressure sensor. However, this estimation has a problem that the error is large and the estimation takes time, which is not preferable.
[0008]
Therefore, in view of the above-described conventional problems, the present invention aims to reduce torque shock at the time of switching by performing control to reduce the step of the target air-fuel ratio at the time of switching between lean and stoichiometric, for example. To do.
[0009]
[Means for Solving the Problems]
For this reason, as shown in FIG. 1, the invention according to claim 1 is equivalent to the throttle valve opening of the throttle valve interposed in the intake passage of the internal combustion engine , the engine rotational speed, and the mass air amount sucked into the engine. An engine operating condition detecting means for detecting an engine operating condition including a basic fuel supply amount, and a region where combustion is performed at an air-fuel ratio of a first concentration based on the engine operating condition detected by the engine operating condition detecting means At least for each of the combustion regions determined by the combustion region determining means, the combustion region determining means for determining whether the region is burned at an air-fuel ratio of a second concentration that is higher than the air-fuel ratio region of the first concentration; and air-fuel ratio correction coefficient calculating means for calculating the air-fuel ratio the engine speed correction coefficient and the basic fuel supply amount for obtaining a target air-fuel ratio which is determined based on the mass air quantity sucked into the engine, search Air-fuel ratio correction coefficient lower-limit value calculation means, air-fuel ratio correction coefficient limiting means for limiting the air-fuel ratio correction coefficient in the air-fuel ratio correction coefficient lower-limit value for calculating the air-fuel ratio correction coefficient lower-limit value corresponding to the throttle valve opening which is A fuel supply amount calculating means for calculating a fuel supply amount so as to obtain a target air-fuel ratio obtained by correction with an air-fuel ratio correction coefficient limited by the limiting means, and a fuel calculated by the fuel supply amount calculating means And a control means for controlling the fuel supply means so as to obtain a supply amount.
[0010]
According to a second aspect of the present invention, the region burned at the first concentration air-fuel ratio is a lean combustion region that is leaner than the stoichiometric air-fuel ratio, and the region burned at the second concentration air-fuel ratio is the stoichiometric air-fuel ratio. A stoichiometric combustion region or a rich combustion region richer than the stoichiometric air-fuel ratio was set.
[0011]
The invention according to claim 3 is provided with an engine temperature detecting means for detecting the engine temperature as the engine operating condition detecting means.
In the invention according to claim 4 , the lower limit value of the air-fuel ratio correction coefficient is set to a value that overcomes the calculated value of the air-fuel ratio correction coefficient in the vicinity of the fully opened throttle valve opening.
[0012]
The invention according to claim 5, wherein the air-fuel ratio correction coefficient lower-limit value, so as to gradually vary from a region to be burned in the air-fuel ratio of the first density to the area to be burned at an air-fuel ratio of the second concentration did.
[0013]
【The invention's effect】
According to the first and fifth aspects of the invention described above, by calculating the air-fuel ratio correction coefficient lower limit value corresponding to the throttle valve opening, and limiting the air-fuel ratio correction coefficient to the air-fuel ratio correction coefficient lower limit value, for example, The air-fuel ratio correction coefficient gradually changes when switching between lean and stoichiometry, making it possible to keep the target air-fuel ratio step small and to reduce torque shock. Good operation in both low and high altitude areas Sex can be secured.
[0014]
According to the second aspect of the invention, in a lean combustion engine that burns at a leaner air / fuel ratio than the stoichiometric air / fuel ratio, good drivability can be ensured in both low and high altitude areas.
According to the invention of claim 3, the air-fuel ratio region can be set comprehensively based on the engine speed, the basic fuel supply amount corresponding to the mass air amount, and the engine temperature, and the lean region can be accurately determined from these factors. it can.
[0015]
According to the fourth aspect of the present invention, it is possible to make the most of the region where the air-fuel ratio is burned at the first concentration (lean region in the lean combustion engine).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 2 is a system configuration diagram of a lean burn engine as one embodiment of the internal combustion engine of the present invention. Air measured by an air flow meter 2 is sucked into the engine 1, and as such air and fuel supply means An air-fuel mixture having a predetermined air-fuel ratio is formed by the fuel injected from the fuel injection valve 3.
[0017]
Exhaust gas from the engine 1 is purified by a catalyst device 5 provided in the middle of the exhaust passage 4 and discharged.
The amount of fuel injected by the fuel injection valve 3 is controlled according to the pulse width of the injection pulse signal output from the control unit 6.
The control unit 6 has an engine rotational speed from a rotation sensor 7 that extracts an intake air amount (mass air amount) signal Qa from the air flow meter 2 and a rotation signal from a crankshaft or camshaft as engine operating condition detection means. Signal Ne, an oxygen concentration signal from an oxygen sensor (air-fuel ratio detection means) 8 provided in the exhaust passage 4 upstream of the catalyst device 5 to detect the oxygen concentration in the exhaust, and a valve opening degree detection means for the throttle valve 9 The throttle valve opening signal TVO from the throttle sensor 10 and the water temperature signal Tw from the water temperature sensor 11 for detecting the engine coolant temperature as the engine temperature are input.
[0018]
The oxygen sensor 8 is, for example, an oxygen concentration cell that generates an electromotive force according to the ratio of the reference oxygen concentration to the oxygen concentration in the exhaust gas, and corresponds to a sudden change in the oxygen concentration at the boundary of the theoretical air-fuel ratio. Thus, the sensor can detect the stoichiometric air-fuel ratio by increasing the output on the rich side and decreasing the output on the lean side than the stoichiometric air-fuel ratio.
Here, the engine 1 of the present embodiment is a lean burn engine that performs combustion at a lean air-fuel ratio of about air-fuel ratio = 22, and operates with lean air-fuel ratio combustion and stoichiometric combustion operation near the stoichiometric air-fuel ratio. The operation with rich air-fuel ratio combustion that is deeper than the stoichiometric air-fuel ratio is switched according to the operating conditions (for example, the rotational speed Ne and the basic injection pulse width Tp).
[0019]
Therefore, the control unit 11 is equipped with a function for appropriately selecting lean control, stoichiometric control other than lean control, and rich control, and the air-fuel ratio correction coefficient DML for obtaining the target air-fuel ratio is as shown in the flowchart of FIG. The fuel injection control is executed as shown in the flowchart of FIG.
That is, in the embodiment of the present invention, based on the rotational speed Ne, the basic injection pulse width Tp, the throttle valve opening TVO, and the water temperature Tw, the lean region in which combustion is performed at the lean air-fuel ratio as the first concentration air-fuel ratio. Or a combustion region determination means for determining whether the combustion region is a stoichiometric region or a rich region to be burned at the stoichiometric air-fuel ratio or rich air-fuel ratio as the air-fuel ratio of the second concentration that is higher than the air-fuel ratio region of the first concentration And an air-fuel ratio correction coefficient DML for obtaining a target air-fuel ratio determined on the basis of at least the mass air amount sucked into the engine for each combustion region determined by the combustion region determining means, the rotational speed Ne and the basic An air-fuel ratio correction coefficient calculating means for calculating by the injection pulse width Tp, and an air-fuel ratio correction function corresponding to the throttle valve opening TVO detected by the throttle sensor. Air-fuel ratio correction coefficient lower limit value calculating means for calculating the lower limit value DLMN, air-fuel ratio correction coefficient limiting means for limiting the air-fuel ratio correction coefficient DML to the lower limit value DLMN, and air-fuel ratio correction coefficient DML limited by the limiting means The fuel supply amount calculating means for calculating the fuel injection amount Ti so as to obtain the target air-fuel ratio obtained by correcting the fuel injection amount, and the fuel injection valve 3 is controlled so as to be the fuel supply amount calculated by the fuel supply amount calculating means. The control unit 6 is configured by software, and the functions of these means are installed in the control unit 6 by software.
[0020]
Next, the calculation of the air-fuel ratio correction coefficient DML for obtaining the target air-fuel ratio will be described based on the flowchart of FIG. 3 described above.
That is, in the flowchart, in step 1 (S1 in the figure, the same applies hereinafter), the lean region condition is satisfied or the stoichiometric region and rich region conditions are satisfied based on the rotational speed Ne and the basic injection pulse width Tp. It is determined whether or not. In this case, the condition determination is performed with reference to the map of FIG.
[0021]
In step 2, based on the throttle valve opening TVO, it is determined whether the lean region condition is satisfied or whether the stoichiometric region or rich region condition is satisfied. In this case, the condition determination is performed with reference to the map of FIG.
In step 3, it is determined based on the engine coolant temperature Tw whether the lean region condition is satisfied or whether the stoichiometric region or rich region condition is satisfied. In this case, the condition determination is performed with reference to the map of FIG.
[0022]
If it is determined that the lean region condition is satisfied in all of steps 1 to 3, the process proceeds to step 4 and if any of steps 1 to 3 is determined that the stoichiometric region or rich region condition is satisfied. , Go to step 5.
In step 4, an air-fuel ratio correction coefficient DML for obtaining a target air-fuel ratio for performing the lean region operation is calculated based on the rotational speed Ne and the basic injection pulse width Tp.
[0023]
In this case, an air-fuel ratio correction coefficient DML (for example, an air-fuel ratio 22 equivalent value) for obtaining a target air-fuel ratio referred to from the map of FIG.
In step 5, an air-fuel ratio correction coefficient DML for obtaining a target air-fuel ratio when performing stoichiometric region and rich region operation is calculated from the rotational speed Ne and the basic injection pulse width Tp.
[0024]
In this case, an air-fuel ratio correction coefficient DML (for example, an air-fuel ratio 15 equivalent value) for obtaining a target air-fuel ratio referred to from the map of FIG.
In step 6, an air-fuel ratio correction coefficient lower limit (limiter value) DLMN corresponding to the throttle valve opening TVO detected by the throttle sensor 10 is calculated.
[0025]
This limiter value is assigned by the throttle valve opening TVO as shown by the solid line in the map of FIG. 6C, and is read from the actual throttle valve opening TVO.
In the next step 7 and step 8, the air-fuel ratio correction coefficient DML is limited to the limiter value DLMN.
[0026]
That is, in step 7, DML and DLMN are compared. If DML> DLMN, the DML at that time is set as the air-fuel ratio correction coefficient. If DML ≦ DLMN, the process proceeds to step 8 to proceed to air-fuel ratio correction. The coefficient DML is limited to the limiter value DLMN (DML = DLMN).
Next, the state of fuel injection control will be described based on the flowchart of FIG. 4 described above.
[0027]
That is, in the flowchart, in step 11, the target air-fuel ratio equivalent amount TFBYA is calculated based on the equation (1), and in step 12, the basic injection pulse width Tp is calculated based on the equation (2).
TFBYA = DML + KAS + KTW + KHOT- (1)
However, DML: air-fuel ratio correction coefficient KAS: post-startup increase correction coefficient KTW: water temperature increase correction coefficient KHOT: post-warming increase correction coefficient Tp = (Qa / Ne) × K− (2)
However, in constant step 13 for determining Qa: intake air amount Ne: engine rotational speed K: base air-fuel ratio, the fuel injection pulse width Ti given to the fuel injection valve is obtained by the equation (3), and this is output to the output register in step 14 Forward.
[0028]
Ti = Tp × TFBYA × α × 2 + Ts− (3)
However, Tp: basic injection pulse width TFBYA: target air-fuel ratio equivalent amount α: air-fuel ratio feedback correction coefficient Ts: invalid pulse width According to the control content of the present embodiment described above, the following effects are obtained.
[0029]
That is, as described in the section of the prior art, at high altitude, the throttle valve opening TVO and the air-fuel ratio correction coefficient DML for obtaining the target air-fuel ratio shown in FIG. Although the DML changes, actually, the throttle valve opening TVO large is triggered to switch between lean and stoichiometric, and the step of the target air-fuel ratio at the time of this switching is shown in FIG. 6B. The torque shock becomes large with increasing '.
[0030]
As described above, the air-fuel ratio correction coefficient lower limit value (limiter value) DLMN corresponding to the throttle valve opening is calculated, and the air-fuel ratio correction coefficient DML is limited to the limiter value DLMN. The fuel ratio correction coefficient DML gradually changes along the limiter value DLMN shown by the solid line in FIG. 6C. As a result, the step of the target air-fuel ratio equivalent amount TFBYA can be suppressed to be small, and torque shock can be reduced. Can do.
[0031]
As a result, good drivability can be ensured in both the lowland and highland.
As a condition for determining the lean region operation, the lean region determination can be performed more comprehensively by adding the coolant temperature Tw as the engine temperature in addition to the engine rotation speed Ne and the basic injection pulse width Tp.
Also, the lower limit value of the air-fuel ratio correction coefficient is set to a value that exceeds the value of the air-fuel ratio correction coefficient DML calculated near the fully open throttle valve opening (point A), as shown in FIG. Preferably, this makes it possible to make the most of the lean region.
[0032]
In the above embodiment, an example in which the present invention is applied to a lean burn engine that burns at a leaner air / fuel ratio than the stoichiometric air / fuel ratio has been described. However, the present invention also applies to a normal engine that burns at a stoichiometric air / fuel ratio. The present invention can be applied.
In this case, as shown in FIG. 7, the air-fuel ratio correction coefficient that changes rapidly when switching from stoichiometric to rich as shown by the dotted line is limited by the limit of the air-fuel ratio correction coefficient by the limiter value as shown by the solid line in FIG. What is necessary is just to set so that it may change gradually.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of the present invention. FIG. 2 is a system diagram of an embodiment of the present invention. FIG. 3 is a flowchart showing a calculation routine of an air-fuel ratio correction coefficient DML. Flowchart [FIG. 5] Map explaining the lean region determination condition [FIG. 6] Characteristic diagram explaining the problems of the prior art and the operation of the present invention [FIG. 7] Characteristic diagram explaining another embodiment [Explanation of symbols]
1 Engine 2 Air Flow Meter 3 Fuel Injection Valve 6 Control Unit 7 Rotation Sensor 10 Throttle Sensor 11 Water Temperature Sensor

Claims (5)

内燃機関の吸気通路に介装されたスロットルバルブのスロットルバルブ開度、機関回転速度及び機関に吸入される質量空気量相当の基本燃料供給量を含む機関運転条件を検出する機関運転条件検出手段と、
前記機関運転条件検出手段により検出された機関運転条件に基づいて、第1の濃度の空燃比で燃焼させる領域であるか該第1の濃度の空燃比領域よりも濃い第2の濃度の空燃比で燃焼させる領域であるかを判定する燃焼領域判定手段と、
前記燃焼領域判定手段で判定された燃焼領域毎に、少なくとも機関に吸入される質量空気量に基づいて決定される目標空燃比を得るための空燃比補正係数を前記機関回転速度及び前記基本燃料供給量により演算する空燃比補正係数演算手段と、
検出されたスロットルバルブ開度に対応する空燃比補正係数下限値を演算する空燃比補正係数下限値演算手段と、
前記空燃比補正係数を前記空燃比補正係数下限値に制限する空燃比補正係数制限手段と、
前記制限手段により制限された空燃比補正係数で補正して得た目標空燃比となるように燃料供給量を演算する燃料供給量演算手段と、
前記燃料供給量演算手段により演算された燃料供給量となるように燃料供給手段を制御する制御手段と、
を含んで構成されたことを特徴とする内燃機関の空燃比制御装置。
Engine operating condition detecting means for detecting an engine operating condition including a throttle valve opening of a throttle valve interposed in an intake passage of the internal combustion engine , an engine speed, and a basic fuel supply amount equivalent to a mass air amount sucked into the engine; ,
Based on the engine operating condition detected by the engine operating condition detecting means, the air-fuel ratio of the second concentration is a region where combustion is performed at the air-fuel ratio of the first concentration or is higher than the air-fuel region of the first concentration. Combustion region determination means for determining whether the region is a region to be burned in,
For each combustion region determined by the combustion region determining means, an air-fuel ratio correction coefficient for obtaining a target air-fuel ratio determined based on at least the mass air amount sucked into the engine is used as the engine rotational speed and the basic fuel supply. An air-fuel ratio correction coefficient calculating means for calculating according to the amount ;
Air-fuel ratio correction coefficient lower limit value calculating means for calculating an air-fuel ratio correction coefficient lower limit value corresponding to the detected throttle valve opening;
Air-fuel ratio correction coefficient limiting means for limiting the air-fuel ratio correction coefficient to the air-fuel ratio correction coefficient lower limit value;
Fuel supply amount calculation means for calculating a fuel supply amount so as to obtain a target air-fuel ratio obtained by correcting with the air-fuel ratio correction coefficient restricted by the restriction means;
Control means for controlling the fuel supply means so as to be the fuel supply amount calculated by the fuel supply amount calculation means;
An air-fuel ratio control apparatus for an internal combustion engine, comprising:
前記第1の濃度の空燃比で燃焼させる領域は、理論空燃比より希薄なリーン燃焼領域であり、第2の濃度の空燃比で燃焼させる領域は、理論空燃比のストイキ燃焼領域又は理論空燃比より過濃なリッチ燃焼領域である請求項1記載の内燃機関の空燃比制御装置。The region burned at the first concentration air-fuel ratio is a lean combustion region leaner than the stoichiometric air-fuel ratio, and the region burned at the second concentration air-fuel ratio is the stoichiometric combustion region or stoichiometric air-fuel ratio of the stoichiometric air-fuel ratio. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein the rich combustion region is richer. 前記機関運転条件検出手段として、機関温度を検出する機関温度検出手段が設けられたことを特徴とする請求項1又は請求項2記載の内燃機関の空燃比制御装置。 3. An air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein an engine temperature detecting means for detecting an engine temperature is provided as the engine operating condition detecting means. 前記空燃比補正係数下限値は、演算された空燃比補正係数の値をスロットルバルブ開度の全開付近で乗り越える値に設定されることを特徴とする請求項1〜のうちいずれか1つに記載の内燃機関の空燃比制御装置。The air-fuel ratio correction coefficient lower limit value, to any one of claims 1-3, characterized in that it is set to a value overcoming the value of the computed air-fuel ratio correction coefficient near fully open throttle valve opening An air-fuel ratio control apparatus for an internal combustion engine as described. 前記空燃比補正係数下限値を、前記第1の濃度の空燃比で燃焼させる領域から前記第2の濃度の空燃比で燃焼させる領域へと徐々に変化させるようにしたことを特徴とする請求項1〜4のうちいずれか1つに記載の内燃機関の空燃比制御装置。 Claims, characterized in that the air-fuel ratio correction coefficient lower-limit value, and from the area to be burned in the air-fuel ratio of the first density is gradually varied to a region to be burned in the air-fuel ratio of the second concentration The air-fuel ratio control apparatus for an internal combustion engine according to any one of 1 to 4 .
JP34402095A 1995-12-28 1995-12-28 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP3627334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34402095A JP3627334B2 (en) 1995-12-28 1995-12-28 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34402095A JP3627334B2 (en) 1995-12-28 1995-12-28 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09184441A JPH09184441A (en) 1997-07-15
JP3627334B2 true JP3627334B2 (en) 2005-03-09

Family

ID=18366046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34402095A Expired - Fee Related JP3627334B2 (en) 1995-12-28 1995-12-28 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3627334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326747B1 (en) 1998-03-09 2002-03-13 하나와 요시카즈 Device for Purifying Oxygen Rich Exhaust Gas

Also Published As

Publication number Publication date
JPH09184441A (en) 1997-07-15

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
US6751950B2 (en) Emission control apparatus for engine
JP3521632B2 (en) Control device for internal combustion engine
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0634491A (en) Lean limit detecting method utilizing ion current
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
EP0400529B1 (en) Air-fuel ratio control device for internal combustion engine
US5560339A (en) Fuel injection control system for internal combustion engine
US4662339A (en) Air-fuel ratio control for internal combustion engine
JP3627334B2 (en) Air-fuel ratio control device for internal combustion engine
JP2946379B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP3303274B2 (en) Control device for electronically controlled throttle internal combustion engine
JP2002180876A (en) Air-fuel ratio controller for internal combustion engine
JPH09310635A (en) Air-fuel ratio control device of internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0419377B2 (en)
JP2996676B2 (en) Air-fuel ratio control method for internal combustion engine
JP3726432B2 (en) Air quantity detection device for internal combustion engine
JPH0715272B2 (en) Air-fuel ratio controller for internal combustion engine
JP4314158B2 (en) Engine air-fuel ratio control device
JP2712086B2 (en) Air-fuel ratio control method for internal combustion engine
JP2623469B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JP2902646B2 (en) Engine air-fuel ratio control device
JP2981062B2 (en) Fuel injection control method in lean burn

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees