JP3627071B2 - PH adjuster for boiler water system - Google Patents

PH adjuster for boiler water system Download PDF

Info

Publication number
JP3627071B2
JP3627071B2 JP10859695A JP10859695A JP3627071B2 JP 3627071 B2 JP3627071 B2 JP 3627071B2 JP 10859695 A JP10859695 A JP 10859695A JP 10859695 A JP10859695 A JP 10859695A JP 3627071 B2 JP3627071 B2 JP 3627071B2
Authority
JP
Japan
Prior art keywords
monoethanolamine
water system
adjuster
boiler water
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10859695A
Other languages
Japanese (ja)
Other versions
JPH08299968A (en
Inventor
圭一郎 石川
誠也 野水
宏康 林
司 前川
Original Assignee
大塚化学ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学ホールディングス株式会社 filed Critical 大塚化学ホールディングス株式会社
Priority to JP10859695A priority Critical patent/JP3627071B2/en
Publication of JPH08299968A publication Critical patent/JPH08299968A/en
Application granted granted Critical
Publication of JP3627071B2 publication Critical patent/JP3627071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ボイラー水系用pH調整剤に関する。更に詳しくは、本発明は、ボイラー水系の給水管等の腐食を防止するためのpH調整剤に関する。
【0002】
【従来の技術とその課題】
加圧水型原子炉を利用した発電装置は、主に、核燃料である濃縮ウランを格納する耐圧炉心容器、該耐圧炉心容器内を100〜200気圧の加圧下に循環する第1次冷却水系、蒸気発生用熱交換器及びその系内にタービンを備えたボイラー水系(第2次冷却水系)からなっている。そして、耐圧炉心容器中での濃縮ウランの核分裂連鎖反応により発生する熱を、第1次冷却水系及び蒸気発生用熱交換器を介し、ボイラー水系に与えて水蒸気を生成させ、この水蒸気でタービンを回すことにより、発電が行われる。
【0003】
このような加圧水型原子炉は、第1次冷却水系とボイラー水系とが互いに独立しているので、ボイラー水系が放射能を帯びる虞れがないという好ましい特徴を有している。
【0004】
ところで、ボイラー水系の給水管は、その中を数百気圧程度の高加圧下及び高温下に冷却用水が流れることから、耐久性等を考慮して炭素鋼、ステンレス鋼、銅−ニッケル合金等からなるものが用いられている。これらの材料は、冷却用水中に含まれる溶存酸素によって酸化されて腐食するので、ボイラー水系には、溶存酸素を除去するための脱酸素剤(防食剤)であるヒドラジンヒドラート及びpHをアルカリ側に調整して酸化を防止するためのアンモニアが主に添加されている。
【0005】
しかしながら、pH調整剤(アルカリ剤)であるアンモニアは沸点が低く、且つ蒸気圧が高いので気化し易く、そのため冷却用水を系内に供給するポンプや発電用タービンがアンモニア気体をかみこみ、ポンプやタービンの羽根が損傷(エロージョン)を受けて冷却用水や水蒸気の循環不良が起こる虞れがある。このような循環不良は、ひいては耐圧炉心容器中における核分裂反応にも甚大な影響を与えかねない。
【0006】
アンモニア以外のpH調整剤としては、例えば、水酸化ナトリウム、リン酸ナトリウム等の無機塩類、モルホリン、シクロヘキシルアミン等の有機化合物が使用されている。しかしながら、上記無機塩類は高温高圧下のボイラー水系では固形残渣を生じ、また上記有機化合物はアンモニアと同様に沸点が低く且つ蒸気圧が高く、蒸発し易いため、エロージョンが起こるのを避け得ず、従っていずれの化合物をpH調整剤として用いても循環不良を引き起こす虞れがある。
【0007】
これら従来のpH調整剤に代わるものとして、モノエタノールアミンの使用が試みられている。モノエタノールアミンは適度の沸点(171℃)及び蒸気圧を有し、気化し難く、給水ポンプやタービンに損傷を与えないという利点を有している。更に、モノエタノールアミンは鉄系金属に対して防食効果を示すことも知られているので、モノエタノールアミンの添加は給水管等の腐食を防止する上で非常に有効な手段となるはずである。ところが、ヒドラジンヒドラートと共にモノエタノールアミンを使用すると、防食性能が充分に発揮されず、給水管等に腐食が発生するのを避け得ない。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決するための研究過程において、市販のモノエタノールアミン中には微量不純物としてNaイオン、Clイオン、鉄化合物、重金属化合物、硫酸塩等が含まれ、高圧の冷却用水が循環するというボイラー水系内の特殊な環境において、前記微量不純物が相乗的もしくは相互的に作用し、脱酸素剤(防食剤)であるヒドラジンヒドラートを分解し、このため防食効果が低減して給水管内等に腐食が発生するとの知見を得た。そして更にこの知見に基づいて更に研究を重ねた結果、モノエタノールアミン中の微量不純物の合計量を特定濃度以下にする場合には、ヒドラジンヒドラートの分解が殆ど起こらず、顕著な防食効果が発揮されることを見い出した。本発明は、斯かる知見に基づき完成されたものである。
【0009】
即ち本発明は、不純物含有量が0.55ppm以下である高純度モノエタノールアミンを有効成分とするボイラー水系用pH調整剤に係る。
【0010】
本発明におけるボイラー水系とは、加熱及び/又は熱交換により水蒸気を発生させて循環させる密閉循環水系全般を意味し、具体的には、例えば、加圧水型原子炉等の軽水炉や高速増殖炉を利用した原子力発電及び火力発電におけるボイラー水系、一般的な工業用ボイラー水系等を例示できる。本発明のpH調整剤は、これらの中でも、原子力発電における高温高圧下のボイラー水系に特に好適に使用され得る。
【0011】
本発明のボイラー水系用pH調整剤(以下単に「pH調整剤」という)の有効成分であるモノエタノールアミンは、不純物含有量が通常0.55ppm以下、好ましくは0.20ppm以下のものを使用するのがよい。不純物含有量が0.55ppmを越えると、給水管等に腐食が発生する虞れがある。
【0012】
本発明のpH調整剤において、脱酸素剤として併用するヒドラジンヒドラートの分解をより一層抑制するには、不純物含有量0.55ppm以下、好ましくは0.2ppm以下であって、更にNaイオン、Clイオン、鉄化合物、重金属化合物及び硫酸塩といったの不純物個々の含有量を一定濃度以下とするのがよい。具体的には、次の表1の通りである。表1中、括弧内の数字は特に好ましい範囲である。
【0013】
【表1】

Figure 0003627071
【0014】
1):Pbとして
尚、NaイオンやClイオンが金属腐食の原因となることは、既に知られたことであるが、特に脱酸素剤としてヒドラジンヒドラート等のヒドラジン誘導体を併用する場合は、単にNaイオンやClイオンのみを低減化するだけでは、後記比較参考例2の試験結果から明らかなように、やはり防錆効果は充分に発揮されない。
【0015】
本発明pH調整剤の有効成分である高純度モノエタノールアミンは、例えば市販のモノエタノールアミン等の一般品から製造される。市販モノエタノールアミンは通常98%以上の高純度であるが、その中に含まれるNaイオン、Clイオン、鉄化合物、重金属化合物、硫酸塩等の不純物の合計量は0.55ppmを上回る。例えば、後記比較参考例1によれば、合計量で0.85ppm程度含んでいる。更に微量不純物個々の量は、Naイオンが0.2ppm程度、Clイオンが0.1ppm程度、鉄化合物が0.05ppm程度、重金属化合物が0.2ppm(Pbとして)程度、硫酸塩が0.3ppm(硫酸イオンとして)程度である。従って、市販のモノエタノールアミンに処理を施し、不純物量を上記表1に示す範囲に低減するのがよい。
【0016】
モノエタノールアミン中の不純物量を低減するには、公知の有機化合物精製方法を広く採用でき、具体的には、例えば、蒸発、蒸留、陽イオン交換樹脂、陰イオン交換樹脂、キレート樹脂等を用いた濾過やカラムクロマトグラフィー等を挙げることができ、これらの2種以上を適宜組み合わせてもよい。市販のモノエタノールアミンに含まれる不純物の大部分が無機塩類であることを考慮すると、前記した方法の中でも蒸発法が好ましい。即ち、蒸発を行うことにより、モノエタノールアミンのみを気化させて単離できる。具体的には、蒸発塔や蒸発缶にて行い、この時必要に応じて蒸発塔又は蒸発缶の内部にミストセパレーター等の仕切り板を設けてもよい。
【0017】
本発明のpH調整剤をボイラー水系に添加する場合は、通常脱酸素剤と併用される。脱酸素剤としては公知のものを広く使用できるが、その中でも、例えばヒドラジンヒドラート、カルボヒドラジド等のヒドラジン誘導体が好ましく、ヒドラジンヒドラートが特に好ましい。尚、カルバジン酸メチル、カルバジン酸エチル等のカルバジン酸アルキルエステルも脱酸素剤として使用できる。本発明のpH調整剤及び脱酸素剤は、ボイラー水系に同時に添加してもよいし、別々に添加してもよい。
【0018】
更に、本発明pH調整剤や脱酸素剤の性能や効果を損なわない範囲で、脱酸素剤の他に、この用途に従来から用いられる薬剤を添加することもできる。該薬剤の具体例としては、例えば、アンモニア、シクロヘキシルアミン、モルホリン、水酸化ナトリウム、リン酸ナトリウム等の清缶剤等を挙げることができる。
【0019】
ボイラー水系に添加するに当たり、本発明のpH調整剤即ち高純度モノエタノールアミンの濃度は特に制限されず、給水管の材質、給水管の使用年数、併用する脱酸素剤の種類や使用量、モノエタノールアミンに含まれる不純物量等に応じて広い範囲から適宜選択できるが、通常ボイラー水系中に0.05〜500ppm程度、好ましくは0.1〜50ppm程度とすればよい。
【0020】
本発明のpH調整剤(高純度モノエタノールアミン)と共にヒドラジンヒドラートを用いる場合、その濃度も特に制限されず、上記と同様に、例えば給水管の材質、給水管の使用年数、モノエタノールアミンの濃度、モノエタノールアミン中の不純物量(本発明の規定内での不純物量)等に応じて広い適宜選択すればよいが、通常ボイラー水系中に0.05〜500ppm程度、好ましくは0.1〜50ppm程度とすればよい。
【0021】
本発明のpH調整剤は、予め水に希釈して用いることもできる。この時、使用する水は特に制限されないが、イオン交換水、蒸留水、活性炭処理水等が好ましい。
【0022】
【発明の効果】
本発明によれば、ボイラー水系において、タービンや給水ポンプに損傷を与えることがなく、脱酸素剤として併用するヒドラジンヒドラートを殆ど分解することがなく、従ってヒドラジンヒドラートの防食能力を充分に発揮させ得るpH調整剤を提供することができる。
【0023】
【実施例】
以下に参考例、比較参考例、実施例及び比較例を挙げ、本発明を具体的に説明する。尚、以下において、粗モノエタノールアミンとあるのは一般市販品を意味する。
【0024】
参考例1
ステンレス製蒸留装置に粗モノエタノールアミン10kgを入れ、50mmHgの減圧下に蒸留を行い、約100℃の留分を分取し、高純度モノエタノールアミン9.0kgを製造した。
【0025】
参考例2
粗モノエタノールアミン10kgを蒸留水により10重量倍に希釈し、粗モノエタノールアミンの10重量%水溶液100kgを製造した。この水溶液を強酸性陽イオン交換樹脂(商品名:レバチットS100、バイエル社製)、弱酸性陽イオン交換樹脂(商品名:アンバーライトIRC−50、オルガノ社製)及び強塩基性陰イオン交換樹脂(商品名:アンバーライトIRA−94、オルガノ社製)に順次通し、更に脱水塔に通して水分を除去した後、参考例1と同様の蒸留操作を行い、高純度モノエタノールアミンを製造した。
【0026】
参考例3
粗モノエタノールアミン10kgを蒸留水により10重量倍に希釈し、粗モノエタノールアミンの10重量%水溶液100kgを製造した。この水溶液をキレート交換樹脂(商品名:ダイヤイオンCR−20、三菱化学(株)製)及び参考例2と同様の3種のイオン交換樹脂に順次通し、蒸留し、高純度モノエタノールアミンを製造した。
【0027】
参考例4
粗モノエタノールアミン10kgを蒸発缶に入れ、ミストセパレーターを通過させた後、蒸留塔にて精留操作を行い、高純度モノエタノールアミンを製造した。
【0028】
参考例1〜4における、処理方法の概要及び処理対象液を表2に示す。表2中、MEAとはモノエタノールアミンを意味する。
【0029】
【表2】
Figure 0003627071
【0030】
また、上記参考例1〜4で得られた高純度モノエタノールアミンに含まれる不純物量の分析結果を表3に示す。
【0031】
比較参考例1
比較のため、出発原料として用いた粗モノメタノールアミン原液の不純物量の分析結果を表3に併記する。
【0032】
比較参考例2
粗モノエタノールアミン10kgを蒸留水により10重量倍に希釈し、粗モノエタノールアミンの10重量%水溶液100kgを製造した。この水溶液を強酸性陽イオン交換樹脂(レバチットS100)及び強塩基性陰イオン交換樹脂(アンバーライトIRA−94)に順次通し、モノエタノールアミンを製造した。このものに含まれる不純物量の分析結果を表3に併記する。
【0033】
【表3】
Figure 0003627071
【0034】
2):重金属=Pbとして 3):硫酸塩=硫酸イオンとして。
【0035】
尚、表3中の各不純物の定量方法は、次の通りである。
【0036】
(1)Na
試料10mlをメスフラスコに採り、蒸留水で100mlにメスアップする。これをフレームレス吸光光度計にかけて吸光度を測定し、予め作成してある検量線から、Na の濃度を求める。
【0037】
(2)Cl
20倍濃縮試料5mlを比色管に採り、蒸留水で20mlにメスアップする。これを硝酸酸性とし、次いで硝酸銀水溶液(2w/v%)1mlを加えて15分間放置して、呈色させる。一方、Cl を0.01mg/mlの割合で含む塩化物標準液1mlを比色管に採り、以下同様に操作して呈色させる。両者を呈色度合いを比色して試料中のCl 濃度を決定する。
【0038】
(3)鉄
20倍濃縮試料10mlを比色管に採り、蒸留水で25mlにメスアップする。これを塩酸酸性とし、次いで塩酸ヒドロキシルアミン水溶液(10w/v%)2mlを加えて5分間放置し、更に酢酸アンモニウム水溶液(25w/v%)2ml及びバソフェナントロリン溶液1mlを加えて5分間放置し、呈色させる。一方、0.01mg/mlの割合で鉄を含む鉄標準液1mlを比色管に採り、以下同様に操作して呈色させる。両者を呈色度合いを比色して試料中の鉄の濃度を決定する。
【0039】
(4)重金属(Pbとして)
20倍濃縮試料10mlを比色管に採り、蒸留水で20mlにメスアップする。これに35%塩酸:水=2:l(v:v)の混合液0.5mlを加え、次いで酢酸緩衝液(pH=3.5)を加えてpH4に調整し、更に硫化ナトリウムム水溶液(w/v%)1滴を加え、呈色させる。
【0040】
一方、0.01mg/mlの割合で鉛を含む鉛標準液1mlを比色管に採り、以下同様に操作して呈色させる。両者を呈色度合いを比色して試料中の鉛の濃度を決定する。
【0041】
(5)硫酸塩
20倍濃縮試料2mlを比色管に採り、蒸留水で20mlにメスアップする。これを塩酸酸性とし、次いで95%エタノール3ml及び塩化バリウム水溶液(10w/v%)2mlを加え、よく混合し、1時間経過後可視吸光光度計により660nmの吸光度を測定し、予め作成してある検量線から、硫酸塩の濃度を求める。
【0042】
尚、上記において、20倍濃縮試料は、900gの試料を減圧濃縮して5g以下とした後、蒸留水を用いて回収し、全量を45gとしたものである。
【0043】
実施例1及び比較例1
脱酸素剤としてヒドラジンヒドラートを、またアルカリ剤として上記参考例1〜4で得られた高純度モノエタノールアミン及び比較参考例1の市販のモノエタノールアミンを用い、臨界圧約300kg/cm 、供給水量120m /hrで運転されているボイラー水系にて脱酸素試験を行った。それぞれ初期濃度を、350ppb(ヒドラジンヒドラート)及び2500ppb(モノエタノールアミン)とし、以後両化合物についてこの濃度が保持されるように管理し、3日間ボイラーを運転した後、溶存酸素計を用いてボイラー水の溶存酸素量(ppb)を調べた。尚、運転開始時のボイラー水中の溶存酸素量は48ppbであった。
【0044】
更に引続き、上記と同じ条件で27日間ボイラーを運転した後、給水管を部分的に取り外し、その内部を目視で観察し、腐食の有無を調べた。尚、給水管の材質は、SPPS38鋼であった。
【0045】
これらの結果を表4に示す。
【0046】
【表4】
Figure 0003627071
【0047】
4):茶褐色及び灰白色の腐食が認められる。 5):僅かではあるが、茶褐色の腐食が認められる。
【0048】
また、供試ボイラー水系に備えられているポンプの羽根には、損傷は全く認められなかった。
【0049】
以上の結果から、本発明のpH調整剤を用いることにより、ヒドラジンヒドラートの防食能力が充分に発揮されることが明らかである。[0001]
[Industrial application fields]
The present invention relates to a boiler water system pH adjuster. More specifically, the present invention relates to a pH adjuster for preventing corrosion of boiler water supply pipes and the like.
[0002]
[Prior art and its problems]
A power generation apparatus using a pressurized water reactor mainly includes a pressure-resistant core vessel that stores concentrated uranium, which is a nuclear fuel, a primary cooling water system that circulates in the pressure-resistant core vessel under a pressure of 100 to 200 atm, and steam generation. And a boiler water system (secondary cooling water system) provided with a turbine in the system. The heat generated by the fission chain reaction of enriched uranium in the pressure-resistant core vessel is supplied to the boiler water system through the primary cooling water system and the steam generating heat exchanger to generate steam, and the steam is used to generate the turbine. Electricity is generated by turning.
[0003]
Such a pressurized water reactor has a preferable feature that the primary cooling water system and the boiler water system are independent from each other, and therefore there is no possibility that the boiler water system has radioactivity.
[0004]
By the way, the water supply pipe of the boiler water system is made of carbon steel, stainless steel, copper-nickel alloy, etc. in consideration of durability and the like because cooling water flows under high pressure of about several hundred atmospheres and high temperature. Is used. Since these materials are oxidized and corroded by dissolved oxygen contained in the cooling water, the boiler water system has hydrazine hydrate, which is an oxygen scavenger (anticorrosive) for removing dissolved oxygen, and pH on the alkali side. Ammonia for preventing oxidation by adjusting to the above is mainly added.
[0005]
However, ammonia, which is a pH adjuster (alkaline agent), has a low boiling point and a high vapor pressure, so it is easily vaporized. Therefore, a pump for supplying cooling water into the system and a power generation turbine entrap ammonia gas, Turbine blades may be damaged (erosion), resulting in poor circulation of cooling water and water vapor. Such poor circulation can also have a profound effect on the fission reaction in the pressure-resistant core vessel.
[0006]
As a pH adjuster other than ammonia, for example, inorganic salts such as sodium hydroxide and sodium phosphate, and organic compounds such as morpholine and cyclohexylamine are used. However, the inorganic salts produce a solid residue in a boiler water system under high temperature and high pressure, and the organic compound has a low boiling point and a high vapor pressure like ammonia, and is apt to evaporate. Therefore, even if any compound is used as a pH adjuster, there is a risk of causing poor circulation.
[0007]
As an alternative to these conventional pH adjusters, the use of monoethanolamine has been attempted. Monoethanolamine has an appropriate boiling point (171 ° C.) and vapor pressure, is difficult to vaporize, and has the advantage of not damaging the feed pump and turbine. Furthermore, since monoethanolamine is also known to exhibit anticorrosive effects on ferrous metals, the addition of monoethanolamine should be a very effective means for preventing corrosion of water supply pipes and the like. . However, when monoethanolamine is used together with hydrazine hydrate, the anticorrosion performance is not sufficiently exhibited, and it is inevitable that corrosion occurs in the water supply pipe or the like.
[0008]
[Means for Solving the Problems]
In the course of research for solving the above-mentioned problems, the present inventor includes commercially available monoethanolamine that contains trace amounts of impurities such as Na ions, Cl ions, iron compounds, heavy metal compounds, sulfates, etc. In a special environment in the boiler water system in which the boiler circulates, the trace impurities synergistically or interact with each other to decompose hydrazine hydrate, which is an oxygen scavenger (anticorrosive), and thus the anticorrosive effect is reduced. The knowledge that corrosion occurs in the water supply pipe was obtained. As a result of further research based on this knowledge, when the total amount of trace impurities in monoethanolamine is below a specific concentration, the decomposition of hydrazine hydrate hardly occurs and a remarkable anticorrosive effect is exhibited. I found out that it would be done. The present invention has been completed based on such findings.
[0009]
That is, the present invention relates to a boiler water system pH adjuster comprising high-purity monoethanolamine having an impurity content of 0.55 ppm or less as an active ingredient.
[0010]
In the present invention, the boiler water system generally means a closed circulation water system that generates and circulates steam by heating and / or heat exchange. Specifically, for example, a light water reactor such as a pressurized water reactor or a fast breeder reactor is used. Examples of such boiler water systems and general industrial boiler water systems in nuclear power generation and thermal power generation. Among these, the pH adjuster of the present invention can be particularly suitably used for boiler water systems under high temperature and high pressure in nuclear power generation.
[0011]
Monoethanolamine, which is an active ingredient of the boiler water system pH adjuster (hereinafter simply referred to as “pH adjuster”) of the present invention, has an impurity content of usually 0.55 ppm or less, preferably 0.20 ppm or less. It is good. If the impurity content exceeds 0.55 ppm, corrosion may occur in the water supply pipe or the like.
[0012]
In the pH adjuster of the present invention, in order to further suppress the decomposition of hydrazine hydrate used as an oxygen scavenger, the impurity content is 0.55 ppm or less, preferably 0.2 ppm or less, and Na ions, Cl The content of individual impurities such as ions, iron compounds, heavy metal compounds, and sulfates should be kept below a certain concentration. Specifically, it is as shown in Table 1 below. In Table 1, the numbers in parentheses are particularly preferable ranges.
[0013]
[Table 1]
Figure 0003627071
[0014]
1): As Pb, it is already known that Na ions and Cl ions cause metal corrosion. However, when a hydrazine derivative such as hydrazine hydrate is used in combination as an oxygen scavenger, If only Na ions and Cl ions are reduced, as will be apparent from the test results of Comparative Reference Example 2 described later, the antirust effect is not sufficiently exhibited.
[0015]
High-purity monoethanolamine, which is an active ingredient of the pH adjuster of the present invention, is produced from general products such as commercially available monoethanolamine. Commercially available monoethanolamine is usually 98% or higher in purity, but the total amount of impurities such as Na ions, Cl ions, iron compounds, heavy metal compounds, and sulfates contained therein exceeds 0.55 ppm. For example, according to Comparative Reference Example 1 described later, the total amount is about 0.85 ppm. Furthermore, the amount of trace impurities is about 0.2 ppm for Na ions, about 0.1 ppm for Cl ions, about 0.05 ppm for iron compounds, about 0.2 ppm for heavy metal compounds (as Pb), and 0.3 ppm for sulfates. (As sulfate ions). Therefore, it is preferable to treat commercially available monoethanolamine to reduce the amount of impurities to the range shown in Table 1 above.
[0016]
In order to reduce the amount of impurities in monoethanolamine, known organic compound purification methods can be widely employed. Specifically, for example, evaporation, distillation, cation exchange resin, anion exchange resin, chelate resin, etc. are used. Filtration, column chromatography and the like, and two or more of these may be appropriately combined. In view of the fact that most of the impurities contained in the commercially available monoethanolamine are inorganic salts, the evaporation method is preferred among the methods described above. That is, by evaporation, only monoethanolamine can be vaporized and isolated. Specifically, an evaporation tower or an evaporator can be used, and a partition plate such as a mist separator may be provided inside the evaporator tower or the evaporator as needed.
[0017]
When the pH adjuster of the present invention is added to the boiler water system, it is usually used in combination with an oxygen scavenger. Known oxygen scavengers can be widely used. Among them, hydrazine derivatives such as hydrazine hydrate and carbohydrazide are preferable, and hydrazine hydrate is particularly preferable. A carbazic acid alkyl ester such as methyl carbazate or ethyl carbazate can also be used as the oxygen scavenger. The pH adjuster and oxygen scavenger of the present invention may be added simultaneously to the boiler water system or may be added separately.
[0018]
Furthermore, in addition to the oxygen scavenger, a drug conventionally used for this application can be added within a range that does not impair the performance and effects of the pH adjuster and oxygen scavenger of the present invention. Specific examples of the drug include cans such as ammonia, cyclohexylamine, morpholine, sodium hydroxide and sodium phosphate.
[0019]
When added to the boiler water system, the concentration of the pH adjuster of the present invention, that is, high-purity monoethanolamine, is not particularly limited, and the material of the water supply pipe, the age of the water supply pipe, the type and amount of oxygen scavenger used, Although it can be suitably selected from a wide range according to the amount of impurities contained in ethanolamine, etc., it is usually about 0.05 to 500 ppm, preferably about 0.1 to 50 ppm in the boiler water system.
[0020]
When hydrazine hydrate is used together with the pH adjuster (high purity monoethanolamine) of the present invention, the concentration thereof is not particularly limited, and as described above, for example, the material of the water supply pipe, the service life of the water supply pipe, Although it may be appropriately selected depending on the concentration, the amount of impurities in the monoethanolamine (the amount of impurities within the scope of the present invention), etc., it is usually about 0.05 to 500 ppm, preferably 0.1 to 0.1% in the boiler water system. What is necessary is just about 50 ppm.
[0021]
The pH adjuster of the present invention can be diluted with water in advance. At this time, the water to be used is not particularly limited, but ion-exchanged water, distilled water, activated carbon-treated water and the like are preferable.
[0022]
【The invention's effect】
According to the present invention, in the boiler water system, the turbine and the feed pump are not damaged, the hydrazine hydrate used together as the oxygen scavenger is hardly decomposed, and thus the hydrazine hydrate's anticorrosive ability is sufficiently exhibited. The pH adjuster which can be made to provide can be provided.
[0023]
【Example】
The present invention will be specifically described below with reference examples, comparative reference examples, examples and comparative examples. In the following description, crude monoethanolamine means a general commercial product.
[0024]
Reference example 1
10 kg of crude monoethanolamine was placed in a stainless steel distillation apparatus, distilled under a reduced pressure of 50 mmHg, and a fraction at about 100 ° C. was collected to produce 9.0 kg of high-purity monoethanolamine.
[0025]
Reference example 2
10 kg of crude monoethanolamine was diluted 10 times with distilled water to produce 100 kg of a 10 wt% aqueous solution of crude monoethanolamine. This aqueous solution was treated with a strongly acidic cation exchange resin (trade name: Lebatit S100, manufactured by Bayer), a weak acidic cation exchange resin (trade name: Amberlite IRC-50, manufactured by Organo) and a strongly basic anion exchange resin ( Product name: Amberlite IRA-94 (manufactured by Organo Co., Ltd.) was passed through sequentially, and after passing through a dehydration tower, the water was removed, and then the same distillation operation as in Reference Example 1 was performed to produce high-purity monoethanolamine.
[0026]
Reference example 3
10 kg of crude monoethanolamine was diluted 10 times with distilled water to produce 100 kg of a 10 wt% aqueous solution of crude monoethanolamine. This aqueous solution is sequentially passed through a chelate exchange resin (trade name: Diaion CR-20, manufactured by Mitsubishi Chemical Corporation) and the same three types of ion exchange resins as in Reference Example 2, and distilled to produce high purity monoethanolamine. did.
[0027]
Reference example 4
After putting 10 kg of crude monoethanolamine into an evaporator and passing through a mist separator, rectification operation was performed in a distillation tower to produce high purity monoethanolamine.
[0028]
Table 2 shows an outline of the treatment method and the liquid to be treated in Reference Examples 1 to 4. In Table 2, MEA means monoethanolamine.
[0029]
[Table 2]
Figure 0003627071
[0030]
Table 3 shows the analysis results of the amount of impurities contained in the high-purity monoethanolamine obtained in Reference Examples 1 to 4 above.
[0031]
Comparative Reference Example 1
For comparison, Table 3 also shows the analysis results of the amount of impurities in the crude monomethanolamine stock solution used as a starting material.
[0032]
Comparative Reference Example 2
10 kg of crude monoethanolamine was diluted 10 times with distilled water to produce 100 kg of a 10 wt% aqueous solution of crude monoethanolamine. This aqueous solution was sequentially passed through a strongly acidic cation exchange resin (Levacit S100) and a strongly basic anion exchange resin (Amberlite IRA-94) to produce monoethanolamine. The results of analysis of the amount of impurities contained in this product are also shown in Table 3.
[0033]
[Table 3]
Figure 0003627071
[0034]
2): As heavy metal = Pb 3): As sulfate = sulfate ion.
[0035]
In addition, the determination method of each impurity in Table 3 is as follows.
[0036]
(1) Na +
Take a 10 ml sample in a volumetric flask and make up to 100 ml with distilled water. The absorbance is measured by applying this to a flameless absorptiometer, and the concentration of Na + is determined from a calibration curve prepared in advance.
[0037]
(2) Cl
Take 5 ml of 20-fold concentrated sample in a colorimetric tube and make up to 20 ml with distilled water. This is made acidic with nitric acid, and then 1 ml of an aqueous silver nitrate solution (2 w / v%) is added and left to stand for 15 minutes to cause coloration. On the other hand, 1 ml of a chloride standard solution containing Cl at a rate of 0.01 mg / ml is placed in a colorimetric tube, and the same procedure is followed to cause coloration. Both are colorimetrically colored to determine the Cl concentration in the sample.
[0038]
(3) Take 10 ml of iron 20-fold concentrated sample in a colorimetric tube and make up to 25 ml with distilled water. This was acidified with hydrochloric acid, and then 2 ml of hydroxylamine hydrochloride aqueous solution (10 w / v%) was added and allowed to stand for 5 minutes. Further, 2 ml of ammonium acetate aqueous solution (25 w / v%) and 1 ml of bathophenanthroline solution were added and left for 5 minutes. Give it a color. On the other hand, 1 ml of an iron standard solution containing iron at a rate of 0.01 mg / ml is taken in a colorimetric tube, and the same procedure is followed to cause coloration. The concentration of iron in the sample is determined by comparing the coloration degree of both.
[0039]
(4) Heavy metal (as Pb)
Take 10 ml of 20-fold concentrated sample in a colorimetric tube and make up to 20 ml with distilled water. To this was added 0.5 ml of a mixture of 35% hydrochloric acid: water = 2: l (v: v), and then adjusted to pH 4 by adding acetate buffer (pH = 3.5). Add 1 drop (w / v%) and color.
[0040]
On the other hand, 1 ml of a lead standard solution containing lead at a rate of 0.01 mg / ml is taken in a colorimetric tube, and the same procedure is followed to cause coloration. The concentration of lead in the sample is determined by comparing the coloration degree of both.
[0041]
(5) Take 2 ml of 20 times concentrated sulfate sample in a colorimetric tube and make up to 20 ml with distilled water. This was made acidic with hydrochloric acid, and then 3 ml of 95% ethanol and 2 ml of barium chloride aqueous solution (10 w / v%) were added, mixed well, and after 1 hour, the absorbance at 660 nm was measured with a visible absorptiometer. Obtain the sulfate concentration from the calibration curve.
[0042]
In the above, the 20-fold concentrated sample is obtained by concentrating a 900 g sample under reduced pressure to 5 g or less and then collecting it using distilled water to make the total amount 45 g.
[0043]
Example 1 and Comparative Example 1
Supplying a critical pressure of about 300 kg / cm 2 using hydrazine hydrate as an oxygen scavenger, high-purity monoethanolamine obtained in Reference Examples 1 to 4 and a commercially available monoethanolamine of Comparative Reference Example 1 as an alkaline agent A deoxygenation test was conducted in a boiler water system operating at a water volume of 120 m 3 / hr. The initial concentrations were 350 ppb (hydrazine hydrate) and 2500 ppb (monoethanolamine), respectively. After that, these compounds were controlled so that these concentrations were maintained, and after operating the boiler for 3 days, a boiler was used using a dissolved oxygen meter. The amount of dissolved oxygen (ppb) in water was examined. The dissolved oxygen amount in the boiler water at the start of operation was 48 ppb.
[0044]
Further, after operating the boiler for 27 days under the same conditions as described above, the water supply pipe was partially removed, and the inside was visually observed to check for the presence of corrosion. The material of the water supply pipe was SPPS38 steel.
[0045]
These results are shown in Table 4.
[0046]
[Table 4]
Figure 0003627071
[0047]
4): Brown and grayish white corrosion is observed. 5): A slight brown-colored corrosion is observed.
[0048]
In addition, no damage was observed in the pump blades provided in the test boiler water system.
[0049]
From the above results, it is clear that the anticorrosive ability of hydrazine hydrate is sufficiently exhibited by using the pH adjuster of the present invention.

Claims (1)

ヒドラジンヒドラートと併用される、原子力発電における高温高圧下のボイラー水系のpH調整剤であって、不純物含有量が0.55ppm以下である高純度モノエタノールアミンを有効成分とするボイラー水系用pH調整剤。 A boiler water system pH regulator under high temperature and high pressure in nuclear power generation, which is used in combination with hydrazine hydrate, and containing as an active ingredient high purity monoethanolamine having an impurity content of 0.55 ppm or less Agent.
JP10859695A 1995-05-02 1995-05-02 PH adjuster for boiler water system Expired - Fee Related JP3627071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10859695A JP3627071B2 (en) 1995-05-02 1995-05-02 PH adjuster for boiler water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10859695A JP3627071B2 (en) 1995-05-02 1995-05-02 PH adjuster for boiler water system

Publications (2)

Publication Number Publication Date
JPH08299968A JPH08299968A (en) 1996-11-19
JP3627071B2 true JP3627071B2 (en) 2005-03-09

Family

ID=14488820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10859695A Expired - Fee Related JP3627071B2 (en) 1995-05-02 1995-05-02 PH adjuster for boiler water system

Country Status (1)

Country Link
JP (1) JP3627071B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983069B2 (en) * 2006-03-31 2012-07-25 栗田工業株式会社 Pure water supply boiler water system treatment method and treatment apparatus
JP5034487B2 (en) * 2006-12-22 2012-09-26 三浦工業株式会社 Method for inhibiting corrosion of boiler equipment
DE102012203010A1 (en) * 2012-02-28 2013-08-29 Areva Gmbh Process for cleaning and conditioning the water-steam cycle of a power plant, in particular a nuclear power plant
CN103553198B (en) * 2013-11-06 2015-07-08 马祝平 Treatment process for adding strong base into power station boiler feed water
CN110777373B (en) * 2019-10-29 2022-04-22 河北建投能源科学技术研究院有限公司 Sodium hydroxide treatment device and method for high-pressure-increasing drainage system of power plant
CN114538661A (en) * 2022-02-28 2022-05-27 西安热工研究院有限公司 System and method for water quality treatment and waste heat utilization of closed water system of power plant

Also Published As

Publication number Publication date
JPH08299968A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
EP0161822B1 (en) Composition and method for deoxygenation of aqueous systems
EP0463714B1 (en) Multi-functional oxygen and carbon dioxide corrosion control treatment for steam systems
JPH0125632B2 (en)
US4192844A (en) Methoxypropylamine and hydrazine steam condensate corrosion inhibitor compositions and methods
EP0216586B2 (en) Stabilized sodium erythorbate and its use as a corrosion inhibitor
JP3627071B2 (en) PH adjuster for boiler water system
JPS6320305B2 (en)
US4569783A (en) Hydroquinone catalyzed oxygen scavenger and methods of use thereof
DE69225669T2 (en) Composition and method for scale and corrosion inhibition using naphthylamine polycarboxylic acids
CA2091563C (en) Oxygen removal with keto-gluconates
RU2500835C1 (en) Inhibitor of carbon-dioxide corrosion for aminat sc-3 steam-condensate plants
KR101938142B1 (en) Water treatment composition containing carbohydrazide for power plant boiler system
US4282178A (en) Use of hydrazine compounds as corrosion inhibitors in caustic solutions
EP0002634B1 (en) Composition and method for inhibiting corrosion in steam condensate systems
US5750037A (en) Use of tartronic acid as an oxygen scavenger
CA2077312C (en) Condensate polisher regenerant system
JP3083504B2 (en) Treatment method for ion exchange resin regeneration waste liquid
SU1359255A1 (en) Method of removing dissolved oxygen from water
JP2800876B2 (en) Boiler water treatment management method and boiler water treatment agent
JP2735798B2 (en) Corrosion inhibitors
RU2515871C2 (en) Inhibitor of carbonic acid corrosion for steam-generating installations of low and medium pressure aminat pk-1
CA1339761C (en) Corrosion control composition and method for boiler/condensate stem system
US5512243A (en) Cyclohexanedione oxygen scavengers
KR20190067015A (en) Carbohydrazide containing water treatment coloring composition for power plant boiler system
US5419837A (en) Hindered amines for treating industrial water systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees