JP3625436B2 - Aggregates of linearly arranged metal nanoparticles and production method thereof - Google Patents

Aggregates of linearly arranged metal nanoparticles and production method thereof Download PDF

Info

Publication number
JP3625436B2
JP3625436B2 JP2001247557A JP2001247557A JP3625436B2 JP 3625436 B2 JP3625436 B2 JP 3625436B2 JP 2001247557 A JP2001247557 A JP 2001247557A JP 2001247557 A JP2001247557 A JP 2001247557A JP 3625436 B2 JP3625436 B2 JP 3625436B2
Authority
JP
Japan
Prior art keywords
metal nanoparticles
metal
aggregate
linearly arranged
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001247557A
Other languages
Japanese (ja)
Other versions
JP2003055397A (en
Inventor
真樹 小木曽
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology AIST, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001247557A priority Critical patent/JP3625436B2/en
Publication of JP2003055397A publication Critical patent/JP2003055397A/en
Application granted granted Critical
Publication of JP3625436B2 publication Critical patent/JP3625436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、線状に配列した金属のみからなるナノ微粒子の集合体を製造する方法に関し、より詳細には、平均直径が1〜3nmである金属ナノ微粒子がそれぞれ離隔して、隣接する各金属ナノ微粒子の中心間平均距離が2〜5nm、平均長さが20〜200nmに渡って線状に配列した金属ナノ粒子の集合体及びその製造方法に関する。この線状に配列した金属ナノ微粒子の集合体は、ナノ電子部品やナノ磁性材料として電子・情報・エレクトロニクス分野などの工業分野で利用可能である。
【0002】
【従来の技術】
従来、金ナノ微粒子を結合したヌクレオチド鎖を自己集合により2重螺旋構造を形成させ1次元配列させる方法が知られている(例えば、A. P. Alicisatos et. Al., Nature 1996, 382, 609−611)。しかし、この方法では金ナノ微粒子を5nm以下の間隔で4個以上配列させることは出来なかった。
一方、本発明者らは既に双頭型ペプチド脂質と金属イオンから形成させた銅複合化ペプチド脂質から成るナノファイバーを、双頭型ペプチド脂質に対して5〜10当量の還元剤を用いて化学的に還元することを特徴とする、金属ナノワイヤーの製造方法を提供しているが(特願2001−064322)、この場合得られるのは金属が線状に連続的に連結したナノワイヤーであった。
【0003】
【発明が解決しようとする課題】
本発明は、これまで形成させることができなかった金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体及びその製造方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体を開発するため鋭意研究を重ねた結果、水中で双頭型ペプチド脂質に金属イオンを加えることにより生成するハイブリッドナノファイバーを、双頭型ペプチド脂質に対して2〜5当量の比較的弱い還元剤を用いて、化学的に還元することによって、このような金属ナノ微粒子が離隔して一次元的に配列した集合体を製造しうることを見いだした。
【0005】
即ち、本発明は、一般式(I)

Figure 0003625436
(式中、Valはバリン残基、mは1〜3、nは6〜18を表す。)で表される双頭型ペプチド脂質及び金属イオンから形成された金属複合化ペプチド脂質から成るナノファイバーを、該双頭型ペプチド脂質に対し2〜5当量の比較的弱い還元剤を用いて還元することから成る線状に配列した金属ナノ微粒子の集合体の製法である。前記金属イオンとして銅(II)イオンを用い、前記還元剤としてヒドラジンを用い、前記金属複合化ペプチド脂質の初期濃度が25〜50ミリモル/リットルのナノファイバーを水溶液中で還元してもよい。この初期濃度とは還元剤を添加する前の水溶液中の濃度をいう。
また、本発明は、金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体であって、該金属ナノ微粒子の平均粒径が1〜3nmであり、隣接する各金属ナノ微粒子の中心間平均距離が2〜5nmであって、その配列の平均長さが20〜200nmである線状に配列した金属ナノ粒子の集合体である。前記金属は銅であることが好ましい。
【0006】
【発明の実施の形態】
本発明の線状に配列した金属ナノ微粒子の集合体の製造方法は、下記一般式(I)
Figure 0003625436
(式中、m及びnは上記と同様である。)で表わされる双頭型ペプチド脂質をアルカリ金属塩として含む水溶液に金属イオンを加えることによりナノファイバーのコロイド状分散液とし、更に還元剤を加えることから成る。
【0007】
本発明において用いられる下記一般式(I)
Figure 0003625436
(式中、m及びnは上記と同様である。)で表わされる構造を有する双頭型ペプチド脂質は、光学活性なL−バリン残基又はD−バリン残基のオリゴマーと長鎖のジカルボン酸がアミド結合を介して連結したものであり、オリゴペプチド鎖のC端を両端にもつ。オリゴペプチド鎖を構成するバリン残基は下式
Figure 0003625436
で表され、光学活性はすべてD体又はL体のいずれかであることが必要である。
【0008】
異なる光学活性体のものが含まれるとナノファイバーが形成されず、粒状のアモルファス固体となる。mは1〜3であり、mが4以上であると化合物の溶解性が悪くなり、本発明のナノファイバーの製造が困難となる。また、nは直鎖状アルキレン基の長さを与え、6〜18である。このアルキレン基の例としては、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基などが挙げられる。nが6より小さいと、ナノファイバーは形成しにくいし、一方、18より大きいと水性媒体中に形成される沈殿がアモルファス球体となる。
【0009】
まず、この双頭型脂質をアルカリ金属塩とする。この方法は任意である。ここで用いるアルカリ金属としてはナトリウムやカリウムが好ましい。次に、水溶液中でこれに金属イオンを加えると、自己集積の結果、ナノファイバーのコロイド状分散液が形成される。この際の温度等の条件に特に制限はないが、攪拌を良好に行うことが好ましい。この金属イオンとしては、Mn2+、Fe3+、Co 、Ni2+、Cu2+、Zn2+などが用いられ、好ましくはCu2+が用いられる。このような金属イオンを反応液中に導入する方法としてはいかなる方法を用いてもよいが、金属塩として導入するのが簡便である。この塩として無機酸塩や有機酸塩などを用いてもよい。
【0010】
このコロイド状分散液に還元剤を加えると線状に配列した金属ナノ微粒子の集合体が生成する。この際の温度条件に特に制限はないが、大気中ではなく窒素やアルゴン雰囲気下中であることが好ましい。
還元剤としては比較的弱い還元剤が好ましく、水素化ホウ素ナトリウムや水素化アルミニウムリチウムなどでは強すぎて、これらを用いると塊状の沈殿を生じ、1次元に配列した金属ナノ微粒子の集合体は形成しない。従って、これらよりも還元力の弱い還元剤が適当であり、特にヒドラジンを用いることが好ましい。
【0011】
金属複合化ペプチド脂質の初期濃度は25〜50ミリモル/リットルが好ましい。また、還元剤の量は、双頭型ペプチド脂質に対し2〜5当量であることが好ましい。初期濃度が25ミリモル/リットル以下では還元剤の量が2〜5当量の時に、何も構造体を形成しないし、50ミリモル/リットル以上では大きな塊状となり線状に配列した金属ナノ微粒子の集合体を形成しない。還元剤が2当量より少ないと、還元はほとんど起こらないし、5当量より多いと大きな塊状となる。
【0012】
このようにして、コロイド状分散液を撹伴しながら還元剤を加えると、この溶液が徐々に変化し、数時間後に線状に配列した金属ナノ微粒子の集合体が形成する。このナノ微粒子の集合体は、各粒子が離隔しながら線状に配列しており、粒子の平均直径は1〜3nmであり、各粒子の中心間平均距離は2〜5nmであり、この一次元配列の平均長さは20〜200nmである。このような線状に配列した金属ナノ微粒子の集合体は、双頭型脂質のアルカリ金属塩に金属イオンを加えた結果自己集積して生成するナノファイバー上に各金属ナノ微粒子が配列したものであり、図1に示すように、各金属ナノ微粒子が離隔しながら一列に整列したものである。
【0013】
【実施例】
以下、実施例により本発明を例証するが、本発明はこれらによってなんら限定されるものではない。
製造例1
t−ブチルオキシカルボニル−L−バリン10.9g(50.0ミリモル)、p−トルエンスルホン酸塩19.0g(50.0ミリモル)及びトリエチルアミン7.0ml(50.0ミリモル)をジクロロメタン150mlに溶解し、−5℃でかきまぜながら、水溶性カルボジイミドである1−エチル3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩10.5g(55.0ミリモル)を含むジクロロメタン溶液100mlを加え、一昼夜かきまぜた。このジクロロメタン溶液を10重量%クエン酸水溶液、水、4重量%炭酸水素ナトリウム水溶液、水で各2回ずつ洗浄し、有機層を無水硫酸ナトリウムで乾燦した。減圧下で溶媒を完全に留去し、無色透明オイルのt−ブチルオキシカルボニル−L−バリル−L−バリンベンジルエステルを得た。このオイルを酢酸エチル100mlに溶解し、4N−塩化水素/酢酸エチル120mlを加え、4時間かきまぜた。減圧下で溶媒を完全に留去し、得られた白色沈殿にジエチルエーテルを加えよく洗浄し、白色固体のL−バリル−L−バリンベンジルエステル塩酸塩13.8g(収率80%)を得た。
【0014】
1,10−デカンジカルボン酸0.46g(2ミリモル)と1−ヒドロキシベンゾトリアゾール0.674g(4.4ミリモル)をN,N−ジメチルホルムアミド10mlに溶解し、−5℃でかきまぜながら、1−エチル3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.90g(4.4ミリモル)を含むジクロロメタン溶液10mlを加えた。1時間後、上記L−バリル−L−バリンベンジルエステル塩酸塩1.51g(4.4ミリモル)を含むジクロロメタン溶液10ml、引き続きトリエチルアミン0.62ml(4.4ミリモル)を加え、徐々に室温に戻しながら一昼夜かき混ぜた。減圧下、溶媒を完全に留去し、得られた白色沈殿をろ紙上で10重量%クエン酸水溶液50ml、水20ml、4重量%炭酸水素ナトリウム水溶液50ml、水20mlの順に洗浄した。白色固体としてN,N’ビス(L−バリル−L−バリンベンジルエステル)デカン−1,10−ジカルボキサミド0.98g(収率61%)を得た。この化合物0.5g(0.62ミリモル)をジメチルホルムアミド100mlに溶解し、触媒として10重量%パラジウム/炭素を0.25g加え、接触水素還元を行った。6時間後、触媒をセライトを用いてろ別したのち、溶媒を減圧下で留去し無色オイルを得た。得られたオイルを水−エタノール混合溶媒を用いて結晶化させ、白色個体を得た。分析の結果この白色固体はN,N’ビス(L−バリル−L−バリン)デカン−1,10−ジカルボキサミド(一般式(I)において、m=2,n=10に相当する。)であった。
【0015】
実施例1
上記製造例1で得た双頭型ペプチド脂質2.5ミリモルをサンプル瓶にとり、これに2倍当量の水酸化ナトリウム200mg(5ミリモル)を含む蒸留水75mlを加え、超音波照射(バス型)を施すことにより双頭型ペプチド脂質を溶解させた。この水溶液をホットスターラー上において、激しく撹伴しながら、常温で保持しておき、これに100ミリモル/リットルの酢酸銅(II)を25ml加えると徐々に溶液が濁り、青色のコロイド状分散液が形成した。
この青色コロイド状分散液を常温、窒素雰囲気下中で撹伴しておき、1モル/リットルのヒドラジン水溶液を12.5ml(12.5ミリモル)を加えると、溶液が徐々に黄土色に変化し、およそ6時間後に暗黄土色のコロイド状分散液が生じた。コロイド状分散液を透過型電子顕微鏡観察することにより、隣接する各金属ナノ微粒子の中心間平均距離が2〜5nm、平均長さが20〜200nmに渡って線状に配列した、平均直径が1〜3nmである銅ナノ微粒子の集合体の形成を確認した。図1に得られた線状に配列した銅ナノ微粒子の集合体の透過型電子顕微鏡写真を示す。
【0016】
【発明の効果】
本発明によれば、これまで合成化合物からは生成することができなかった金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体及を、常温、大気圧下の穏やかな条件において容易に製造することができる。本発明の線状に配列した金属ナノ粒子の集合体は、ナノ電子部品やナノ磁性材料として利用する電子・情報・エレクトロニクス分野など、その工業的利用範囲は多岐にわたっている。
【図面の簡単な説明】
【図1】線状に配列した銅ナノ微粒子の集合体の透過型電子顕微鏡写真である。
【図2】図1の透過型電子顕微鏡写真をトレースした図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an aggregate of nanoparticles composed only of linearly arranged metals, and more specifically, metal nanoparticles having an average diameter of 1 to 3 nm are separated from each other and adjacent to each other. The present invention relates to an assembly of metal nanoparticles arranged linearly over an average distance between the centers of nanoparticles of 2 to 5 nm and an average length of 20 to 200 nm, and a method for producing the same. This aggregate of linearly arranged metal nanoparticles can be used as a nanoelectronic component or a nanomagnetic material in industrial fields such as the electronics, information, and electronics fields.
[0002]
[Prior art]
Conventionally, a method is known in which a nucleotide chain to which gold nanoparticles are bound is formed into a one-dimensional array by forming a double helical structure by self-assembly (for example, AP Aliciatos et. Al., Nature 1996, 382, 609). -611). However, in this method, it was not possible to arrange four or more gold nanoparticles with an interval of 5 nm or less.
On the other hand, the present inventors have already chemically synthesized nanofibers composed of copper-complexed peptide lipids formed from double-headed peptide lipids and metal ions using 5 to 10 equivalents of a reducing agent with respect to double-headed peptide lipids. Although the manufacturing method of the metal nanowire characterized by reducing is provided (Japanese Patent Application No. 2001-064322), what was obtained in this case was the nanowire which the metal connected continuously linearly.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an aggregate of metal nanoparticles in which metal nanoparticles that could not be formed so far are spaced apart and arranged linearly, and a method for producing the same.
[0004]
[Means for Solving the Problems]
As a result of intensive research to develop an assembly of metal nanoparticles in which metal nanoparticles are arrayed in a linear fashion, the inventor generates metal ions by adding metal ions to double-headed peptide lipids in water. Such metal nanoparticles are separated and arranged one-dimensionally by chemically reducing the hybrid nanofibers using 2 to 5 equivalents of a relatively weak reducing agent relative to the double-headed peptide lipid. We have found that the assembly can be manufactured.
[0005]
That is, the present invention relates to the general formula (I)
Figure 0003625436
(Wherein Val represents a valine residue, m represents 1 to 3, and n represents 6 to 18) A nanofiber composed of a double-headed peptide lipid represented by the following formula: This is a method for producing an assembly of linearly arranged metal nanoparticles comprising reduction using 2 to 5 equivalents of a relatively weak reducing agent for the double-headed peptide lipid. The metal fibers may be copper (II) ions, hydrazine may be used as the reducing agent, and nanofibers having an initial concentration of the metal complexed peptide lipid of 25 to 50 mmol / liter may be reduced in an aqueous solution. This initial concentration refers to the concentration in the aqueous solution before adding the reducing agent.
Further, the present invention is an aggregate of metal nanoparticles in which metal nanoparticles are arranged in a linear manner, and the metal nanoparticles have an average particle diameter of 1 to 3 nm, and each adjacent metal nanoparticle Is an aggregate of linearly arranged metal nanoparticles having an average distance between centers of 2 to 5 nm and an average length of the array of 20 to 200 nm. The metal is preferably copper.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing an assembly of linearly arranged metal nanoparticles according to the present invention comprises the following general formula (I):
Figure 0003625436
(Wherein m and n are the same as above) A metal ion is added to an aqueous solution containing a double-headed peptide lipid as an alkali metal salt to form a colloidal dispersion of nanofibers, and a reducing agent is further added. Consists of.
[0007]
The following general formula (I) used in the present invention
Figure 0003625436
(Wherein m and n are the same as above), the double-headed peptide lipid having the structure represented by the formula is an optically active oligomer of L-valine residue or D-valine residue and a long-chain dicarboxylic acid. It is linked via an amide bond and has the C-terminus of the oligopeptide chain at both ends. The valine residue constituting the oligopeptide chain is
Figure 0003625436
The optical activity must be either D-form or L-form.
[0008]
If different optically active substances are included, nanofibers are not formed and a granular amorphous solid is formed. m is 1 to 3, and if m is 4 or more, the solubility of the compound is deteriorated, making it difficult to produce the nanofiber of the present invention. Moreover, n gives the length of a linear alkylene group, and is 6-18. Examples of the alkylene group include a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tetradecylene group, a hexadecylene group, and an octadecylene group. When n is smaller than 6, nanofibers are difficult to form, while when larger than 18, precipitates formed in an aqueous medium become amorphous spheres.
[0009]
First, this double-headed lipid is made into an alkali metal salt. This method is arbitrary. The alkali metal used here is preferably sodium or potassium. Next, when metal ions are added thereto in an aqueous solution, a colloidal dispersion of nanofibers is formed as a result of self-assembly. There are no particular restrictions on the conditions such as temperature at this time, but it is preferable to perform good stirring. The metal ions, Mn 2+, Fe 3+, Co 2 +, Ni 2+, Cu 2+, Zn 2+ and the like are used, preferably Cu 2+ is used. Any method may be used as a method for introducing such metal ions into the reaction solution, but it is easy to introduce the metal ions as a metal salt. As this salt, an inorganic acid salt or an organic acid salt may be used.
[0010]
When a reducing agent is added to this colloidal dispersion, an aggregate of linearly arranged metal nanoparticles is generated. There are no particular restrictions on the temperature conditions at this time, but it is preferably in a nitrogen or argon atmosphere rather than in the air.
As the reducing agent, a relatively weak reducing agent is preferable, and sodium borohydride, lithium aluminum hydride and the like are too strong, and when these are used, aggregated precipitates are formed, and aggregates of one-dimensionally arranged metal nanoparticles are formed. do not do. Therefore, a reducing agent having a lower reducing power than these is suitable, and it is particularly preferable to use hydrazine.
[0011]
The initial concentration of the metal complexed peptide lipid is preferably 25 to 50 mmol / liter. The amount of the reducing agent is preferably 2 to 5 equivalents with respect to the double-headed peptide lipid. When the initial concentration is 25 mmol / L or less, no structure is formed when the amount of the reducing agent is 2 to 5 equivalents. Does not form. When the reducing agent is less than 2 equivalents, reduction hardly occurs, and when it is more than 5 equivalents, a large lump is formed.
[0012]
In this way, when the reducing agent is added while stirring the colloidal dispersion, the solution gradually changes, and after several hours, an aggregate of linearly arranged metal nanoparticles is formed. This aggregate of nano-particles is linearly arranged with each particle being separated, the average diameter of the particles is 1 to 3 nm, and the average distance between centers of each particle is 2 to 5 nm. The average length of the sequence is 20 to 200 nm. Such an array of linearly arranged metal nanoparticles is an array of metal nanoparticles on nanofibers that are self-assembled as a result of adding metal ions to an alkali metal salt of a double-headed lipid. As shown in FIG. 1, the metal nanoparticles are aligned in a row while being separated from each other.
[0013]
【Example】
Hereinafter, the present invention is illustrated by examples, but the present invention is not limited to these examples.
Production Example 1
Dissolve 10.9 g (50.0 mmol) of t-butyloxycarbonyl-L-valine, 19.0 g (50.0 mmol) of p-toluenesulfonate and 7.0 ml (50.0 mmol) of triethylamine in 150 ml of dichloromethane. While stirring at −5 ° C., 100 ml of a dichloromethane solution containing 10.5 g (55.0 mmol) of 1-ethyl 3- (3-dimethylaminopropyl) carbodiimide hydrochloride, which is a water-soluble carbodiimide, was added and stirred overnight. This dichloromethane solution was washed twice with 10% by weight citric acid aqueous solution, water, 4% by weight sodium hydrogen carbonate aqueous solution and water, and the organic layer was dried over anhydrous sodium sulfate. The solvent was completely distilled off under reduced pressure to obtain t-butyloxycarbonyl-L-valyl-L-valine benzyl ester as a colorless transparent oil. This oil was dissolved in 100 ml of ethyl acetate, 120 ml of 4N hydrogen chloride / ethyl acetate was added, and the mixture was stirred for 4 hours. The solvent was completely distilled off under reduced pressure, diethyl ether was added to the resulting white precipitate and washed well to obtain 13.8 g (yield 80%) of L-valyl-L-valine benzyl ester hydrochloride as a white solid. It was.
[0014]
While dissolving 0.46 g (2 mmol) of 1,10-decanedicarboxylic acid and 0.674 g (4.4 mmol) of 1-hydroxybenzotriazole in 10 ml of N, N-dimethylformamide, stirring at -5 ° C., 10 ml of a dichloromethane solution containing 0.90 g (4.4 mmol) of ethyl 3- (3-dimethylaminopropyl) carbodiimide hydrochloride was added. After 1 hour, 10 ml of a dichloromethane solution containing 1.51 g (4.4 mmol) of the above L-valyl-L-valine benzyl ester hydrochloride was added, and then 0.62 ml (4.4 mmol) of triethylamine was gradually returned to room temperature. While stirring all day and night. Under reduced pressure, the solvent was completely distilled off, and the resulting white precipitate was washed on a filter paper in the order of 10 wt% aqueous citric acid solution 50 ml, water 20 ml, 4 wt% sodium hydrogen carbonate aqueous solution 50 ml, and water 20 ml. As a white solid, 0.98 g (yield 61%) of N, N′bis (L-valyl-L-valine benzyl ester) decane-1,10-dicarboxamide was obtained. 0.5 g (0.62 mmol) of this compound was dissolved in 100 ml of dimethylformamide, 0.25 g of 10 wt% palladium / carbon was added as a catalyst, and catalytic hydrogen reduction was performed. After 6 hours, the catalyst was filtered off using celite, and then the solvent was distilled off under reduced pressure to obtain a colorless oil. The obtained oil was crystallized using a water-ethanol mixed solvent to obtain a white solid. As a result of analysis, this white solid was N, N′bis (L-valyl-L-valine) decane-1,10-dicarboxamide (corresponding to m = 2 and n = 10 in the general formula (I)). there were.
[0015]
Example 1
Take 2.5 millimoles of the double-headed peptide lipid obtained in Production Example 1 above into a sample bottle, add 75 ml of distilled water containing 200 mg (5 millimoles) of double equivalent sodium hydroxide, and apply ultrasonic irradiation (bath type). The double-headed peptide lipid was dissolved by application. This aqueous solution is kept at room temperature while stirring vigorously on a hot stirrer, and when 25 ml of 100 mmol / liter copper (II) acetate is added thereto, the solution gradually becomes cloudy, and a blue colloidal dispersion is formed. Formed.
When this blue colloidal dispersion is stirred at room temperature in a nitrogen atmosphere and 12.5 ml (12.5 mmol) of a 1 mol / liter hydrazine aqueous solution is added, the solution gradually changes to ocher. After approximately 6 hours, a dark ocher colloidal dispersion was formed. By observing the colloidal dispersion with a transmission electron microscope, the average distance between the centers of adjacent metal nanoparticles was 2 to 5 nm, the average length was linearly arranged over 20 to 200 nm, and the average diameter was 1. Formation of an aggregate of copper nanoparticles of ˜3 nm was confirmed. The transmission electron micrograph of the aggregate | assembly of the copper nanoparticle arranged in the linear form obtained in FIG. 1 is shown.
[0016]
【The invention's effect】
According to the present invention, an assembly of metal nanoparticles in which metal nanoparticles that could not be produced from a synthetic compound so far are arranged in a linear manner are subjected to mild conditions at normal temperature and atmospheric pressure. Can be easily manufactured. The aggregate of linearly arranged metal nanoparticles according to the present invention has a wide range of industrial applications such as the fields of electronics, information, and electronics used as nanoelectronic components and nanomagnetic materials.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph of an assembly of copper nanoparticles arranged linearly.
2 is a trace of the transmission electron micrograph of FIG. 1. FIG.

Claims (5)

一般式(I)
Figure 0003625436
(式中、Valはバリン残基、mは1〜3、nは6〜18を表す。)で表される双頭型ペプチド脂質及び金属イオンから形成された金属複合化ペプチド脂質から成るナノファイバーを、該双頭型ペプチド脂質に対し2〜5当量の還元剤を用いて還元することから成る線状に配列した金属ナノ微粒子の集合体の製法。
Formula (I)
Figure 0003625436
(Wherein Val represents a valine residue, m represents 1 to 3, and n represents 6 to 18) A nanofiber composed of a double-headed peptide lipid represented by the following formula: A method for producing an assembly of linearly arranged metal nanoparticles comprising reducing the double-headed peptide lipid with 2 to 5 equivalents of a reducing agent.
前記金属イオンとして銅(II)イオンを用い、前記還元剤としてヒドラジンを用い、前記金属複合化ペプチド脂質の初期濃度が25〜50ミリモル/リットルのナノファイバーを水溶液中で還元することを特徴とする請求項1に記載の線状に配列した金属ナノ微粒子の集合体の製法。A copper (II) ion is used as the metal ion, hydrazine is used as the reducing agent, and nanofibers having an initial concentration of the metal complexed peptide lipid of 25 to 50 mmol / liter are reduced in an aqueous solution. The manufacturing method of the aggregate | assembly of the metal nanoparticle arranged in the linear form of Claim 1. 金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体であって、該金属ナノ微粒子の平均粒径が1〜3nmであり、隣接する各金属ナノ微粒子の中心間平均距離が2〜5nmであって、その配列の平均長さが20〜200nmである線状に配列した金属ナノ粒子の集合体。An assembly of metal nanoparticles in which metal nanoparticles are arranged linearly apart from each other, wherein the average particle diameter of the metal nanoparticles is 1 to 3 nm, and the average distance between centers of adjacent metal nanoparticles is An aggregate of linearly arranged metal nanoparticles having an average length of 2 to 5 nm and an average length of 20 to 200 nm. 前記金属が銅である請求項3に記載の線状に配列した金属ナノ粒子の集合体。4. The aggregate of linearly arranged metal nanoparticles according to claim 3, wherein the metal is copper. 請求項1又は2に記載の製法によって製造された金属ナノ微粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の集合体であって、該金属ナノ微粒子の平均粒径が1〜3nmであり、隣接する各金属ナノ微粒子の中心間平均距離が2〜5nmであって、その配列の平均長さが20〜200nmである線状に配列した金属ナノ粒子の集合体。An assembly of metal nanoparticles in which the metal nanoparticles produced by the production method according to claim 1 or 2 are linearly spaced apart, and the average particle diameter of the metal nanoparticles is 1 to 3 nm. An aggregate of linearly arranged metal nanoparticles in which the average distance between centers of adjacent metal nanoparticles is 2 to 5 nm and the average length of the array is 20 to 200 nm.
JP2001247557A 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof Expired - Lifetime JP3625436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247557A JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247557A JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Publications (2)

Publication Number Publication Date
JP2003055397A JP2003055397A (en) 2003-02-26
JP3625436B2 true JP3625436B2 (en) 2005-03-02

Family

ID=19076874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247557A Expired - Lifetime JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Country Status (1)

Country Link
JP (1) JP3625436B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158805B2 (en) * 2007-02-09 2013-03-06 独立行政法人産業技術総合研究所 Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
JP5450725B2 (en) * 2011-08-30 2014-03-26 富士フイルム株式会社 Collagen peptide-coated copper nanoparticles, collagen peptide-coated copper nanoparticle dispersion, method for producing collagen peptide-coated copper nanoparticles, conductive ink, method for producing conductive film, and conductor wiring

Also Published As

Publication number Publication date
JP2003055397A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP3560333B2 (en) Metal nanowire and method for producing the same
Muzzio et al. Monodisperse nanoparticles for catalysis and nanomedicine
Xiao et al. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals
Ye et al. Anisotropically branched metal nanostructures
US20060246482A1 (en) Linker molecules for selective metallisation of nucleic acids and their uses
Yong et al. Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging
CN102259834B (en) Method for manufacturing asymmetric tetrahedron assembly structure with chiral signal
US6762331B2 (en) Synthesis of organic nanotubes and synthesis of ultrathin nanowires using same as templates
CN108817414B (en) Preparation method of gold nanoflower in ionic liquid aqueous solution
JP2010521585A (en) Method for producing colloidal solution of metal nanoparticles and metal nanoparticles produced thereby
Yan et al. Green synthesis of biocompatible carboxylic curdlan-capped gold nanoparticles and its interaction with protein
US20110262646A1 (en) Surfactant-Assisted Inorganic Nanoparticle Deposition on a Cellulose Nanocrystals
JP3699086B2 (en) Fine hollow fiber
Aryal et al. Immobilization of collagen on gold nanoparticles: preparation, characterization, and hydroxyapatite growth
JP3625436B2 (en) Aggregates of linearly arranged metal nanoparticles and production method thereof
JP5114008B2 (en) Polymer material having gold fine particles attached to its surface and method for producing the same
Zhang et al. Interface-templated synthesis of single-crystalline silver chain-like nanobelts at the liquid-liquid interface between water and redox-active ionic liquid
KR101066545B1 (en) Metal Nanoparticles of Various Sizes and Shapes Having Functional Groups and Method for Preparing the Same
EP1894890B1 (en) Transition metal oxide nano-tube
KR101357145B1 (en) Nanocomposites consisting of carbon nanotube and platinum and a process for preparing the same
JP5158805B2 (en) Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
Tang et al. Heterogeneous gold nanoparticles stabilized by collagen and their application in catalytic reduction of 4-nitrophenol
Xia et al. Hierarchical gold microspheres catalyst: Simultaneous synthesis and immobilization
Kwak et al. pH-sensitive transformation of the peptidic bolaamphiphile self-assembly: Exploitation for the pH-triggered chemical reaction
CN111266600A (en) Efficient preparation method of multilevel spherical rhodium nanocrystals

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Ref document number: 3625436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term