JP3625504B2 - High purity biphenyltetracarboxylic dianhydride and process for producing the same - Google Patents

High purity biphenyltetracarboxylic dianhydride and process for producing the same Download PDF

Info

Publication number
JP3625504B2
JP3625504B2 JP27783994A JP27783994A JP3625504B2 JP 3625504 B2 JP3625504 B2 JP 3625504B2 JP 27783994 A JP27783994 A JP 27783994A JP 27783994 A JP27783994 A JP 27783994A JP 3625504 B2 JP3625504 B2 JP 3625504B2
Authority
JP
Japan
Prior art keywords
bpda
fine particles
insoluble fine
btc
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27783994A
Other languages
Japanese (ja)
Other versions
JPH08134056A (en
Inventor
呂 芳 雄 勝
井 淳 酒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP27783994A priority Critical patent/JP3625504B2/en
Publication of JPH08134056A publication Critical patent/JPH08134056A/en
Application granted granted Critical
Publication of JP3625504B2 publication Critical patent/JP3625504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高純度ビフェニルテトラカルボン酸二無水物(以下BPDAと言う。)およびその製造法に関する。詳しくは、不溶性微粒体含有量のきわめて少ない高純度BPDAおよびその製造法に関する。
【0002】
【従来の技術】
BPDAは、耐熱性樹脂として注目されている芳香族ポリイミドの製造用原料として、有用な化合物である。BPDAを用いた芳香族ポリイミドは、BPDAと芳香族ジアミンとの重合反応によって製造する方法、BPDAと芳香族ジアミンの常温付近の低温での重合によって得られるポリアミック酸を閉環イミド化する方法、のいずれかによって製造することができる。
【0003】
BPDAを用いた芳香族ポリイミドは、電子材料分野において使用される用途が大きい。近年、電子材料製品の機能高度化に伴い、これにフィルムやワニスとして使用される芳香族ポリイミドにも同様に高性能が要求されるようになった。特に、芳香族ポリイミドの特徴である耐熱性、絶縁性、ガスバリヤー性などに関しても、より高性能化を目指して種々の改良検討が行なわれている。例えば、BPDAを用いた芳香族ポリイミドの代表的な用途として、ガス分離膜、フレキシブルプリント基板などがあるが、これらの用途分野においても、膜機能の高度化、基板の高機能化に伴う検討課題として、膜、成形品の欠陥改良の要求が強くなってきた。
【0004】
従来から、有機化合物はその用途によっては、不溶性微粒体の含有を極端に嫌う場合がある。例えば、芳香族ポリイミドの原料となるBPDAに、これらの製造過程、その他の原因で不溶性微粒体が混入していると、当然ながらそのまま、製品ポリマーに残ることとなる。不溶性微粒体としては、(a) 製造過程で混入するもの、および、(b) 有機化合物製造後にこれを取り扱う過程で混入するものがある。上記(a) の具体例には、触媒、触媒の担体に由来するもの、金属粉、パッキング粉などの製造機器に由来するものなどがあり、上記(b) の具体例には、製品を取り扱う雰囲気中に浮遊している粉塵などの微粉末である。
【0005】
本発明者らは、芳香族ポリイミドの特定の特性と、特殊な領域の不溶性微粒体含有量との間に、理由は不明であるが、何等かの相関があることを見出した。即ち、特殊な領域の不溶性微粒体の含有量を一定レベル以下にすると、上述の芳香族ポリイミドの特定の特性を大幅に向上させることができること、即ち、その粒子の大きさが5〜30μmの範囲の不溶性微粒体含有量が、1g当たり1×10 個以上混入していると、種々の欠陥が発生することを見出した。例えば、芳香族ポリイミドの用途が、繊維向けである場合には、紡糸の際に糸切れの原因になり、また、用途がフィルムの場合には、フィッシュアイ、ピンホールなどの原因になり、さらに、用途がワニスの場合にはフィッシュアイが発生し、用途がガス分離膜の場合には分離特性が低下し、いずれも製品価値を著しく低下させるという欠点がある。
【0006】
これら不溶性微粒体に由来する欠点を排除するために、一般に、芳香族ポリイミドを製造する工程中に、フィルターを設置して不溶性微粒体を除去する方法がとられる。このフィルターの寿命は、フィルターの材質、使用条件、使用時間などにもよるが、被処理液中の不溶性微粒体含有量に支配されることが多く、不溶性微粒体の含有量が多いと、寿命は短命となり、生産性や歩留りが低下する、高価なフィルターの頻繁な交換が必要である、などにより製造コストの上昇は免れられない。いずれにしても、原料中の不溶性微粒体を少なくすることが強く望まれている。
【0007】
BPDAは、ビフェニルテトラカルボン酸(以下BTCと言う。)を150〜250℃の温度範囲に加熱し、脱水閉環反応させることによって得ることができるが、この工程のみでは、目的物の含有量、製品の着色などの観点から、満足できる水準のものが得られない。そこで、BTCを加熱することによって得られる粗BPDAを、減圧下、250〜400℃の温度に加熱して揮発させ、次いで、この揮発したBPDAの蒸気を冷却し、精製結晶として回収する方法が提案されている(特公平4−37078号公報参照)。
しかしながら、この刊行物に記載の方法では、芳香族ポリイミド製造用原料に要求される不溶性微粒体含有量水準を満足できないことがあり、不溶性微粒体含有量の極めて少ない高純度BPDAと、これを安定して製造する方法の開発が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明者らは、上記現状に鑑み、高純度BPDAおよびその工業的有利な製造法を提供すべく鋭意検討の結果、前記の通り、芳香族ポリイミドの特定の特性と、特殊な領域の不溶性微粒体含有量との間に、理由は不明であるが、何等かの相関があることを見出し、本発明を完成した。
本発明の目的は、高純度ビフェニルテトラカルボン酸二無水物(以下BPDAと言う。)、およびその工業的に有利な製造法を提供することにある。
【0009】
【課題を解決するための手段】
本発明に係るポリイミド用ビフェニルテトラカルボン酸二無水物は、大きさが5〜30μmの不溶性微粒体の含有量が、1g当り2×10個以下であることを特徴とするものである。
【0012】
以下、本発明を詳細に説明する。
本発明において、不溶性微粒体は、上記の(a) または(b) の原因によって原料、製品に混入する大きさが5〜30μmの範囲のものを言う。これらの大きさ、個数などは、粒径画像処理装置、例えば三菱化学(株)製のGX−10などの微粒子を拡大・計数することができる装置によって、容易に確認、計数することができる。
【0013】
本発明方法においては、特定量以下の不溶性微粒体を含有するBTCの脱水閉環反応によって得られるBPDA、または、特定量以下の不溶性微粒体を含有する粗BPDAを揮発させ、次いで、揮発分を冷却して結晶として回収する方法が採用される。
【0014】
特定量以下の不溶性微粒体を含有するBTCを用いて本発明方法を実施するには、先ず、BTC結晶を、減圧下、150〜250℃の温度に加熱して、脱水閉環反応を行なわせ、生成したBPDAを、常圧または減圧下、加熱して揮発させ、次いで、揮発分を冷却して結晶として回収する(以下、単に「第1法」と言う。)。また、特定量以下の不溶性微粒体を含有する粗BPDAを用いて本発明方法を実施するには、粗BPDAを、減圧下、加熱して揮発させ、揮発分を冷却して結晶として回収する(以下、単に「第2法」と言う。)。
【0015】
本発明において使用されるBTCおよび粗BPDAは、これらの製法には特に制約はなく、いずれの方法によって製造されたものであってもよい。BTCおよび粗BPDAは、5〜30μmの大きさの不溶性微粒体の含有量が1g当り7×10 個以下のBTCおよび粗BPDAに限定される。不溶性微粒体の含有量が1g当り7×10 個以下の粗BPDAを原料とし、不溶性微粒体の含有量が目的の水準にある高純度BPDAとするには、揮発精製操作を繰り返し行なう必要があり、生産性、歩留りが極端に低下するので、好ましくない。
【0016】
BTCは、通常は、o−フタル酸ジメチルの脱水二量化反応で得られたビフェニルテトラカルボン酸テトラメチルを、酸触媒の存在下、水性媒体中で加水分解して得られる。また、無水フタル酸をハロゲン化して得られる4−ハロフタル酸を、水性媒体中で、アルカリ・還元剤・Pd触媒の存在下、脱ハロゲン二量化反応させ、ビフェニルテトラカルボン酸テトラアルカリ金属塩を得、これを鉱酸で中和することによっても得ることができる。このようにして得られたBTCは、実質上全て3,4,3´,4´−異性体である。
【0017】
上記方法で得られるBTCは、本発明の「第1法」の原料化合物として使用できる。このBTCは、5〜30μmの大きさの不溶性微粒体の含有量が1g当り7×10 個以下でなければならないが、通常は1g当り5×10 ないし7×10 個含有するBTCが使用される。そのためには、使用する液体原料、溶媒は、フィルターを通し、不溶性微粒体を除去する必要がある。また、固形の触媒などを除去した反応液も同様にフィルターを通し、不溶性微粒体の含有量が1g当り7×10 個以下になるように、調整しなければならない。この際使用されるフィルターは、条件によっても異なるが、例えば孔径1μmフィルターを、1段または複数段直列に組合せて用いられる。
【0018】
上記の方法で調整したBTCを原料とし、粗BPDAを製造する。BTCを原料としてBPDAを得るには、公知の方法に従って、例えば2〜10重量倍の無水酢酸やデカリンなどの液状媒体中で、100℃ないし液状媒体の沸点の温度範囲に加熱して、脱水閉環反応させることによって、容易に得られる。
このようにして得られた粗BPDAは、本発明の「第2法」の原料化合物として使用できる。粗BPDAに含まれる5〜30μmの大きさの不溶性微粒体は、その含有量が1g当り7×10 個以下でなければならないが、通常は、1g当り5×10 ないし7×10 個含有するBPDAが使用される。そのためには、使用する液体原料、溶媒は、フィルターを通し、不溶性微粒体を除去する必要がある。
【0019】
本発明の「第1法」の脱水閉環反応について詳述すると、BTCを、常圧または減圧下、例えば10 〜10 Paの範囲で、150〜250℃の温度に加熱すると、粗BPDAが得られる。この場合、原料のBTCは、水湿潤状態のものも使用でき、その際には、昇温途中で付着水が、さらには結晶水も蒸発によって除かれ、続いて、脱水閉環反応が起こる。これら一連の反応は、付着水、結晶水および脱水閉環反応によって生成する水を、反応系外にパージしながら行なうと、反応速度が向上するので、常圧で不活性ガスを通しながら、または、減圧下で行なうのが好ましい。
脱水閉環反応に要する時間は、加熱速度、加熱温度、減圧度および付着水の有無などによって異なるが、通常、0.5〜10時間の範囲で選ぶことができる。
【0020】
本発明の「第2法」につき詳述すると、上記の方法によって得られる粗BPDAは、加熱し揮発させ、揮発したBPDAを冷却すれば、不溶性微粒体含有量の極めて少ない高純度BPDAが結晶として析出し、容易に回収することができる。粗BPDAの揮発操作は、減圧下で、加熱しつつ行うのが好ましい。加熱温度が低すぎるとBPDAを効率よく揮発させることができず、高すぎるとBPDAが熱分解するので、いずれも好ましくない。本発明者らの実験によれば、4000Pa以下の減圧下、好ましくは2700Pa以下の減圧下、300〜400℃、好ましくは300〜350℃の温度とするのがよいことが分かった。
【0021】
不溶性微粒体含有量の多い粗BPDAを揮発精製する場合には、大半の不溶性微粒体が蒸留釜に残渣として残るので、回分式で操作を行なう場合には、揮発精製操作を繰り返すに従い、被揮発精製物中の不溶性微粒体が増加する。従って、不溶性微粒体含有量の多い粗BPDAを用いた場合には、蒸留釜の残渣を頻繁に抜き出す必要があり、生産性、歩留りが極端に低下する。不溶性微粒体含有量が少ない粗BPDAを原料として用いた場合には、回分式で揮発精製操作を行なう場合にも、蒸留釜の残渣を頻繁に抜き出す必要がなく、生産性、歩留りが共に向上する。
【0022】
粗BPDAを揮発させる場合の速度は、粗BPDAに不溶性微粒子が含まれている場合には、揮発速度が大であると不溶性微粒体が揮発する蒸気に同伴されて揮発精製した製品に混入するので、適切な揮発速度を選ぶのが好ましい。
【0023】
揮発したBPDAの冷却温度は、通常、200℃以下、好ましくは100℃以下である。この冷却方法は、種々の方法によることができるが、通常、揮発操作を行う容器、例えば、蒸発釜などの容器の気相部に直結するガス管先端に配置したドラム式回転冷却器により行うのが好ましい。ドラム式回転冷却器に付着したBPDAは、適当なかきとり装置によって、連続的に容易にかきとられ、フレークとして回収される。
【0024】
このようにして得られたBPDAは、5〜30μmの大きさの不溶性微粒子の含有量が1g当り2×10 個以下の高純度であり、芳香族ポリイミド製造用原料として好適であり、耐熱性、絶縁性、ガスバリヤー性などに優れた芳香族ポリイミドを得ることができる。
そして、上記の高純度BPDAを原料とした芳香族ポリイミドから製造したガス分離膜は、膜欠陥が極めて少なく、従来品に較べ格段に優れた分離特性を発揮する。更に、好ましくは、不溶性微粒子の含有量が1g当り1×10 個以下のBPDAと芳香族ジアミンとの反応によって得られるフィルムは、ガスバリヤー性が著しく向上する。これに対して、不溶性微粒子の含有量が1g当り2×10 個のBPDAと芳香族ジアミンとの反応によって得られるフィルムは、絶縁性に乏しくフレキシブルプリント基板として使用することができなかった。
【0025】
【実施例】
次に、本発明を実施例により詳細に説明するが、本発明はその趣旨を超えない限り、以下の記載例に限定されるものではない。
なお、以下の例において、溶媒の準備、サンプルの調整、不溶性微粒体の計数は、次の手順によった。
<溶媒の準備>
クラス100のクリンベンチ内で、試薬グレードのN−メチルピロリドンを、目の粗さが0.2μmのフィルターを通し、大きさが0.2μm以上の不溶性微粒体を除去した。
【0026】
<サンプルの調整>
まず、クラス100のクリンベンチ内で、サンプル約1gを洗浄・乾燥済のガラス瓶に精秤し、これに上記N−メチルピロリドン200ml加えたのち、この混合物を超音波洗浄器に入れ、約3時間にわたり洗浄器を作動させ、サンプルを溶解させた。次いで、この溶液を目の粗さが0.4μmのフィルターを通し、不溶性微粒体を濾別した。
<不溶性微粒体の計数>
クラス1000のクリンルーム内で、粒径画像処理装置{三菱化学(株)製、GX−10}を用いて、フィルター上の不溶性微粒体の数を測定した。測定した不溶性微粒体の数をサンプル重量で補正し、サンプル1.0g当りの個数に換算した。
【0027】
[実施例1]
攪拌機、ジャケット、コンデンサー、温度計、不活性ガス供給口を備えた縦型筒状反応器に、大きさが5〜30μmの不溶性微粒体を1g当り2×10 個含むBTC100重量部を仕込んだ。反応器内容物を攪拌しながら、常圧下、215℃に加熱し、2m /時の速度で窒素ガスを通し、生成する水をパージしつつ、脱水閉環反応を10時間継続し、粗BPDAを得た。続いて、300℃に昇温し、この温度で5時間保持し、粗BPDAを溶融させた。
【0028】
粗BPDAの溶融液を、ジャケットを備えた縦型筒状蒸発釜に移送し、305℃、230Paの条件下で、蒸発(揮発)させた。蒸発したBPDAは、蒸発釜の気相部に直結するガス配管先端に配したドラム式回転冷却器表面に接触させ、冷却析出させた。ドラム表面に付着するBPDAの結晶は、かきとり装置によって連続的にかきとり、フレークとして回収した。このフレークを粉砕後、精製BPDA80重量部が得られた。
この精製BPDA中の大きさが5〜30μmの不溶性微粒体を計数したところ、1gあたり400個であり、原料のBTC中の不溶性微粒体のものに較べて大幅に少なくなっていた。
【0029】
[実施例2]
実施例1に記載の例において、原料を、大きさが5〜30μmの不溶性微粒体を1g当り5×10 個含むBTCに代えた他は、同例におけると同様の手順で操作した。
得られたBPDA中の大きさが5〜30μmの不溶性微粒体は、1g当り1000個であり、原料のBTC中の不溶性微粒体のものに較べて大幅に少なくなっていた。
【0030】
[比較例1]
実施例1に記載の例において、原料を、大きさが5〜30μmの不溶性微粒体を1g当り1.5×10 個含むBTCに代えた他は、同例におけると同様の手順で操作した。
得られたBPDA中の大きさが5〜30μmの不溶性微粒体は、1g当り3500個であり、目標値の1g当り2×10 個を越えていた。
【0031】
【発明の効果】
本発明は、次のような特別に有利な効果を奏し、その産業上の利用価値は、極めて大である。
1.本発明に係る大きさが5〜30μmの不溶性微粒体の含有量が1g当り2×10 個以下の高純度のBPDAは、これと芳香族ジアミンとの反応させてポリイミドを製造した際、耐熱性、絶縁性、ガスバリヤー性などに優れ、ガス分離膜に加工した場合には、膜欠陥の少ない製品が得られる。
2.本発明方法によれば、不溶性微粒体の含有量が極めて少ない高純度のBPDAを容易に製造することができる。
3.本発明方法によって不溶性微粒体の含有量が特定量以下の粗BPDAを原料として用いる場合には、回分式で操作を行なう場合にも、蒸留釜の残渣を頻繁に抜き出す必要がなく、生産性、歩留りが大幅に向上する。
[0001]
[Industrial application fields]
The present invention relates to a high-purity biphenyltetracarboxylic dianhydride (hereinafter referred to as BPDA) and a method for producing the same. Specifically, the present invention relates to a high-purity BPDA having a very low content of insoluble fine particles and a method for producing the same.
[0002]
[Prior art]
BPDA is a useful compound as a raw material for producing an aromatic polyimide, which is attracting attention as a heat resistant resin. Aromatic polyimide using BPDA is either a method of producing by a polymerization reaction of BPDA and aromatic diamine, or a method of ring-closing imidization of polyamic acid obtained by polymerization of BPDA and aromatic diamine at a low temperature near room temperature. Can be manufactured.
[0003]
Aromatic polyimide using BPDA has a large application in the field of electronic materials. In recent years, with the advancement of functions of electronic material products, high performance has been required for aromatic polyimides used as films and varnishes as well. In particular, various improvements have been studied for higher performance with respect to heat resistance, insulation, gas barrier properties, and the like, which are characteristics of aromatic polyimide. For example, typical applications of aromatic polyimides using BPDA include gas separation membranes and flexible printed circuit boards. In these fields of application, however, there are issues to be addressed as membrane functions become more sophisticated and substrates become more functional. As a result, there is an increasing demand for improving defects in films and molded products.
[0004]
Conventionally, depending on the use of an organic compound, the inclusion of insoluble fine particles may be extremely disliked. For example, if insoluble fine particles are mixed in BPDA, which is a raw material for aromatic polyimide, due to these production processes and other reasons, it naturally remains in the product polymer as it is. Insoluble fine particles include (a) those mixed in the production process and (b) those mixed in the process of handling the organic compound after production. Specific examples of (a) include those derived from catalysts, catalyst carriers, metal powders, packing powders, and other manufacturing equipment. Specific examples of (b) handle products. It is a fine powder such as dust floating in the atmosphere.
[0005]
The inventors have found that there is some correlation between the specific characteristics of the aromatic polyimide and the content of insoluble fine particles in a special region for unknown reasons. That is, when the content of the insoluble fine particles in a special region is below a certain level, the specific characteristics of the above-mentioned aromatic polyimide can be greatly improved, that is, the particle size is in the range of 5 to 30 μm. It was found that various defects occur when the content of insoluble fine particles is 1 × 10 4 or more per gram. For example, if the use of aromatic polyimide is for fibers, it will cause thread breakage during spinning, and if the use is for film, it will cause fish eyes, pinholes, etc. When the application is a varnish, fish eyes are generated, and when the application is a gas separation membrane, the separation characteristics are deteriorated.
[0006]
In order to eliminate the disadvantages derived from these insoluble fine particles, generally, a method of removing the insoluble fine particles by installing a filter during the process of producing the aromatic polyimide is taken. The life of this filter depends on the filter material, usage conditions, and usage time, but it is often governed by the insoluble particulate content in the liquid to be treated. The production cost is unavoidable due to the fact that the product becomes short-lived, the productivity and yield decrease, and the frequent replacement of expensive filters is necessary. In any case, it is strongly desired to reduce insoluble fine particles in the raw material.
[0007]
BPDA can be obtained by heating biphenyltetracarboxylic acid (hereinafter referred to as BTC) to a temperature range of 150 to 250 ° C. and subjecting it to a dehydration ring-closing reaction. From the standpoint of coloring, a satisfactory level cannot be obtained. Therefore, a method has been proposed in which crude BPDA obtained by heating BTC is volatilized by heating to a temperature of 250 to 400 ° C. under reduced pressure, and then the vapor of this volatilized BPDA is cooled and recovered as purified crystals. (See Japanese Patent Publication No. 4-37078).
However, the method described in this publication may fail to satisfy the insoluble fine particle content level required for the raw material for producing aromatic polyimide, and can stabilize the high-purity BPDA with extremely low insoluble fine particle content and Therefore, development of a manufacturing method has been desired.
[0008]
[Problems to be solved by the invention]
In view of the above situation, the present inventors have intensively studied to provide a high-purity BPDA and an industrially advantageous production method thereof. As a result, as described above, specific characteristics of aromatic polyimide and insoluble fine particles in a special region The reason is unknown for the body content, but it was found that there is some correlation, and the present invention was completed.
An object of the present invention is to provide a high-purity biphenyltetracarboxylic dianhydride (hereinafter referred to as BPDA) and an industrially advantageous production method thereof.
[0009]
[Means for Solving the Problems]
The biphenyltetracarboxylic dianhydride for polyimide according to the present invention is characterized in that the content of insoluble fine particles having a size of 5 to 30 μm is 2 × 10 3 or less per 1 g .
[0012]
Hereinafter, the present invention will be described in detail.
In the present invention, the insoluble fine particles refer to those having a size of 5 to 30 μm mixed in the raw material and product due to the cause of the above (a) or (b). These sizes, numbers, etc. can be easily confirmed and counted by a particle size image processing apparatus, for example, an apparatus capable of enlarging and counting fine particles such as GX-10 manufactured by Mitsubishi Chemical Corporation.
[0013]
In the method of the present invention, BPDA obtained by a dehydration ring-closing reaction of BTC containing an insoluble fine particle of a specific amount or less or crude BPDA containing an insoluble fine particle of a specific amount or less is volatilized, and then the volatile component is cooled. Then, a method of recovering as crystals is adopted.
[0014]
In order to carry out the method of the present invention using BTC containing a specific amount or less of insoluble fine particles, first, the BTC crystal is heated to a temperature of 150 to 250 ° C. under reduced pressure to cause a dehydration ring closure reaction. The produced BPDA is volatilized by heating under normal pressure or reduced pressure, and then the volatile component is cooled and recovered as crystals (hereinafter simply referred to as “first method”). Further, in order to carry out the method of the present invention using crude BPDA containing a specific amount or less of insoluble fine particles, the crude BPDA is heated and volatilized under reduced pressure, and the volatile matter is cooled and recovered as crystals ( Hereinafter, it is simply referred to as “second method”).
[0015]
The BTC and crude BPDA used in the present invention are not particularly limited in these production methods, and may be produced by any method. BTC and crude BPDA are limited to BTC and crude BPDA in which the content of insoluble fine particles having a size of 5 to 30 μm is 7 × 10 4 or less per 1 g. In order to obtain a high-purity BPDA in which the content of insoluble fine particles is 7 × 10 4 or less per gram of crude BPDA and the content of insoluble fine particles is at the target level, it is necessary to repeat volatile purification operations. In addition, productivity and yield are extremely lowered, which is not preferable.
[0016]
BTC is usually obtained by hydrolyzing tetramethyl biphenyltetracarboxylate obtained by dehydration dimerization reaction of dimethyl o-phthalate in an aqueous medium in the presence of an acid catalyst. In addition, 4-halophthalic acid obtained by halogenating phthalic anhydride is subjected to dehalogenation dimerization reaction in an aqueous medium in the presence of an alkali, a reducing agent, and a Pd catalyst to obtain a biphenyltetracarboxylic acid tetraalkali metal salt. This can also be obtained by neutralizing with a mineral acid. The BTCs thus obtained are essentially all 3,4,3 ′, 4′-isomers.
[0017]
The BTC obtained by the above method can be used as a raw material compound of the “first method” of the present invention. The content of insoluble fine particles having a size of 5 to 30 μm must be 7 × 10 4 or less per 1 g, but usually BTC containing 5 × 10 3 to 7 × 10 4 per 1 g used. For this purpose, the liquid raw material and solvent to be used need to pass through a filter to remove insoluble fine particles. Similarly, the reaction solution from which the solid catalyst has been removed must be passed through a filter and adjusted so that the content of insoluble fine particles is 7 × 10 4 or less per gram. The filter used at this time varies depending on conditions, but for example, a filter having a pore diameter of 1 μm is used in combination of one stage or a plurality of stages in series.
[0018]
A crude BPDA is produced using the BTC prepared by the above method as a raw material. In order to obtain BPDA using BTC as a raw material, in accordance with a known method, for example, in a liquid medium such as 2 to 10 times by weight of acetic anhydride or decalin, heating to a temperature range of 100 ° C. to the boiling point of the liquid medium is performed. It can be easily obtained by reacting.
The crude BPDA thus obtained can be used as a raw material compound of the “second method” of the present invention. The content of insoluble fine particles having a size of 5 to 30 μm contained in the crude BPDA must be 7 × 10 4 or less per 1 g, but usually 5 × 10 3 to 7 × 10 4 per 1 g. The containing BPDA is used. For this purpose, the liquid raw material and solvent to be used need to pass through a filter to remove insoluble fine particles.
[0019]
The dehydration ring closure reaction of the “first method” of the present invention will be described in detail. When BTC is heated to a temperature of 150 to 250 ° C. under normal pressure or reduced pressure, for example, in the range of 10 2 to 10 5 Pa, crude BPDA is obtained. can get. In this case, the raw material BTC can be used in a wet state. In this case, adhering water and further crystal water are removed by evaporation in the course of temperature rising, and then a dehydration ring-closing reaction occurs. These series of reactions are carried out while purging the adhering water, crystal water and water generated by the dehydration ring closure reaction outside the reaction system, so that the reaction rate is improved, so that an inert gas is passed at normal pressure, or It is preferable to carry out under reduced pressure.
The time required for the dehydration ring-closing reaction varies depending on the heating rate, heating temperature, degree of reduced pressure, and the presence or absence of attached water, but can usually be selected in the range of 0.5 to 10 hours.
[0020]
The “second method” of the present invention will be described in detail. When the crude BPDA obtained by the above method is heated and volatilized, and the volatilized BPDA is cooled, high-purity BPDA with an extremely low content of insoluble fine particles is obtained as crystals. It precipitates and can be easily recovered. The volatilization operation of the crude BPDA is preferably performed while heating under reduced pressure. If the heating temperature is too low, BPDA cannot be volatilized efficiently, and if it is too high, BPDA is thermally decomposed. According to the experiments by the present inventors, it was found that the temperature should be 300 to 400 ° C., preferably 300 to 350 ° C. under a reduced pressure of 4000 Pa or less, preferably 2700 Pa or less.
[0021]
When crude BPDA with a high content of insoluble fine particles is volatilely purified, most of the insoluble fine particles remain as residues in the distillation kettle. The insoluble fine particles in the purified product increase. Therefore, when crude BPDA with a high content of insoluble fine particles is used, it is necessary to frequently extract the residue of the distillation pot, and the productivity and yield are extremely lowered. When crude BPDA with a low content of insoluble fine particles is used as a raw material, there is no need to frequently extract the residue in the distillation kettle even when performing a volatile refining operation in a batch system, which improves both productivity and yield. .
[0022]
If the crude BPDA contains insoluble fine particles, if the crude BPDA contains volatilized BPDA, if the volatilization rate is high, the insoluble fine particles are mixed with the vapor that volatilizes and mixes with the volatile purified product. It is preferable to select an appropriate volatilization rate.
[0023]
The cooling temperature of the volatilized BPDA is usually 200 ° C. or lower, preferably 100 ° C. or lower. This cooling method can be performed by various methods, but is usually performed by a drum-type rotary cooler disposed at the tip of a gas pipe directly connected to a gas phase portion of a container for performing a volatilization operation, for example, an evaporation kettle or the like. Is preferred. The BPDA adhering to the drum type rotary cooler is easily and continuously scraped by a suitable scraper and recovered as flakes.
[0024]
The BPDA thus obtained has a high purity of insoluble fine particles of 5 to 30 μm in size of 2 × 10 3 or less per gram, and is suitable as a raw material for producing aromatic polyimide, In addition, an aromatic polyimide having excellent insulation and gas barrier properties can be obtained.
And the gas separation membrane manufactured from the aromatic polyimide which used said high purity BPDA as a raw material has very few membrane defects, and exhibits the separation characteristic outstandingly excellent compared with the conventional product. Furthermore, it is preferable that the film obtained by the reaction of BPDA having an insoluble fine particle content of 1 × 10 2 or less per 1 g and an aromatic diamine has remarkably improved gas barrier properties. On the other hand, the film obtained by the reaction of 2 × 10 4 BPDA and aromatic diamine per gram of insoluble fine particles was poor in insulation and could not be used as a flexible printed board.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to the following description examples, unless the meaning is exceeded.
In the following examples, solvent preparation, sample preparation, and insoluble fine particle counting were performed according to the following procedure.
<Preparation of solvent>
In a class 100 clean bench, reagent-grade N-methylpyrrolidone was passed through a filter having a mesh size of 0.2 μm to remove insoluble particles having a size of 0.2 μm or more.
[0026]
<Sample adjustment>
First, in a class 100 clean bench, about 1 g of a sample is precisely weighed into a cleaned and dried glass bottle, 200 ml of the above N-methylpyrrolidone is added thereto, and the mixture is placed in an ultrasonic cleaner for about 3 hours. The washer was turned on to dissolve the sample. Subsequently, this solution was passed through a filter having a coarseness of 0.4 μm to separate insoluble fine particles.
<Counting insoluble fine particles>
In a Class 1000 clean room, the number of insoluble fine particles on the filter was measured using a particle size image processing apparatus {manufactured by Mitsubishi Chemical Corporation, GX-10}. The number of insoluble fine particles measured was corrected with the sample weight and converted to the number per 1.0 g of the sample.
[0027]
[Example 1]
A vertical cylindrical reactor equipped with a stirrer, a jacket, a condenser, a thermometer, and an inert gas supply port was charged with 100 parts by weight of BTC containing 2 × 10 4 insoluble fine particles having a size of 5 to 30 μm per gram. . While stirring the reactor contents, heating to 215 ° C. under normal pressure, passing nitrogen gas at a rate of 2 m 3 / hour, purging the generated water, and continuing the dehydration ring closure reaction for 10 hours, Obtained. Subsequently, the temperature was raised to 300 ° C. and held at this temperature for 5 hours to melt the crude BPDA.
[0028]
The melt of crude BPDA was transferred to a vertical cylindrical evaporation kettle equipped with a jacket and evaporated (volatilized) under the conditions of 305 ° C. and 230 Pa. The evaporated BPDA was brought into contact with the surface of a drum-type rotary cooler disposed at the end of a gas pipe directly connected to the gas phase portion of the evaporation kettle, and was cooled and deposited. The BPDA crystals adhering to the drum surface were continuously scraped by a scraper and recovered as flakes. After pulverizing this flake, 80 parts by weight of purified BPDA was obtained.
When the number of insoluble fine particles having a size of 5 to 30 μm in the purified BPDA was counted, it was 400 per 1 g, which was much smaller than that of the insoluble fine particles in the raw BTC.
[0029]
[Example 2]
In the example described in Example 1, the raw material was operated in the same procedure as in Example 1 except that the raw material was replaced with BTC containing 5 × 10 4 insoluble fine particles having a size of 5 to 30 μm.
The number of insoluble fine particles having a size of 5 to 30 μm in the obtained BPDA was 1000 per 1 g, which was significantly smaller than that of the insoluble fine particles in the raw material BTC.
[0030]
[Comparative Example 1]
In the example described in Example 1, the raw material was operated in the same procedure as in the same example except that BTC containing 1.5 × 10 5 insoluble fine particles having a size of 5 to 30 μm per 1 g was used. .
The number of insoluble fine particles having a size of 5 to 30 μm in the obtained BPDA was 3500 per 1 g, exceeding 2 × 10 3 per 1 g of the target value.
[0031]
【The invention's effect】
The present invention has the following particularly advantageous effects, and its industrial utility value is extremely large.
1. A high-purity BPDA having a content of insoluble fine particles having a size of 5 to 30 μm according to the present invention of 2 × 10 3 or less per 1 g is produced by reacting this with an aromatic diamine to produce a polyimide. When it is processed into a gas separation membrane, a product with few membrane defects can be obtained.
2. According to the method of the present invention, a high-purity BPDA with an extremely low content of insoluble fine particles can be easily produced.
3. When the crude BPDA having a content of insoluble fine particles of a specific amount or less is used as a raw material by the method of the present invention, it is not necessary to frequently extract the residue in the distillation kettle even when the batch operation is performed. Yield is greatly improved.

Claims (1)

大きさが5〜30μmの不溶性微粒体の含有量が1g当り2×10個以下であることを特徴とするポリイミド用ビフェニルテトラカルボン酸二無水物。A biphenyltetracarboxylic dianhydride for polyimide, wherein the content of insoluble fine particles having a size of 5 to 30 μm is 2 × 10 3 or less per 1 g.
JP27783994A 1994-11-11 1994-11-11 High purity biphenyltetracarboxylic dianhydride and process for producing the same Expired - Lifetime JP3625504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27783994A JP3625504B2 (en) 1994-11-11 1994-11-11 High purity biphenyltetracarboxylic dianhydride and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27783994A JP3625504B2 (en) 1994-11-11 1994-11-11 High purity biphenyltetracarboxylic dianhydride and process for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003074087A Division JP4158855B2 (en) 2003-03-18 2003-03-18 Method for producing high-purity biphenyltetracarboxylic dianhydride

Publications (2)

Publication Number Publication Date
JPH08134056A JPH08134056A (en) 1996-05-28
JP3625504B2 true JP3625504B2 (en) 2005-03-02

Family

ID=17588989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27783994A Expired - Lifetime JP3625504B2 (en) 1994-11-11 1994-11-11 High purity biphenyltetracarboxylic dianhydride and process for producing the same

Country Status (1)

Country Link
JP (1) JP3625504B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003335768A (en) 2002-03-13 2003-11-28 Mitsubishi Chemicals Corp High-purity biphenyltetracarboxylic acid dianhydride and method for producing the same
JP2005314297A (en) * 2004-04-28 2005-11-10 Mitsubishi Chemicals Corp Anhydrous product crystal produced by heating of biphenyltetracarboxylic acid
JP4665431B2 (en) * 2004-04-28 2011-04-06 三菱化学株式会社 Method for producing biphenyltetracarboxylic acid heat-dehydrated product crystal
JP2006045198A (en) * 2004-06-28 2006-02-16 Mitsubishi Chemicals Corp Biphenyltetracarboxylic acid dianhydride, method for producing the same, polyimide using the same and method for producing the same
WO2006001443A1 (en) * 2004-06-28 2006-01-05 Mitsubishi Chemical Corporation Biphenyltetracarboxylic acid dianhydride and process for producing the same, and polyimide formed from the same and process for producing the same

Also Published As

Publication number Publication date
JPH08134056A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US7595423B2 (en) Process for producing trans-1,4-cyclohexanedicarboxylic acid
JP2012017339A (en) Biphenyltetracarboxylic acid dianhydride and method for producing the same, and polyimide produced by using the same and method for producing the same
JPS6286022A (en) Separation of polyaryl sulfide
JP2006045198A (en) Biphenyltetracarboxylic acid dianhydride, method for producing the same, polyimide using the same and method for producing the same
JP2006188502A (en) High-purity oxydiphthalic acid anhydride and method for producing the same
JP3625504B2 (en) High purity biphenyltetracarboxylic dianhydride and process for producing the same
CN110494437A (en) The manufacturing method of 1,2,4,5- cyclopentanetetracarboxylic&#39;s dianhydride
US7417108B2 (en) Process for production of 2,3,3′,4′-biphenyltetracarboxylic dianhydride
JP4158855B2 (en) Method for producing high-purity biphenyltetracarboxylic dianhydride
US20080214841A1 (en) High-purity biphenyltetracarboxylic dianhydride and process for producing the same
CA3162432A1 (en) Water and thermal treatment of purified 2,5-furandicarboxylic acid
JPS61249977A (en) Production of biphenyltetracarboxylic acid dianhydride of high purity
WO2006062137A1 (en) High-purity oxydiphthalic acid anhydride and process for producing the same
EP0421046B1 (en) Process for producing highly pure 3,3&#39;,4,4&#39; - biphenyltetra- carboxylic acid or dianhydride thereof
CN114507130A (en) Purification method of 3,3&#39;,4,4&#39; -biphenyltetracarboxylic acid
JP2004196687A (en) Method for purifying biphenyltetracarboxylic dianhydride and purified product thereof
JPH08134057A (en) Production of high-purity biphenyltetracarboxylic acid dianhydride
JP3199104B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid and its ester
EP1199298A1 (en) Process for producing refined pyromellitic acid and refined pyromellitic anhydride
JP2008297226A (en) Method for producing pyromellitic dianhydride
JPH0859614A (en) Production of bisdicarboximide
JP4665431B2 (en) Method for producing biphenyltetracarboxylic acid heat-dehydrated product crystal
JP3757989B2 (en) Method for purifying naphthalenedicarboxylic acid
JPH03204842A (en) Purification of aromatic bisanilines
JPH07206763A (en) Production of purified 3,3&#39;,4,4&#39;,-biphenyltetracarboxylic acid or its acid dianhydride

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term