JP3627021B2 - Method for producing tube-like substance with different elements introduced - Google Patents

Method for producing tube-like substance with different elements introduced Download PDF

Info

Publication number
JP3627021B2
JP3627021B2 JP2002137897A JP2002137897A JP3627021B2 JP 3627021 B2 JP3627021 B2 JP 3627021B2 JP 2002137897 A JP2002137897 A JP 2002137897A JP 2002137897 A JP2002137897 A JP 2002137897A JP 3627021 B2 JP3627021 B2 JP 3627021B2
Authority
JP
Japan
Prior art keywords
ion
ions
vacuum
substance
different element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002137897A
Other languages
Japanese (ja)
Other versions
JP2003327423A (en
Inventor
和弘 山本
澄男 飯島
和知 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002137897A priority Critical patent/JP3627021B2/en
Publication of JP2003327423A publication Critical patent/JP2003327423A/en
Application granted granted Critical
Publication of JP3627021B2 publication Critical patent/JP3627021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、優れた電気伝導特性を有し電子材料として有用な、異種元素が導入されたチューブ状物質の製造方法に関する。
【0002】
【従来の技術】
1991年に発見されたカーボンナノチューブ(ネイチャー、354巻56−58、1991年)はグラファイトシートがチューブ上に丸まった物質であり、その電気的特性は構造によって金属的にも半導体的にも成りうると予測されている。またカーボンナノチューブは直径が1〜数十ナノメートルであるのに対して長さが数十マイクロメートルであるため、典型的な1次元電気伝導を示すものと期待される物質でもある。
【0003】
ところで、このようなチューブ状物質はその電気伝導特性を制御することが極めて重要であり、そのためには異種元素をチューブ状物質に導入して価電子状態を制御することが必要であるとされている。
【0004】
従来、このような異種元素が導入されたチューブ状物質は、チューブ状物質を導入したい異種元素が含まれる気相もしくは液相中におくことにより、侵入置換反応もしくは表面吸着などにより異種元素を導入する方法がとられている。
しかしながら、このような従来の侵入置換反応もしくは表面吸着より異種元素を導入する方法は、平衡プロセスであるために異種元素の導入量に限界があり、また導入する異種元素の固溶限界以上の濃度の元素を導入することは理論的に不可能であり、更には注入濃度の制御に困難性があった。
【0005】
一方、異種元素導入技術として、例えばシリコン半導体技術においては、シリコンウェハーの製造過程において所望の異種元素を所望量だけ導入する方法の他に、イオン注入技術が用いられている。このイオン注入技術は、キロエレクトロンボルト〜メガエレクトロンボルトのエネルギーに加速されたイオンを固体の表面から深さ数ナノメートルから数マイクロメートルの表層部に打ち込み、その物性を制御する技術である。
このイオン注入技術は、(1)室温で試料に元素導入できる、(2)イオンの数をカウントして低濃度から高濃度で濃度を制御して元素導入できる、(3)任意の領域に選択的に元素導入できる、(4)非平衡プロセスであるため固溶限界以上に元素導入できる、などの特徴を有する。
【0006】
しかし、このような従来のイオン注入法を用いてチューブ状物質に異種元素を導入する場合、イオンエネルギーが大きすぎて注入イオンがチューブ状物質をすり抜けてしまい、チューブ状物質中に所望の異種元素を導入できないという問題があり、また、イオン照射によりチューブ状物質が損傷を受けて内部に欠陥が導入されてしまうという難点があった。
このためチューブ状物質に損傷を与える事なく異種元素の濃度を制御して導入する方法が強く要請されていた。
【0007】
【発明が解決しようとする課題】
本発明はこのような従来技術の問題点を解消するためになされたものであって、チューブ状物質に損傷を与えることなく多種多様の異種元素の導入が可能となり、かつ当該異種元素のイオン注入量も適正に制御することができる工業的に極めて有用な、異種元素が導入されたチューブ状無機物質の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、鋭意検討した結果、異種イオンを注入する際の真空度と照射エネルギーを特定な条件に設定すると上記課題が解消できることを知見し本発明を完成するに至った。
すなわち、本発明によれば、以下の発明が提供される。
(1)チューブ状無機物質に異種元素のイオンを真空度1×10 −5 Pa 以下、20〜200 eV の照射エネルギー下で注入することを特徴とする異種元素が注入されたチューブ状無機物質の製造方法。
(2)チューブ状無機物質がカーボンナノチューブであることを特徴とする上記(1)に記載の異種元素が注入されたチューブ状無機物質の製造方法。
【0009】
【発明の実施の形態】
本発明の異種元素が注入されたチューブ状無機物質の製造方法は、チューブ状無機物質に異種元素のイオンを真空度1×10−5Pa以下、20〜200eVの照射エネルギー下で注入することを特徴としている。
【0010】
本発明者らは、従来のイオンビーム装置ではイオンビーム照射中の真空度が充分でないために、イオンビームと残留ガスの衝突により電荷交換が生じて、高速の中性粒子が生成して、照射標的に損傷を与えることを見出した。更に検討を進めた結果、イオン源からイオンを引き出し,質量分離装置によりイオンのみを選別し,イオン収束機構により空間電荷によるイオンの発散を防ぎ,イオン偏向機構により電荷交換作用により生じた高速の中性粒子を除去し、超真空下、イオン減速機構により照射エネルギーを低エネルギーに制御した場合には、カーボンナノチューブの構造に損傷を与えることなく窒素イオンなどの異種元素イオンがカーボンナノチューブ中へ所望量正確に導入できることを知見した。本発明はこのような知見に基づいてなされたものである。
【0011】
本発明の異種元素が導入されたチューブ状無機物質は、チューブ状無機物質にこれを構成する元素とは異種元素のイオンビームを真空度1×10−5Pa以下、20〜200eVの照射エネルギー下で注入することにより得られる。
【0012】
本明細書でいうチューブ状無機物質とは、直径が5nm−500nmで直径と長さのアスペクト比が10以上の中空構造をもつ物質を意味し、代表例としてカーボンナノチューブや窒化ホウ素ナノチューブなどを挙げることができる。
異種元素のイオンビームとしては、窒素のイオンビーム、ホウ素、フッ素、リン、ガリウム、リチウム、カルシウム、カリウムのイオンビーム、などを用いることができる。
【0013】
本発明においては、これらのイオンビームを照射する際に少なくとも真空容器内の真空度を1×10−5Pa以下とすることが重要である。
真空容器内の真空度が1×10−5Pa超えるとイオンビームと残留ガスとの衝突により電荷交換が生じて、高速の中性粒子が生成して、チューブ状無機物質に損傷を与えることとなるので、本発明の所期の目的を達成することができない。また、本発明においては、上記圧力条件(真空度)と共にイオン照射エネルギーを20〜200eVエネルギーに設定することが必要である。
イオン照射エネルギーが20eV未満であると、チューブ状無機物質中にイオン元素が導入されない事となり、また200eVを超えるとイオンエネルギーによりチューブ状無機物質が損傷を受ける事となるので好ましくない。
【0014】
本発明のイオン照射条件は上記二つの要件を満たせば充分であり、他の条件は必要に応じ適宜選定すればよいが、通常、イオン注入量は1×10−12ions/cm〜1×10−17ions/cm、好ましくは1×10−13ions/cm〜1×10−15ions/cm、である。
【0015】
本発明方法により異種元素が導入された中空状無機物質を製造するには、たとえば、イオン源からイオンを引き出し,質量分離装置によりイオンのみを選別し,イオン収束機構により空間電荷によるイオンの発散を防ぎ,イオン偏向機構により電荷交換作用により生じた高速の中性粒子を除去し、超真空下、イオン減速機構により照射エネルギーを低エネルギーに制御し得るイオン注入装置の真空容器内に、カーボンナノチューブを導入しておき、ついで該カーボンナノチューブに窒素イオンを真空度1×10−5Pa以下、20〜200eVの照射エネルギー下で照射し、カーボンナノチューブに窒素イオンを注入すればよい。
【0016】
本発明方法により得られる異種元素が導入されたチューブ状無機物質は、異種元素が導入されていないチューブ状無機物質に比し、半導体電子伝導特性が著しく向上するので、トランジスター素子などの半導体素子の電子伝導体として応用することが可能である。
【0017】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。
【0018】
実施例1
イオン注入装置としては、イオンを生成するイオン源、イオンをイオン源から引き出す機構、イオンの質量分離機構、イオン収束機構、イオン偏向機構、イオン減速機構、及びイオンを基材に堆積させる真空容器からなる製造装置を用いた。イオンの質量分離機構としてセクター型の電磁石を、イオン収束機構として4重極電磁石3つからなる電磁レンズを、イオン偏向機構としてセクター型の電磁石を、イオン減速機構としては静電場を形成する電極を用いた。
イオン源部分に2台、質量分離機構とイオン収束機構の間に1台、イオン収束機構とイオン偏向機構の間に1台、及び真空容器部分に1台クライオポンプを取り付け、さらにクライオポンプの前段ポンプとしてロータリーポンプとターボ分子ポンプからなる排気機構を取り付け、真空排気を行った。これらの真空排気機構により、到達真空後は真空容器部分で3×10−8Pa、イオン偏向機構部分で8×10−7Pa、質量分離機構部分で5×10−5Paとなった。
上記装置を用いてカーボンナノチューブに窒素イオンを以下のように照射した。
装置内にカーボンナノチューブを分散、塗布したシリコン単結晶(100)基板を設置した後、装置内を3×10−8Pa以下まで真空排気した。注入ガスとして窒素ガスを用いた。イオン源内で窒素ガスのプラズマを生成した後、イオンを接地電位に対して−35kVで引き出した。この時、イオンをイオン源から引き出す機構、イオンの質量分離機構、イオン収束機構、イオン偏向機構は全て−35kVとなっている。イオン源は接地電位に対して正電位にし、この電位により最終的に真空容器内のカーボンナノチューブに到達するイオンエネルギーを決めている。引き出したイオン束から質量分離電磁石により原子量14の窒素イオンのみを選別し、イオン収束機構である4重極電磁石レンズによりイオン電流が最大となるように収束した。さらにイオン偏向電磁石により炭素イオンを真空容器内曲げて真空容器内に導入し、イオンを減速してシリコン基板に照射した。イオン照射中の真空容器内の真空度は4×10−7Pa、であった。窒素イオン電流密度は0.01mA/cmとなるように調整した。窒素イオンエネルギーを100eV に固定して、上記記載の4×10−7Paの真空中でカーボンナノチューブに照射して窒素を導入した。
【0019】
比較例1
さらに真空容器とクライオポンプ間のバルブを半開にすることにより、イオン照射中の真空度4×10−5Paとしてカーボンナノチューブに窒素イオンを照射した。後者は従来技術のイオン注入におけるイオン照射時の真空条件であり、本発明の優位性を明らかにするために、比較するために行ったものである。
【0020】
上記実施例1及び比較例1で得た、窒素イオンが導入されたカーボンナノチューブの構造を透過型電子顕微鏡(TEM)を用いて調べた。また電子線エネルギー損失分光法によりカーボンナノチューブ中の窒素の分析を行った。
実施例1で得たカーボンナノチューブは中空構造で黒鉛シート構造が明瞭に観察され、損傷は見られなかった。またカーボンナノチューブ中には1.5原子%の窒素原子が含まれる事が分かった。これに対して、比較例1で得たカーボンナノチューブは中空構造であったが黒鉛シート構造が観察されずに非晶質構造であった。これは4×10−5Paの真空中で作製した場合、窒素イオンがカーボンナノチューブまでの輸送中に残留ガスと衝突して電荷交換効果により中性粒子となり、減速されずにカーボンナノチューブに照射されたために損傷を受けたためと考えられる。
【0021】
実施例2
実施例1におけるイオン照射中の真空度と照射エネルギーを図1のように代えた以外は実施例1と同様にして窒素イオンが導入されたカーボンナノチューブを作成した。その観察結果を図1に示す。
図1からイオン照射中の真空度を1×10−5Pa以下及び照射エネルギーを20〜200eVとすることにより、カーボンナノチューブに損傷を与えることなく窒素を導入できることが分かる。
【0022】
【発明の効果】
本発明の異種元素が注入されたチューブ状無機物質の製造方法は、チューブ状物質に損傷を与えることなく多種多様の異種元素を導入できると共にそのイオン注入量の的確な制御が可能であり、工業的に極めて有利な製造方法ということができる。また得られるチューブ状無機物質は半導体電子伝導特性の制御が可能となることからこのような半導体の電子伝導体として応用することが可能となる。
【図面の簡単な説明】
【図1】イオンエネルギーおよび照射中の真空度とチューブ状物質への損傷の関係図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a tube-like substance into which a different element is introduced, which has excellent electrical conduction characteristics and is useful as an electronic material.
[0002]
[Prior art]
Carbon nanotubes discovered in 1991 (Nature, 354, 56-58, 1991) are materials in which a graphite sheet is rolled on a tube, and their electrical properties can be either metallic or semiconducting depending on the structure. It is predicted. Carbon nanotubes have a diameter of 1 to several tens of nanometers and a length of several tens of micrometers, and are therefore expected to exhibit typical one-dimensional electrical conduction.
[0003]
By the way, it is extremely important to control the electrical conduction characteristics of such a tube-shaped substance, and for that purpose, it is necessary to introduce a different element into the tube-shaped substance to control the valence state. Yes.
[0004]
Conventionally, tube-like substances into which such different elements have been introduced are introduced into the gas phase or liquid phase containing the different elements to which the tube-like substance is to be introduced, thereby introducing the different elements by intrusion substitution reaction or surface adsorption. The way to do is taken.
However, the conventional method of introducing a different element from an intrusive substitution reaction or surface adsorption is an equilibrium process, so the amount of the different element introduced is limited, and the concentration of the different element to be introduced exceeds the solid solution limit. It is theoretically impossible to introduce these elements, and furthermore, it is difficult to control the implantation concentration.
[0005]
On the other hand, as a technique for introducing a different element, for example, in silicon semiconductor technology, an ion implantation technique is used in addition to a method of introducing a desired amount of a different element in a silicon wafer manufacturing process. In this ion implantation technique, ions accelerated to energy of kiloelectron volts to megaelectron volts are implanted into a surface layer portion having a depth of several nanometers to several micrometers from the surface of a solid, and the physical properties thereof are controlled.
This ion implantation technique can (1) introduce elements into a sample at room temperature, (2) count the number of ions and control the concentration from a low concentration to a high concentration, and (3) select any region. (4) Since it is a non-equilibrium process, the element can be introduced beyond the solid solution limit.
[0006]
However, when a different element is introduced into the tube-shaped material by using such a conventional ion implantation method, the ion energy is too high and the implanted ions pass through the tube-shaped material, so that the desired different element is contained in the tube-shaped material. In addition, there is a problem that the tube-shaped substance is damaged by ion irradiation and defects are introduced into the inside.
For this reason, there has been a strong demand for a method of introducing a different element with a controlled concentration without damaging the tubular material.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve such problems of the prior art, and enables introduction of a wide variety of different elements without damaging the tube-shaped material, and ion implantation of the different elements. An object of the present invention is to provide an industrially extremely useful method for producing a tubular inorganic substance into which a different element is introduced, the amount of which can be controlled appropriately.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by setting the degree of vacuum and irradiation energy at the time of implanting different types of ions to specific conditions, thereby completing the present invention. It came to.
That is, according to the present invention, the following inventions are provided.
(1) A tube-like inorganic substance into which a heterogeneous element is implanted, characterized in that ions of different elements are implanted into the tubular inorganic substance under a vacuum degree of 1 × 10 −5 Pa or less and an irradiation energy of 20 to 200 eV . Production method.
(2) The method for producing a tubular inorganic material into which a different element is injected according to the above (1), wherein the tubular inorganic material is a carbon nanotube.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a tubular inorganic material into which a different element is injected according to the present invention is to implant ions of a different element into the tubular inorganic material under a vacuum degree of 1 × 10 −5 Pa or less and an irradiation energy of 20 to 200 eV. It is a feature.
[0010]
In the conventional ion beam apparatus, since the degree of vacuum during ion beam irradiation is not sufficient in the conventional ion beam apparatus, charge exchange occurs due to collision between the ion beam and the residual gas, and high-speed neutral particles are generated and irradiated. It was found to damage the target. As a result of further investigations, ions were extracted from the ion source, only ions were selected by the mass separator, ion divergence was prevented by the ion focusing mechanism, and the ion deflection mechanism caused the charge exchange action. When ionizing particles are removed and the irradiation energy is controlled to a low energy by an ion deceleration mechanism under ultra-vacuum, a desired amount of different element ions such as nitrogen ions enter the carbon nanotube without damaging the structure of the carbon nanotube. It was found that it can be introduced accurately. The present invention has been made based on such findings.
[0011]
The tube-shaped inorganic substance into which the different element of the present invention is introduced is an ion beam of a different element from the element constituting the tube-shaped inorganic substance under an irradiation energy of a vacuum degree of 1 × 10 −5 Pa or less and 20 to 200 eV. Obtained by injection.
[0012]
The term “tubular inorganic substance” as used herein means a substance having a hollow structure with a diameter of 5 nm to 500 nm and an aspect ratio of the diameter to the length of 10 or more, and representative examples include carbon nanotubes and boron nitride nanotubes. be able to.
As an ion beam of a different element, an ion beam of nitrogen, an ion beam of boron, fluorine, phosphorus, gallium, lithium, calcium, potassium, or the like can be used.
[0013]
In the present invention, when irradiating these ion beams, it is important that at least the degree of vacuum in the vacuum vessel is 1 × 10 −5 Pa or less.
When the degree of vacuum in the vacuum container exceeds 1 × 10 −5 Pa, charge exchange occurs due to collision between the ion beam and the residual gas, and high-speed neutral particles are generated, damaging the tubular inorganic substance; Therefore, the intended object of the present invention cannot be achieved. Moreover, in this invention, it is necessary to set ion irradiation energy to 20-200 eV energy with the said pressure conditions (vacuum degree).
If the ion irradiation energy is less than 20 eV, no ion element is introduced into the tubular inorganic material, and if it exceeds 200 eV, the tubular inorganic material is damaged by the ion energy, which is not preferable.
[0014]
The ion irradiation conditions of the present invention are sufficient if the above two requirements are satisfied, and other conditions may be appropriately selected as necessary. Usually, the ion implantation amount is 1 × 10 −12 ions / cm 2 to 1 ×. 10 −17 ions / cm 2 , preferably 1 × 10 −13 ions / cm 2 to 1 × 10 −15 ions / cm 2 .
[0015]
In order to produce a hollow inorganic substance into which a different element is introduced by the method of the present invention, for example, ions are extracted from an ion source, only ions are selected by a mass separator, and ions are diffused by space charge by an ion focusing mechanism. The carbon nanotubes are placed in a vacuum vessel of an ion implantation apparatus that can prevent, remove high-speed neutral particles generated by the charge exchange action by the ion deflection mechanism, and control the irradiation energy to a low energy by the ion deceleration mechanism in an ultra vacuum. Then, nitrogen ions may be irradiated to the carbon nanotubes by irradiating the carbon nanotubes with nitrogen ions under an irradiation energy of 1 × 10 −5 Pa or less and 20 to 200 eV.
[0016]
The tubular inorganic material introduced with the different element obtained by the method of the present invention has significantly improved semiconductor electronic conduction characteristics as compared with the tubular inorganic material into which the different element is not introduced. It can be applied as an electron conductor.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this.
[0018]
Example 1
The ion implantation apparatus includes an ion source for generating ions, a mechanism for extracting ions from the ion source, an ion mass separation mechanism, an ion focusing mechanism, an ion deflection mechanism, an ion decelerating mechanism, and a vacuum container for depositing ions on a substrate. A manufacturing apparatus was used. A sector-type electromagnet as the ion mass separation mechanism, an electromagnetic lens composed of three quadrupole electromagnets as the ion focusing mechanism, a sector-type electromagnet as the ion deflection mechanism, and an electrode that forms an electrostatic field as the ion deceleration mechanism Using.
Two cryopumps are attached to the ion source part, one between the mass separation mechanism and the ion focusing mechanism, one between the ion focusing mechanism and the ion deflection mechanism, and one in the vacuum vessel part. A pumping mechanism consisting of a rotary pump and a turbo molecular pump was installed as a pump, and evacuation was performed. By these evacuation mechanisms, after the ultimate vacuum, the vacuum vessel portion was 3 × 10 −8 Pa, the ion deflection mechanism portion was 8 × 10 −7 Pa, and the mass separation mechanism portion was 5 × 10 −5 Pa.
Using the above apparatus, the carbon nanotubes were irradiated with nitrogen ions as follows.
After a silicon single crystal (100) substrate in which carbon nanotubes were dispersed and coated in the apparatus was installed, the inside of the apparatus was evacuated to 3 × 10 −8 Pa or less. Nitrogen gas was used as the injection gas. After generating a plasma of nitrogen gas in the ion source, ions were extracted at −35 kV with respect to the ground potential. At this time, the mechanism for extracting ions from the ion source, the ion mass separation mechanism, the ion focusing mechanism, and the ion deflection mechanism are all −35 kV. The ion source is set to a positive potential with respect to the ground potential, and the ion energy that finally reaches the carbon nanotube in the vacuum vessel is determined by this potential. Only nitrogen ions having an atomic weight of 14 were selected from the extracted ion bundle by a mass separation electromagnet, and converged so that the ion current was maximized by a quadrupole electromagnet lens as an ion focusing mechanism. Further, carbon ions were bent in the vacuum vessel by an ion deflection electromagnet and introduced into the vacuum vessel, and the ions were decelerated and irradiated onto the silicon substrate. The degree of vacuum in the vacuum vessel during ion irradiation was 4 × 10 −7 Pa. The nitrogen ion current density was adjusted to be 0.01 mA / cm 2 . Nitrogen was introduced by fixing the nitrogen ion energy to 100 eV and irradiating the carbon nanotubes in a vacuum of 4 × 10 −7 Pa as described above.
[0019]
Comparative Example 1
Furthermore, by opening the valve between the vacuum vessel and the cryopump halfway, the carbon nanotubes were irradiated with nitrogen ions with a degree of vacuum of 4 × 10 −5 Pa during ion irradiation. The latter is a vacuum condition at the time of ion irradiation in conventional ion implantation, and is performed for comparison in order to clarify the superiority of the present invention.
[0020]
The structure of the carbon nanotube into which nitrogen ions were introduced obtained in Example 1 and Comparative Example 1 was examined using a transmission electron microscope (TEM). In addition, nitrogen in carbon nanotubes was analyzed by electron beam energy loss spectroscopy.
The carbon nanotubes obtained in Example 1 had a hollow structure and the graphite sheet structure was clearly observed, and no damage was observed. It was also found that the carbon nanotube contained 1.5 atom% nitrogen atoms. On the other hand, the carbon nanotubes obtained in Comparative Example 1 had a hollow structure, but the graphite sheet structure was not observed and had an amorphous structure. This is because when produced in a vacuum of 4 × 10 −5 Pa, nitrogen ions collide with the residual gas during transport to the carbon nanotubes to become neutral particles due to the charge exchange effect, and the carbon nanotubes are irradiated without being decelerated. This is thought to be due to damage.
[0021]
Example 2
Carbon nanotubes into which nitrogen ions were introduced were prepared in the same manner as in Example 1 except that the degree of vacuum and irradiation energy during ion irradiation in Example 1 were changed as shown in FIG. The observation results are shown in FIG.
It can be seen from FIG. 1 that nitrogen can be introduced without damaging the carbon nanotube by setting the degree of vacuum during ion irradiation to 1 × 10 −5 Pa or less and the irradiation energy to 20 to 200 eV.
[0022]
【The invention's effect】
The method for producing a tubular inorganic material into which a heterogeneous element is implanted according to the present invention can introduce various heterogeneous elements without damaging the tubular material, and can accurately control the ion implantation amount. It can be said that the manufacturing method is extremely advantageous. Further, since the obtained tubular inorganic substance can control semiconductor electronic conduction characteristics, it can be applied as an electronic conductor of such a semiconductor.
[Brief description of the drawings]
FIG. 1 is a diagram of the relationship between ion energy, degree of vacuum during irradiation, and damage to tubular materials.

Claims (2)

チューブ状無機物質に異種元素のイオンを真空度1×10Ion of different elements into tube-shaped inorganic substance, vacuum degree 1 × 10 −5-5 PaPa 以下、20〜20020 to 200 below eVeV の照射エネルギー下で注入することを特徴とする異種元素が導入されたチューブ状無機物質の製造方法。A method for producing a tubular inorganic substance into which a different element is introduced, characterized by being injected under irradiation energy of. チューブ状無機物質がカーボンナノチューブであることを特徴とする請求項1に記載の異種元素が導入されたチューブ状無機物質の製造方法。2. The method for producing a tubular inorganic material into which a different element is introduced according to claim 1, wherein the tubular inorganic material is a carbon nanotube.
JP2002137897A 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced Expired - Lifetime JP3627021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137897A JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137897A JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Publications (2)

Publication Number Publication Date
JP2003327423A JP2003327423A (en) 2003-11-19
JP3627021B2 true JP3627021B2 (en) 2005-03-09

Family

ID=29699489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137897A Expired - Lifetime JP3627021B2 (en) 2002-05-14 2002-05-14 Method for producing tube-like substance with different elements introduced

Country Status (1)

Country Link
JP (1) JP3627021B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253534A (en) * 2005-03-14 2006-09-21 National Institute Of Advanced Industrial & Technology Semiconductor device and method and apparatus for implanting hetero element thereinto
CN100386471C (en) * 2005-09-07 2008-05-07 清华大学 Method for controlling growth of carbon nanotube by ion Injection surface modification
JP5242888B2 (en) * 2006-01-27 2013-07-24 帝人株式会社 Heat resistant resin composition having excellent mechanical properties and method for producing the same
JP5154760B2 (en) * 2006-03-01 2013-02-27 帝人株式会社 Polyether ester amide elastomer resin composition and process for producing the same
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
JP5015563B2 (en) * 2006-12-06 2012-08-29 帝人株式会社 Heat-resistant resin composite composition and method for producing the same

Also Published As

Publication number Publication date
JP2003327423A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
US6599492B2 (en) Onion-like carbon film and its production
JPH08217432A (en) Ultrafine particle-including fullerene and its production
Zwanger et al. Formation and decay of spherical concentric-shell carbon clusters
US7544952B2 (en) Multivalent ion generating source and charged particle beam apparatus using such ion generating source
JP3627021B2 (en) Method for producing tube-like substance with different elements introduced
JP5860519B2 (en) Method for manufacturing material film
Yan et al. Scanning tunneling microscopy investigation of graphite surface damage induced by gold‐ion bombardment
Remeika et al. Sub-10 nanometre fabrication: molecular templating, electron-beam sculpting and crystallization of metallic nanowires
JP2639158B2 (en) Etching method and etching apparatus
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
JP5404950B1 (en) Deposition apparatus and deposition method
Okada et al. Comparison of Young's modulus dependency on beam accelerating voltage between electron-beam-and focused ion-beam-induced chemical vapor deposition pillars
KR102165217B1 (en) Cluster ion beam generation method and cluster ion beam irradiation method using the same
Fujita et al. Elastic double structure of amorphous carbon pillar grown by focused-ion-beam chemical vapor deposition
Panchenko et al. Development of technology for the formation of vacuum field emission cells using focused ion beams
Ensinger The influence of the ion flux density on the properties of molybdenum films deposited from the vapour phase under simultaneous argon ion irradiation
JP3550665B2 (en) Method for producing silicon carbide thin film
US20240018003A1 (en) Using anab technology to remove production processing residuals from graphene
CN109320291B (en) Cluster ion bombardment method for obtaining solid material with wide controllable range of surface hole diameter
Yafarov Influence of electron saturation of Tamm levels on the field-emission properties of silicon crystals
Tripathi et al. Substrate atom enriched carbon nanostructures fabricated by focused electron beam induced deposition
Furuya et al. Position and size controlled fabrication of nano-metals and semiconductors with fine focused electron beam
JP4304330B2 (en) Manufacturing method of single electron tunneling device using carbon nanotube
Markwitz et al. Low‐energy Fe+ ion implantation into silicon nanostructures
JPH1179900A (en) Formation of fine structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Ref document number: 3627021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term