JP3624819B2 - Fluorine-containing hydrogen storage material - Google Patents

Fluorine-containing hydrogen storage material Download PDF

Info

Publication number
JP3624819B2
JP3624819B2 JP2000319480A JP2000319480A JP3624819B2 JP 3624819 B2 JP3624819 B2 JP 3624819B2 JP 2000319480 A JP2000319480 A JP 2000319480A JP 2000319480 A JP2000319480 A JP 2000319480A JP 3624819 B2 JP3624819 B2 JP 3624819B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
fluorine
hydrogen
storage material
fluorine atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000319480A
Other languages
Japanese (ja)
Other versions
JP2002126506A (en
Inventor
信明 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000319480A priority Critical patent/JP3624819B2/en
Publication of JP2002126506A publication Critical patent/JP2002126506A/en
Application granted granted Critical
Publication of JP3624819B2 publication Critical patent/JP3624819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵材に関し、特には、水素の貯蔵・輸送のための水素タンク又は燃料電池の水素タンク等の中に装填するのに適する水素吸蔵材に関する。
【0002】
【従来の技術】
水素は、石油精製等に使用される化学原料である一方で、環境問題に対応するためのクリーンなエネルギー源としての利用が期待され、例えば、水素を自動車や航空機等の輸送機関の燃料とすることが検討されている。
しかるに、水素は常温常圧では気体であり、気体の状態で圧力を単に高くするだけでは、これらの輸送機関に搭載され得る貯蔵タンクの大きさの制約から、水素充填量に限度がある。また、圧力を高くすることは安全面で大きな問題が生じる。このため、水素を吸着、吸収、反応等によって高密度な状態で保持することができる材料を吸蔵材として貯蔵タンクに装填し、水素貯蔵量あたりの体積を低下させることが検討されている。
【0003】
従来、このような水素吸蔵材には、ニッケル−ランタン合金、チタン−鉄合金等の金属合金が知られている。こうした合金系の吸蔵材は、単位体積あたりの水素吸蔵量が比較的多いといった長所があるものの、単位質量あたり吸蔵量はそれ程多くなく、また、化学反応により水素化物を生成して水素を強固に吸蔵するため、かなりの高温まで加熱しないと水素を放出しないという欠点がある。
【0004】
また、活性炭やカーボンファイバーのような炭素材料を水素吸蔵材として利用することも検討されており、カーボンナノチューブやカーボンナノファイバーのような特定の炭素材料には、かなり高い水素吸蔵量が報告されている。しかしながら、このような炭素材料による水素の吸蔵は、微細な空隙又は間隙を利用した物理的吸着に基づくため、吸蔵量に一定の限界があると考えられ、また、カーボンナノチューブ等の製造は、アモルファス分を除去するための酸処理等の煩雑な工程を設ける必要がある。
【0005】
したがって、本発明は、従来技術とは全く異なる着想に基づき、単位空間あたりの水素吸蔵量が多く、軽量で、かつ水素を比較的容易に放出させることができる水素吸蔵材、及びこうした水素吸蔵材を比較的容易に製造することができる方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的は、基材に導入されたフッ素原子の間に水素が吸蔵される空隙が形成されてなることを特徴とする水素吸蔵材によって達成される。
即ち、本発明は、水素を取り込むのに適切な微細なサイズの空隙を設けて、フッ素原子を空間に配置し、その空隙に水素吸蔵する材料である。
【0007】
フッ素原子は、水素原子に対して極めて高い化学的親和性を有するため、フッ素原子は水素原子を化学的作用によって強く引き付けることができ、フッ素原子の近傍の空隙には、水素分子は高密度で存在することができる。したがって、フッ素原子を空間に適切な密度で分布させ、そのフッ素原子の近傍に適切なサイズの微細な空隙を設けて材料を構成することにより、その材料は、高い水素吸蔵能力を呈することができる。
こうした材料は、その材料全体に水素が高密度で取り込まれ、水素がその材料の全体に高濃度で存在するため、水素は、その材料の中に一種の「溶解」した状態を呈することができる。
【0008】
【発明の実施の形態】
本発明は、基材に導入されたフッ素原子の間に空隙が形成されてなる水素吸蔵材であり、この空隙に水素が高密度で吸蔵される。この空隙は、下記のような種々の態様で、基材にフッ素原子を空間に固定することによって形成することができる。基材としては、導入されたフッ素原子をその中に固定しうるものであれば制限されないから、好適には、無機層状物質、金属錯体、活性炭が挙げられる。
【0009】
1つの態様において、この空隙は、無機層状物質の正電荷層に固定されたフッ素イオンによって形成される。この態様は、図1に例示しており、無機層状物質の正電荷層の正イオンにフッ素原子が負イオンとして適切な間隔で固定されることにより、二次元の平面的な空間の中でフッ素原子の間に空隙が形成されることができる。
この態様において、正電荷層の間の空間は、0.1〜10nm(ナノメートル)の幅で延在することが好ましく、より好ましくは、0.1〜1nmの幅である。また、隣接したフッ素原子間の距離は、0.1〜2nmであることが好ましく、より好ましくは、0.1〜0.5nmである。
【0010】
この態様における本発明の水素吸蔵材は、例えば、図4に原子配列構造を示した層状複水酸化物を利用して製造することができる。この図4の例では、基本層に含まれる陽イオンの一部がそれより価数の多い陽イオンによって置換されることにより、基本層が正の電荷を有し、その基本層の間に陰イオンが存在する。
この層状複水酸化物としては、例えば、天然の鉱物として採掘することができるハイドロタルサイトが挙げられる。ハイドロタルサイトは、化学構造式:
〔Mg1−x Al (OH)x+〔(COx/2 ・yH O〕x−
を有し、基本層のMgの一部がAlに置き換えられることにより、基本層が正の電荷を有し、基本層の間にCO −2イオンが存在する。
【0011】
こうした無機層状物質の基本層の正電荷にフッ素イオンを固定するには、基本層の間の負イオンをフッ素イオンで置換することによって行うことができ、例えば、NaF、KF、MgF、CaF、CFCOONa、CCOONa等のようなフッ化物塩の水溶液にハイドロタルサイトを浸し、基本層の間にその水溶液を含浸させ、次いで乾燥することによって行うことができる。
【0012】
この場合、予め無機層状物質の負イオンの成分を加熱等によって逃散させておき、次いで上記の含浸を行うことが、基本層の間にフッ素イオンを全体的に均一に分布させる上で好ましい。
ここで、基本層の正電荷によって固定されるフッ素原子の間隔は、上記のフッ化物塩の種類や溶液の濃度によって調節することができる。
【0013】
別な態様において、水素が吸蔵される空隙は、金属錯体を構成するフッ素含有配位子によって形成される。この態様は、図2に例示しており、フッ素原子は、配位子の一部の元素として金属錯体に固定され、その配位子のフッ素原子の間に空隙が形成され、その空隙が金属錯体の全体にわたって存在することで、この金属錯体は、三次元の立体的空間の中に高い密度で水素を吸蔵することができる。ここで、1つの空隙を形成するフッ素原子の数は、3〜10であることが好ましく、より好ましくは、4〜8である。また、空隙の直径は0.1〜2nmであることが好ましく、より好ましくは、0.1〜0.5nmである。
この態様における本発明の吸蔵材は、例えば、下記のような置換サイトの過半数をフッ素原子で置換した有機物の負イオンが、Cu,Mo,Ru,Cr,Ni,Coのような遷移金属の周りに配位した錯体であることができる。
【0014】
【化1】

Figure 0003624819
【化2】
Figure 0003624819
【化3】
Figure 0003624819
【化4】
Figure 0003624819
【化5】
Figure 0003624819
【0015】
図2のような金属錯体は、Cu,Mo,Ru,Cr,Ni,Coのような遷移金属のカルボン酸塩、ギ酸塩、酢酸塩等の金属塩の溶液を調製し、さらに、溶液中で上記のような負イオンを生成する有機カルボン酸又はそのアルカリ金属塩等のようなフッ素含有有機物の溶液を調製し、これらの溶液を混合し、次いでその混合溶液にギ酸、酢酸のような酸を添加して上記の金属塩の金属イオンを遊離させ、必要により若干の加熱を行って金属錯体を析出させ、その金属錯体を回収することにより製造することができる。
【0016】
別な態様において、水素が吸蔵される空隙は、活性炭に固定されたフッ素原子によって形成される。この態様は、図3に例示しており、活性炭の細孔内部にフッ素原子が固定されて細孔の表面がフッ素原子で覆われ、そのフッ素原子が囲む細孔の空隙に、水素を吸蔵させることができる。この態様では、活性炭の水素吸蔵性能が、フッ素原子の付加によって大きく改良されることができる。
【0017】
この態様における本発明の吸蔵材は、活性炭の細孔内部にフッ素含有有機物を含浸等によって導入し、次いでその有機物を加熱によって炭化させることによって製造することができる。ここで、活性炭は、ヤシ殻や木材を原料とした植物系活性炭、コークスや石炭を原料とした鉱物系活性炭等の粒状活性炭のほか、セルロースやアクリロニトリルを原料とした活性炭繊維であることができる。
【0018】
これらの活性炭は、好ましくは0.1nm〜50nm、より好ましくは0.1〜10nmの細孔径を有するものが使用される。
このような活性炭の細孔に導入するフッ素含有有機物としては、CFCOONa、CCOONa、
【化6】
Figure 0003624819
等が使用可能であり、これらを適切な溶媒に溶かした溶液に活性炭を浸し、次いで乾燥させた後、300℃以上、好ましくは、350℃〜800℃の窒素等の非酸化性雰囲気中で加熱することによって、フッ素原子を活性炭の細孔に固定することができる。
【0019】
上述のように、本発明の水素吸蔵材の製造は、比較的少ない工程によって行うことができ、また、得られる吸蔵材は、金属成分を含んだとしても僅かであるため、比較的軽量であり、単位質量あたりに高い水素吸蔵性能を有することができる。
また、水素を吸蔵する作用がフッ素原子の水素に対する化学的親和性に基づくものであり、金属合金系における水素化物のような反応生成物を生じさせるものではないため、高い水素吸放出速度と単位体積あたりの高い水素吸蔵能力を有する一方で、合金金属系のようにかなりの高温に加熱することなく吸蔵した水素を放出することができる。
なお、図1〜3に示した態様は、あくまで模式的な例示であって、本発明を限定するものではない。
【0020】
【実施例】
実施例1
ハイドロタルサイトを窒素雰囲気下の500℃で3時間加熱し、正電荷層の間の炭酸イオンを逃散させた。次いで、5gのNaFを500mlのイオン交換水に溶かした溶液に、上記の加熱後の5gのハイドロタルサイトを分散させ、スラリーを作成した。このスラリーを穏やかな攪拌下に24時間置き、フッ素イオンをハイドロタルサイトの正電荷層の間に挿入・固定した。次いで、このスラリーをろ過・乾燥し、本発明の水素吸蔵材を得た。
【0021】
実施例2
300mgの酢酸銅(II)を100ccのメタノールに溶解させた。別に、下記のフッ素化合物の300mgを300ccのメタノールに溶かし、それに20ccのギ酸を添加した。
【化7】
Figure 0003624819
これらの2種の溶液を混合し、70℃に24時間保持した。生成した析出物をろ過・乾燥し、本発明の水素吸蔵材を得た。
【0022】
実施例3
1gのCFCOONaを500ccのエタノールに溶かした。この溶液に5gのヤシ殻活性炭(比表面積約1500m/g、平均細孔径約0.5〜1nm)を加えてスラリーを作成し、それを3日間放置した。次いで、このスラリーをろ過・乾燥して活性炭を回収し、窒素雰囲気下の400℃で2時間加熱し、CFCOONaを炭化させて本発明の水素吸蔵材を得た。
【0023】
【発明の効果】
単位空間あたりの水素吸蔵量が多く、軽量で、かつ水素を比較的容易に放出させることができる水素吸蔵材、及びこうした水素吸蔵材を比較的容易に製造することができる方法を提供することができる。
【図面の簡単な説明】
【図1】本発明による水素吸蔵材の1つの態様を例示する模式図である。
【図2】本発明による水素吸蔵材の別な態様を例示する模式図である。
【図3】本発明による水素吸蔵材の別な態様を例示する模式図である。
【図4】層状複水酸化物の構造を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage material, and more particularly to a hydrogen storage material suitable for loading into a hydrogen tank for storing and transporting hydrogen or a hydrogen tank of a fuel cell.
[0002]
[Prior art]
While hydrogen is a chemical raw material used in petroleum refining, etc., it is expected to be used as a clean energy source to deal with environmental problems. For example, hydrogen is used as a fuel for transportation vehicles such as automobiles and aircraft. It is being considered.
However, hydrogen is a gas at room temperature and normal pressure, and simply increasing the pressure in a gaseous state limits the amount of hydrogen charged due to the limitations of the size of storage tanks that can be mounted on these transportation facilities. Further, increasing the pressure causes a serious problem in terms of safety. For this reason, it has been studied to load a storage tank with a material capable of holding hydrogen in a high density state by adsorption, absorption, reaction, etc. as a storage material, and to reduce the volume per hydrogen storage amount.
[0003]
Conventionally, metal alloys such as nickel-lanthanum alloys and titanium-iron alloys are known as such hydrogen storage materials. Although these alloy-based storage materials have the advantage of a relatively large amount of hydrogen storage per unit volume, the amount of storage per unit mass is not so large, and hydrides are generated by chemical reactions to strengthen hydrogen. Since it is occluded, there is a drawback that hydrogen is not released unless it is heated to a considerably high temperature.
[0004]
In addition, the use of carbon materials such as activated carbon and carbon fibers as hydrogen storage materials is also being studied, and specific carbon materials such as carbon nanotubes and carbon nanofibers have been reported to have a considerably high hydrogen storage capacity. Yes. However, such occlusion of hydrogen by the carbon material is based on physical adsorption utilizing fine voids or gaps, so it is considered that there is a certain limit in the occlusion amount. It is necessary to provide a complicated process such as acid treatment for removing the components.
[0005]
Therefore, the present invention is based on an idea completely different from the prior art, has a large amount of hydrogen storage per unit space, is light in weight, and can release hydrogen relatively easily, and such a hydrogen storage material. It is an object of the present invention to provide a method that can be manufactured relatively easily.
[0006]
[Means for Solving the Problems]
The above-described object is achieved by a hydrogen storage material characterized in that voids for storing hydrogen are formed between fluorine atoms introduced into the substrate.
That is, the present invention is a material that provides a minute size void suitable for taking in hydrogen, arranges fluorine atoms in the space, and stores hydrogen in the void.
[0007]
Since fluorine atoms have a very high chemical affinity for hydrogen atoms, fluorine atoms can strongly attract hydrogen atoms by chemical action, and in the voids near fluorine atoms, hydrogen molecules are dense. Can exist. Therefore, the material can exhibit a high hydrogen storage capacity by distributing the fluorine atoms at an appropriate density in the space and forming the material by providing fine voids of an appropriate size in the vicinity of the fluorine atoms. .
Such materials can be in a “dissolved” state in the material because hydrogen is incorporated in the material in high density and hydrogen is present in a high concentration throughout the material. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a hydrogen occlusion material in which voids are formed between fluorine atoms introduced into a substrate, and hydrogen is occluded in the voids at high density. The voids can be formed by fixing fluorine atoms in a space in the substrate in various modes as described below. The substrate is not limited as long as the introduced fluorine atom can be fixed therein, and preferably includes an inorganic layered substance, a metal complex, and activated carbon.
[0009]
In one embodiment, the void is formed by fluorine ions fixed to the positive charge layer of the inorganic layered material. This embodiment is illustrated in FIG. 1, and fluorine atoms are fixed as positive ions in the positively charged layer of the inorganic layered substance at appropriate intervals as fluorine ions in a two-dimensional planar space. Voids can be formed between the atoms.
In this embodiment, the space between the positive charge layers preferably extends with a width of 0.1 to 10 nm (nanometers), and more preferably has a width of 0.1 to 1 nm. Moreover, it is preferable that the distance between adjacent fluorine atoms is 0.1-2 nm, More preferably, it is 0.1-0.5 nm.
[0010]
The hydrogen storage material of the present invention in this embodiment can be manufactured using, for example, a layered double hydroxide whose atomic arrangement structure is shown in FIG. In the example of FIG. 4, a part of the cation contained in the base layer is replaced by a cation having a higher valence so that the base layer has a positive charge, and the negative electrode is interposed between the base layers. Ions are present.
Examples of the layered double hydroxide include hydrotalcite that can be mined as a natural mineral. Hydrotalcite has the chemical structural formula:
[Mg 1-x Al x (OH) 2 ] x + [(CO 3 ) x / 2 · yH 2 O] x-
And a portion of Mg in the base layer is replaced with Al, the base layer has a positive charge, and CO 3 -2 ions exist between the base layers.
[0011]
In order to fix fluorine ions to the positive charge of the base layer of such an inorganic layered substance, negative ions between the base layers can be replaced with fluorine ions, for example, NaF, KF, MgF 2 , CaF 2. , CF 3 COONa, C 2 F 5 COONa, etc., can be performed by immersing hydrotalcite in an aqueous solution of a fluoride salt, impregnating the aqueous solution between the basic layers, and then drying.
[0012]
In this case, it is preferable to disperse the negative ion component of the inorganic layered substance in advance by heating or the like and then perform the above impregnation in order to uniformly distribute the fluorine ions between the basic layers.
Here, the interval between the fluorine atoms fixed by the positive charge of the basic layer can be adjusted by the kind of the fluoride salt and the concentration of the solution.
[0013]
In another embodiment, the void in which hydrogen is occluded is formed by the fluorine-containing ligand that constitutes the metal complex. This embodiment is illustrated in FIG. 2, in which fluorine atoms are fixed to a metal complex as a part of the ligand, and voids are formed between the fluorine atoms of the ligands. By being present throughout the complex, the metal complex can occlude hydrogen at a high density in a three-dimensional space. Here, the number of fluorine atoms forming one void is preferably 3 to 10, more preferably 4 to 8. Moreover, it is preferable that the diameter of a space | gap is 0.1-2 nm, More preferably, it is 0.1-0.5 nm.
In the occlusion material of the present invention in this embodiment, for example, negative ions of organic substances in which a majority of substitution sites as described below are substituted with fluorine atoms are around a transition metal such as Cu, Mo, Ru, Cr, Ni, Co. It can be a complex coordinated to.
[0014]
[Chemical 1]
Figure 0003624819
[Chemical formula 2]
Figure 0003624819
[Chemical 3]
Figure 0003624819
[Formula 4]
Figure 0003624819
[Chemical formula 5]
Figure 0003624819
[0015]
The metal complex as shown in FIG. 2 is prepared by preparing a solution of a metal salt such as a carboxylate, formate or acetate of a transition metal such as Cu, Mo, Ru, Cr, Ni or Co. Prepare a solution of a fluorine-containing organic substance such as an organic carboxylic acid or an alkali metal salt thereof that generates negative ions as described above, mix these solutions, and then add an acid such as formic acid or acetic acid to the mixed solution. It can be produced by adding the metal ion of the above metal salt to release it, heating it as necessary to precipitate a metal complex, and collecting the metal complex.
[0016]
In another embodiment, the void in which hydrogen is occluded is formed by fluorine atoms fixed to activated carbon. This embodiment is illustrated in FIG. 3, in which fluorine atoms are fixed inside the pores of the activated carbon, the surface of the pores is covered with fluorine atoms, and hydrogen is occluded in the voids of the pores surrounded by the fluorine atoms. be able to. In this embodiment, the hydrogen storage performance of the activated carbon can be greatly improved by adding fluorine atoms.
[0017]
The occlusion material of the present invention in this embodiment can be produced by introducing a fluorine-containing organic substance into the pores of activated carbon by impregnation or the like and then carbonizing the organic substance by heating. Here, the activated carbon can be plant activated carbon made from coconut shells and wood, granular activated carbon such as mineral activated carbon made from coke and coal, and activated carbon fibers made from cellulose and acrylonitrile.
[0018]
As these activated carbons, those having a pore diameter of preferably 0.1 nm to 50 nm, more preferably 0.1 to 10 nm are used.
Examples of the fluorine-containing organic substance introduced into the pores of such activated carbon include CF 3 COONa, C 2 F 5 COONa,
[Chemical 6]
Figure 0003624819
The activated carbon is immersed in a solution in which these are dissolved in an appropriate solvent and then dried, and then heated in a non-oxidizing atmosphere such as nitrogen at 300 ° C. or higher, preferably 350 ° C. to 800 ° C. By doing so, fluorine atoms can be fixed in the pores of the activated carbon.
[0019]
As described above, the production of the hydrogen storage material of the present invention can be performed by a relatively small number of steps, and the obtained storage material is relatively light even if it contains a metal component. , It can have high hydrogen storage performance per unit mass.
In addition, since the action of occluding hydrogen is based on the chemical affinity of fluorine atoms to hydrogen and does not generate reaction products such as hydrides in metal alloy systems, it has a high hydrogen absorption / desorption rate and unit. While having a high hydrogen storage capacity per volume, the stored hydrogen can be released without heating to a considerably high temperature as in the case of alloy metal systems.
In addition, the aspect shown in FIGS. 1-3 is a typical illustration to the last, Comprising: This invention is not limited.
[0020]
【Example】
Example 1
The hydrotalcite was heated at 500 ° C. under a nitrogen atmosphere for 3 hours to escape carbonate ions between the positively charged layers. Next, 5 g of hydrotalcite after heating was dispersed in a solution obtained by dissolving 5 g of NaF in 500 ml of ion-exchanged water to prepare a slurry. This slurry was placed under gentle stirring for 24 hours, and fluorine ions were inserted and fixed between the positively charged layers of hydrotalcite. Next, this slurry was filtered and dried to obtain the hydrogen storage material of the present invention.
[0021]
Example 2
300 mg of copper (II) acetate was dissolved in 100 cc of methanol. Separately, 300 mg of the following fluorine compound was dissolved in 300 cc of methanol, and 20 cc of formic acid was added thereto.
[Chemical 7]
Figure 0003624819
These two solutions were mixed and held at 70 ° C. for 24 hours. The produced precipitate was filtered and dried to obtain the hydrogen storage material of the present invention.
[0022]
Example 3
1 g of CF 3 COONa was dissolved in 500 cc of ethanol. To this solution was added 5 g of coconut shell activated carbon (specific surface area of about 1500 m 2 / g, average pore diameter of about 0.5 to 1 nm) to prepare a slurry, which was left for 3 days. Next, this slurry was filtered and dried to collect activated carbon, heated at 400 ° C. under a nitrogen atmosphere for 2 hours, and carbonized CF 3 COONa to obtain the hydrogen storage material of the present invention.
[0023]
【The invention's effect】
To provide a hydrogen storage material that has a large amount of hydrogen storage per unit space, is lightweight, and can release hydrogen relatively easily, and a method capable of manufacturing such a hydrogen storage material relatively easily. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating one embodiment of a hydrogen storage material according to the present invention.
FIG. 2 is a schematic view illustrating another embodiment of the hydrogen storage material according to the present invention.
FIG. 3 is a schematic view illustrating another aspect of the hydrogen storage material according to the present invention.
FIG. 4 is a view showing the structure of a layered double hydroxide.

Claims (5)

無機層状物質及び活性炭の少なくとも一方よりなる基材がフッ素原子を固定しており、かつこのフッ素原子を固定している基材が、水素を吸蔵する空隙をフッ素原子近傍に有してなることを特徴とする、水素吸蔵材。The base material made of at least one of the inorganic layered material and activated carbon fixes fluorine atoms, and the base material fixing the fluorine atoms has voids for storing hydrogen in the vicinity of the fluorine atoms. Characteristic hydrogen storage material. 前記空隙が、無機層状物質基材の正電荷層に固定されたフッ素原子によって形成されている、請求項1に記載の水素吸蔵材。The gap is, the inorganic layered compound substrate is formed by a fixed fluorine atoms positive charge layer, the hydrogen storage material of claim 1. 前記空隙が、活性炭基材に固定されたフッ素原子によって形成されている、請求項1に記載の水素吸蔵材。The gap is formed by a fixed fluorine atom on activated carbon substrate, the hydrogen storage material of claim 1. 正の層電荷を有する無機層状物質の層間の負イオンをフッ素イオンに置換することを特徴とする請求項2に記載の水素吸蔵材の製造方法。Characterized by replacing the negative ions between layers of the inorganic layered compound having a positive layer charge in the fluorine ion, a manufacturing method of the hydrogen storage material of claim 2. フッ素含有有機物を活性炭の細孔内部に導入し、次いで前記フッ素含有有機化合物を炭化させることを特徴とする、請求項3に記載の水素吸蔵材の製造方法。The method for producing a hydrogen storage material according to claim 3 , wherein a fluorine-containing organic substance is introduced into the pores of the activated carbon, and then the fluorine-containing organic compound is carbonized.
JP2000319480A 2000-10-19 2000-10-19 Fluorine-containing hydrogen storage material Expired - Fee Related JP3624819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319480A JP3624819B2 (en) 2000-10-19 2000-10-19 Fluorine-containing hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319480A JP3624819B2 (en) 2000-10-19 2000-10-19 Fluorine-containing hydrogen storage material

Publications (2)

Publication Number Publication Date
JP2002126506A JP2002126506A (en) 2002-05-08
JP3624819B2 true JP3624819B2 (en) 2005-03-02

Family

ID=18797932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319480A Expired - Fee Related JP3624819B2 (en) 2000-10-19 2000-10-19 Fluorine-containing hydrogen storage material

Country Status (1)

Country Link
JP (1) JP3624819B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO330070B1 (en) 2006-01-26 2011-02-14 Inst Energiteknik Hydrogen storage system, process for reversible hydrogen storage and production of material therefor as well as use
KR101022857B1 (en) 2008-01-16 2011-03-17 인하대학교 산학협력단 Preparation method of carbon nano fiber composites electroplated transition metal for hydrogen storage
JP6202295B2 (en) * 2012-08-17 2017-09-27 国立研究開発法人産業技術総合研究所 Composite porous body and method for producing the same

Also Published As

Publication number Publication date
JP2002126506A (en) 2002-05-08

Similar Documents

Publication Publication Date Title
Gangu et al. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review
ullah Rather Preparation, characterization and hydrogen storage studies of carbon nanotubes and their composites: a review
Hussain et al. MOF derived porous ZnO/C nanocomposites for efficient dye photodegradation
Lu et al. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction
Li et al. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
Kopac Hydrogen storage characteristics of bio‐based porous carbons of different origin: a comparative review
EP2812110B1 (en) Preparation of highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles
JP2014055110A (en) Method for producing microporous carbonaceous material
US8338330B2 (en) Chemical bridges for enhancing hydrogen storage by spillover and methods for forming the same
US20050196336A1 (en) Activated graphitic carbon and metal hybrids thereof
Zou et al. Facile steam-etching approach to increase the active site density of an ordered porous Fe–N–C catalyst to boost oxygen reduction reaction
US20170309923A1 (en) Metal composite carbon material, fuel cell catalyst, fuel cell, hydrogen-occluding material, hydrogen tank, and production method for metal composite carbon material
KR20020042673A (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
US20100038263A1 (en) Hydrogen storage apparatus using porous carbon nanospheres
Zhang et al. The application of MOFs for hydrogen storage
US9440850B2 (en) Carbon material for hydrogen storage
JP3624819B2 (en) Fluorine-containing hydrogen storage material
Kumar et al. Methanolysis of ammonia borane using binder‐free hierarchical Co@ Ni metal‐organic framework nanocolumn arrays catalyst for hydrogen generation
US9573194B2 (en) Making nanocrystalline mesoporous spherical particles
Lee et al. In situ neutron powder diffraction and X-ray photoelectron spectroscopy analyses on the hydrogenation of MOF-5 by Pt-doped multiwalled carbon nanotubes
J Thambiliyagodage et al. One pot synthesis of carbon/Ni nanoparticle monolithic composites by nanocasting and their catalytic activity for 4-Nitrophenol reduction
Park et al. Mixed-dimensional nanocomposites based on 2D materials for hydrogen storage and CO2 capture
Ming et al. N/P Co‐doped Micro‐/Mesoporous Carbons Derived from Polyvinyl Pyrrolidone–Zn0. 2@ ZIF‐67 with Tunable Metal Valence States towards Efficient Water Splitting
KR20170109453A (en) Platinum-carbon bonding based porous carbon hybrid material and the manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees