JP3626519B2 - Substoichiometric or stoichiometric nitrate solution preparation method - Google Patents

Substoichiometric or stoichiometric nitrate solution preparation method Download PDF

Info

Publication number
JP3626519B2
JP3626519B2 JP29014894A JP29014894A JP3626519B2 JP 3626519 B2 JP3626519 B2 JP 3626519B2 JP 29014894 A JP29014894 A JP 29014894A JP 29014894 A JP29014894 A JP 29014894A JP 3626519 B2 JP3626519 B2 JP 3626519B2
Authority
JP
Japan
Prior art keywords
stoichiometric
nitric acid
substoichiometric
metal
nitrate solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29014894A
Other languages
Japanese (ja)
Other versions
JPH08151204A (en
Inventor
滋 山岸
良寿 高橋
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP29014894A priority Critical patent/JP3626519B2/en
Publication of JPH08151204A publication Critical patent/JPH08151204A/en
Application granted granted Critical
Publication of JP3626519B2 publication Critical patent/JP3626519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は原子炉用セラミックス燃料粒子等の微小球状セラミックス粒子を調製する場合の出発物質として使用される核燃料物質等の亜化学量論的または化学量論的硝酸塩溶液の調製方法に関するものである。
【0002】
【従来の技術】
原子炉用セラミックス燃料粒子の分野において利用されているゾルゲル法による燃料ゲル粒子の製造工程では、出発物質溶液であるウラン等の燃料金属を含む亜化学量論的硝酸塩溶液を調製する場合、金属酸化物粉末を硝酸または化学量論的金属硝酸塩溶液に溶解するか、あるいは化学量論的硝酸塩溶液に有機物還元剤を加えて硝酸を分解・除去する方法を採っている。
【0003】
【発明が解決しようとする課題】
本発明の目的は、従来技術では不可欠の、作業員被曝の増大をもたらす放射性物質である燃料酸化物微粉末の取扱工程、あるいは有機物還元剤を酸化剤である硝酸塩溶液に添加する危険を伴う工程を経ずに、目的の出発物質溶液を調製する方法を提供することにある。
【0004】
【課題を解決するための手段とその作用】
本願発明者が鋭意研究の結果、目的とする課題解決のために採用した手段は次のとおりである。
【0005】
第1は、水蒸気を含む雰囲気中での加熱により、脱硝酸効率を高めたほか、放出ガスの主成分を窒素酸化物よりも硝酸の形にでき、目的の脱硝酸反応の終点を次のようにして正確に自動制御できるようにしたことである。すなわち、図1に例を示すような装置を用いて、担体ガス1をヒータ2で加熱した水3の中に導き水蒸気を含ませ、保温炉4を通して、ヒータ5で加熱した硝酸塩容器6内に導く。これにより放出した硝酸を担体ガスと共に冷却水を流していない冷却器7、続いて冷却水を流している冷却器8を通して硝酸捕集用アルカリ溶液9の中に導く。この溶液中の当初のアルカリ量は放出させるべき硝酸と当量としておく。このアルカリ溶液のpHをpHメータ10につないだ記録調節計11で連続モニターしつつ、放出硝酸とアルカリ溶液との中和反応の終点での急激なpH変化の信号により、ヒータ5による加熱を停止させると同時に、発生硝酸の系外放出を停止させるために冷却器7にも冷却水12を流すための電磁切換弁13の操作を行う。
【0006】
第2は、反応終了後の容器6中の溶融塩状の被加熱物を室温まで冷却し固化させると、その固体の吸湿による体積膨張により容器破損が生ずるので、それを防ぐために水の沸点である100℃以下の高温に維持した状態で手動弁14を開き、水溜15の中水を加えて固体を水溶液に変えた後で冷却することである。
【0007】
【実施例】
実施例について本発明を具体的に説明する。ただし、本発明は実施例によって限定されるものではない。
【0008】
【実施例1】
図1の装置の試料(硝酸ウラニル溶液)の加熱ヒータとして油浴を用い、水蒸気発生器の95℃の水の中にアルゴンを50m1/分の速度でバブルさせた(水蒸気+アルゴン)混合ガスを試料に供給、放出硝酸捕集用炭酸ナトリウム溶液を時々交換しながら放出硝酸量を調べる方法で、試料中のNO /Uモル比の経時変化を調べた。反応前の試料は、U濃度が2.00mo1/1でNO /Uモル比が2.10である遊離硝酸含有硝酸ウラニル溶液60m1である。
【0009】
設定温度160℃の油浴の加熱開始後約80分で試料温度が約110℃になり硝酸の放出が始まり430分までの加熱の結果、NO /Uモル比は1.86に達した。(捕集硝酸からの計算値は1.83で誤差の範囲で一致していた)。試料温度は290分以降147℃であった。この間の試料温度と捕集硝酸から計算した試料のNO /Uモル比とを、加熱開始後の時間に対して図2に示している。(図2には、アルゴンガスのみを供給した場合の結果も比較して示している。)
【0010】
【実施例2】
実施例1と同様の手法で、油浴設定温度のみを195℃に変えて、NO /Uモル比の経時変化を調べた。加熱開始後206分後に、NO /Uモル比は1.63に達した。(捕集硝酸からの計算値は1.65で誤差の範囲で一致していた)。試料温度は130分以降180℃であった。この間の試料温度と捕集硝酸から計算した試料のNO /Uモル比とを、加熱開始後の時間に対して図3に示している。(図3には、アルゴンガスのみを供給した場合の結果も比較して示している。)
【0011】
【実施例3】
図1に示す装置を用いて、実施例2と同様の加熱前試料、加熱条件を適用し、NO /Uモル比の目標値を1.55として実験した。具体的には、放出硝酸捕集用アルカリ溶液には試料のNO /Uモル比の最終値が1.55に達するまでの放出硝酸と当量の炭酸ナトリウムを含ませておき、その溶液のpHが4に達した時に、試料加熱ヒータ5の電源断と冷却器7へ冷却水を供給する電磁切換弁13作動の信号を出すように設定しておいた。
【0012】
試料温度は160分以降184℃であった。252分後にpHが設定値以下となり、前記信号を発した。加熱終了後に試料温度が80℃になった時に手動弁14を開いて所定の水を水溜15から試料容器内に供給した。内部の固体をすべて溶解するために最終的には95℃に加熱した。この試料溶液のNO /Uモル比は、目標値と誤差の範囲で一致する1.57であった。
【0013】
【発明の効果】
従来の技術では、作業員被曝程度の増大を招く放射性微粉末を取り扱う工程、あるいは危険度の高い還元反応工程が必要であった。しかし、本発明の結果、これらの工程を不要としたほか、脱硝酸量が目標どおり制御可能で、かつ、自動化の可能な亜化学量論的または化学量論的硝酸塩溶液の調製方法を実現させた。また、脱硝酸反応を水蒸気中で行うことにより、図2及び3に比較して示すように熱分解によるものより高い効率で進める方法を実現させた。
【図面の簡単な説明】
【図1】本発明の方法を実施するための装置の一例を示した図である。
【図2】試料加熱ヒータとして160℃油浴を用いた実施例1の場合の試料温度と試料中のNO /Uモル比の経時変化を、アルゴンガスのみを供給した場合と比較して示したグラフである。
【図3】試料加熱ヒータとして195℃油浴を用いた実施例2の場合の試料温度と試料中のNO /Uモル比の経時変化を、アルゴンガスのみを供給した場合と比較して示したグラフである。
【符号の説明】
1:担体ガス 2:ヒータ 3:水蒸気発生器
4:保温炉 5:ヒータ 6:硝酸塩容器
7:冷却器 8:冷却器 9:アルカリ溶液
10:pHメータ 11:記録調節計 12:冷却水
13:電磁切換弁 14:手動弁 15:水溜
[0001]
[Industrial application fields]
The present invention relates to a method for preparing a substoichiometric or stoichiometric nitrate solution such as a nuclear fuel material used as a starting material when preparing microspherical ceramic particles such as ceramic fuel particles for nuclear reactors.
[0002]
[Prior art]
In the process of producing fuel gel particles by the sol-gel method used in the field of ceramic fuel particles for nuclear reactors, when a substoichiometric nitrate solution containing a fuel metal such as uranium as a starting material solution is prepared, metal oxidation is performed. A method is used in which product powder is dissolved in nitric acid or a stoichiometric metal nitrate solution, or an organic reducing agent is added to the stoichiometric nitrate solution to decompose and remove nitric acid.
[0003]
[Problems to be solved by the invention]
An object of the present invention is a process for handling fine fuel oxide powder, which is a radioactive substance that causes an increase in worker exposure, which is indispensable in the prior art, or a process involving the risk of adding an organic reducing agent to a nitrate solution as an oxidizing agent. The object of the present invention is to provide a method for preparing a desired starting material solution without going through the steps.
[0004]
[Means for solving the problems and their functions]
As a result of diligent research by the inventors of the present application, the means adopted for solving the target problem are as follows.
[0005]
First, in addition to increasing the denitration efficiency by heating in an atmosphere containing water vapor, the main component of the released gas can be in the form of nitric acid rather than nitrogen oxide, and the end point of the desired denitration reaction is as follows: In this way, automatic control can be performed accurately. That is, using an apparatus as shown in FIG. 1, the carrier gas 1 is introduced into the water 3 heated by the heater 2 to contain water vapor, and the water vapor is passed through the heat retaining furnace 4 into the nitrate container 6 heated by the heater 5. Lead. The nitric acid thus released is introduced into the nitric acid collecting alkaline solution 9 through the cooler 7 in which the cooling water is not flowing together with the carrier gas, and then in the cooler 8 in which the cooling water is flowing. The initial amount of alkali in this solution is set equal to the nitric acid to be released. While the pH of the alkaline solution is continuously monitored by the recording controller 11 connected to the pH meter 10, the heating by the heater 5 is stopped by a signal of a sudden pH change at the end point of the neutralization reaction between the released nitric acid and the alkaline solution. At the same time, in order to stop the release of the generated nitric acid from the system, the electromagnetic switching valve 13 for operating the cooling water 12 to the cooler 7 is also operated.
[0006]
Second, when the molten salt-like object to be heated in the container 6 after the reaction is cooled to room temperature and solidified, the container is damaged due to volume expansion due to moisture absorption of the solid. The manual valve 14 is opened in a state maintained at a high temperature of 100 ° C. or lower, and the solid water is added to the water reservoir 15 to change the solid into an aqueous solution, followed by cooling.
[0007]
【Example】
The present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.
[0008]
[Example 1]
An oil bath is used as a heater for the sample (uranyl nitrate solution) of the apparatus shown in FIG. 1, and a mixed gas obtained by bubbling argon into water at 95 ° C. in a water vapor generator at a rate of 50 ml / min (water vapor + argon) is used. The change over time in the NO 3 / U molar ratio in the sample was examined by examining the amount of released nitric acid while changing the sodium carbonate solution for collecting and releasing the released nitric acid from time to time. The sample before the reaction is a free nitric acid-containing uranyl nitrate solution 60 ml having a U concentration of 2.00 mo1 / 1 and a NO 3 / U molar ratio of 2.10.
[0009]
About 80 minutes after the start of heating the oil bath at the set temperature of 160 ° C., the sample temperature became about 110 ° C., the release of nitric acid started, and as a result of heating up to 430 minutes, the NO 3 / U molar ratio reached 1.86. . (The calculated value from the collected nitric acid was 1.83, which was consistent within the error range). The sample temperature was 147 ° C. after 290 minutes. The sample temperature during this period and the NO 3 / U molar ratio of the sample calculated from the collected nitric acid are shown in FIG. 2 with respect to the time after the start of heating. (FIG. 2 also shows the results when only argon gas is supplied.)
[0010]
[Example 2]
In the same manner as in Example 1, only the oil bath set temperature was changed to 195 ° C., and the change over time in the NO 3 / U molar ratio was examined. 206 minutes after the start of heating, the NO 3 / U molar ratio reached 1.63. (The calculated value from the collected nitric acid was 1.65, which was consistent within the error range). The sample temperature was 180 ° C. after 130 minutes. The sample temperature during this period and the NO 3 / U molar ratio of the sample calculated from the collected nitric acid are shown in FIG. 3 with respect to the time after the start of heating. (In FIG. 3, the results when only argon gas is supplied are also shown in comparison.)
[0011]
[Example 3]
Using the apparatus shown in FIG. 1, the same pre-heating sample and heating conditions as those of Example 2 were applied, and the NO 3 / U molar ratio target value was set to 1.55. Specifically, the alkaline solution for collecting released nitric acid contains sodium carbonate equivalent to the released nitric acid until the final value of NO 3 / U molar ratio of the sample reached 1.55. When the pH reached 4, it was set so that a signal for operating the electromagnetic switching valve 13 for supplying power to the sample heater 5 and supplying the cooling water to the cooler 7 was output.
[0012]
The sample temperature was 184 ° C. after 160 minutes. After 252 minutes the pH was below the set value and the signal was emitted. When the sample temperature reached 80 ° C. after the heating, the manual valve 14 was opened and predetermined water was supplied from the water reservoir 15 into the sample container. Eventually it was heated to 95 ° C. to dissolve all internal solids. The NO 3 / U molar ratio of this sample solution was 1.57 which coincided with the target value within the range of error.
[0013]
【The invention's effect】
In the prior art, a process for handling radioactive fine powder that causes an increase in the degree of worker exposure or a highly dangerous reduction reaction process is required. However, as a result of the present invention, in addition to making these steps unnecessary, a method for preparing a substoichiometric or stoichiometric nitrate solution that can control the amount of denitration as desired and can be automated is realized. It was. In addition, by performing the denitration reaction in water vapor, as shown in comparison with FIGS. 2 and 3, a method of proceeding with higher efficiency than that by thermal decomposition was realized.
[Brief description of the drawings]
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention.
FIG. 2 shows the changes over time in the sample temperature and NO 3 / U molar ratio in the sample in Example 1 using a 160 ° C. oil bath as the sample heater, compared with the case where only argon gas was supplied. It is the shown graph.
FIG. 3 shows the change over time in the sample temperature and NO 3 / U molar ratio in the sample in Example 2 using a 195 ° C. oil bath as the sample heater, compared with the case where only argon gas was supplied. It is the shown graph.
[Explanation of symbols]
1: Carrier gas 2: Heater 3: Steam generator 4: Incubator 5: Heater 6: Nitrate container 7: Cooler 8: Cooler 9: Alkaline solution 10: pH meter 11: Recording controller 12: Cooling water 13: Electromagnetic switching valve 14: Manual valve 15: Water reservoir

Claims (5)

硝酸/金属濃度比(以下、硝酸濃度比と記す)が金属またはその複合陽イオン価数(以下、金属含有陽イオン価数という)に等しい化学量論的金属硝酸塩の溶液または固体、あるいはそれに遊離硝酸が加わった溶液または固体を出発物質として、硝酸濃度比が金属含有陽イオン価数より小さい亜化学量論的硝酸塩または化学量論的硝酸塩の溶液を得るために、出発物質の溶液または固体を水蒸気を含む気流中で加熱しつつ放出される硝酸を既知量のアリカリ溶液中に捕集して目標の放出量に到達した時点で反応を中止することにより、目的とする硝酸濃度比の亜化学量論的または化学量論的硝酸塩溶液を調製する方法。A solution or solid of a stoichiometric metal nitrate whose nitric acid / metal concentration ratio (hereinafter referred to as the nitric acid concentration ratio) is equal to the metal or its composite cation valence (hereinafter referred to as a metal-containing cation valence) or free from it. To obtain a substoichiometric or stoichiometric nitrate solution with a nitric acid added solution or solid as starting material and a nitric acid concentration ratio smaller than the metal-containing cation valence, the starting material solution or solid is Nitric acid released while heating in an air stream containing water vapor is collected in a known amount of ant potash solution, and the reaction is stopped when the target amount of release is reached. A method of preparing a stoichiometric or stoichiometric nitrate solution. 加熱温度が190℃以下である請求項1の亜化学量論的または化学量論的硝酸塩溶液調製方法。The method for preparing a substoichiometric or stoichiometric nitrate solution according to claim 1, wherein the heating temperature is 190 ° C or lower. 反応中止後の被加熱物質を80〜99℃に維持した状態で水を加えて固体をすべて溶解することによる請求項1の亜化学量論的または化学量論的硝酸塩溶液調製方法。The method for preparing a substoichiometric or stoichiometric nitrate solution according to claim 1, wherein water is added to dissolve all solids in a state where the heated substance after the reaction is stopped is maintained at 80 to 99 ° C. 硝酸濃度比が金属含有陽イオン価数の75〜100%の範囲である請求項1の亜化学量論的または化学量論的硝酸塩溶液調製方法。The method for preparing a substoichiometric or stoichiometric nitrate solution according to claim 1, wherein the nitric acid concentration ratio is in the range of 75 to 100% of the metal-containing cation valence. 該金属がウラン、トリウム、超ウラン元素の群から成る選ばれた1種またはそれ以上の核燃料物質である請求項1の亜化学量論的または化学量論的硝酸塩溶液調製方法。The method of preparing a substoichiometric or stoichiometric nitrate solution according to claim 1, wherein the metal is one or more selected nuclear fuel materials consisting of the group of uranium, thorium and transuranium elements.
JP29014894A 1994-11-24 1994-11-24 Substoichiometric or stoichiometric nitrate solution preparation method Expired - Fee Related JP3626519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29014894A JP3626519B2 (en) 1994-11-24 1994-11-24 Substoichiometric or stoichiometric nitrate solution preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29014894A JP3626519B2 (en) 1994-11-24 1994-11-24 Substoichiometric or stoichiometric nitrate solution preparation method

Publications (2)

Publication Number Publication Date
JPH08151204A JPH08151204A (en) 1996-06-11
JP3626519B2 true JP3626519B2 (en) 2005-03-09

Family

ID=17752405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29014894A Expired - Fee Related JP3626519B2 (en) 1994-11-24 1994-11-24 Substoichiometric or stoichiometric nitrate solution preparation method

Country Status (1)

Country Link
JP (1) JP3626519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334316B2 (en) 2003-10-16 2009-09-30 原子燃料工業株式会社 Ammonium uranate particle production equipment
WO2005061387A1 (en) * 2003-12-24 2005-07-07 Nuclear Fuel Industries, Ltd. Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution

Also Published As

Publication number Publication date
JPH08151204A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
US4490287A (en) Treatment of substances
US4234449A (en) Method of handling radioactive alkali metal waste
US3873651A (en) Freeze drying method for preparing radiation source material
JPS6046394B2 (en) Method for solidifying high-level radioactive waste liquid using glass
NL8203117A (en) METHOD FOR PREPARING AN IRON (III) OXIDE CATALYST OR ABSORPTION.
US4687601A (en) Process for the preparation of pulverulent metallic oxides from metallic nitrates
CN109277398A (en) A kind of method of safe and harmlessization processing aluminium ash
JP3626519B2 (en) Substoichiometric or stoichiometric nitrate solution preparation method
EP0179994B1 (en) Process for drying a chelating agent
JPH0721556B2 (en) Method for melting and solidifying glass of radioactive waste liquid with suppressed formation of gaseous ruthenium
US4383855A (en) Cermets and method for making same
JPS6337189B2 (en)
Czapski et al. The Oxidation of Iodide Ions in Aqueous Solution by Atomic Hydrogen
US8742195B2 (en) Aluminum phosphate ceramics for waste storage
CN111655623B (en) Method for preparing a powder based on an oxide comprising uranium and plutonium using a mixture of specific organic ligands and use of this powder for manufacturing a fuel based on uranium and plutonium
Lammertz et al. Technetium volatilization during HLLW vitrification
RU2093468C1 (en) Method or preparing uranium dioxide for oxide composition based thereon
JPH0252839B2 (en)
JPH0587799B2 (en)
RU2047556C1 (en) Method for producing individual and composite metal oxides
Orth Plutonium metal from trifluoride
US4384990A (en) Uranyl nitrate pouring solution for producing nuclear fuel particles and a method for its preparation
RU2644589C2 (en) Method of flameless combustion processing of reactor graphite waste
US4414187A (en) Preparation of metal phosphates by a reaction using boron phosphate
JP3763035B2 (en) Method and apparatus for controlling oxidative combustion of graphite that may be radioactively contaminated by being used in a nuclear reactor, etc.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees