JP3623814B2 - Operation method of pressure fluctuation adsorption separation device - Google Patents
Operation method of pressure fluctuation adsorption separation device Download PDFInfo
- Publication number
- JP3623814B2 JP3623814B2 JP32644094A JP32644094A JP3623814B2 JP 3623814 B2 JP3623814 B2 JP 3623814B2 JP 32644094 A JP32644094 A JP 32644094A JP 32644094 A JP32644094 A JP 32644094A JP 3623814 B2 JP3623814 B2 JP 3623814B2
- Authority
- JP
- Japan
- Prior art keywords
- product gas
- flow rate
- amount
- adsorption separation
- control valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Separation Of Gases By Adsorption (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、圧力変動吸着分離装置の運転方法に関し、詳しくは、製品ガス使用先の製品ガス使用量に応じて圧力変動吸着分離装置を増減量運転する際の運転モードの切換え手順に関する。
【0002】
【従来の技術】
圧力変動吸着分離装置(以下、PSA装置という)は、各種ガスの分離あるいは精製用の装置として工業的に広く用いられている。例えば、窒素を優先的に吸着する性質を有するゼオライトを吸着剤として用いた、いわゆる酸素PSAは、空気から酸素を分離製造する装置として多くの装置が稼働している。
【0003】
上記酸素PSAは、ゼオライトを充填した複数の吸着筒、例えば3基の吸着筒を、それぞれ吸着工程と再生工程とに順次切換えて連続的に酸素を製造するものであるが、工業的規模で使用される酸素PSAでは、酸素発生量に比例して極めて大量の電力を消費するため、使用先の酸素消費量が減少した場合には、酸素PSAの運転状態を減量運転モードに変更し、酸素発生量を減少させるとともに電力消費量を節減するようにしている。
【0004】
すなわち、上記酸素PSAのようなPSA装置では、製品ガスの消費量の増減に伴って装置の運転モードを変更し、製品ガス発生量を増減するようにしているが、従来の方法では、装置からの製品ガスの発生量や発生速度,純度,圧力等の流れ特性を監視しながら運転モードの変更を行い、製品ガス供給量の増減を行うようにしていた。
【0005】
【発明が解決しようとする課題】
しかし、近年の大型酸素PSAでは、大気圧吸着・真空再生を行う、いわゆるVSAプロセスを用いているため、吸着筒出口の製品酸素の圧力は略大気圧であり、吸着筒から取出した製品酸素を使用先が希望する圧力まで圧縮して供給するためには、製品ガス供給経路に圧縮機を設ける必要がある。
【0006】
したがって、このような製品ガス圧縮用の圧縮機を備えたPSA装置で製品供給量を変化させるためには、製品ガスの流量を変化させる手段と、製品ガス圧縮機の吐出量を変化させる手段とを一体化させた運転システムを構築することが必要になってくる。
【0007】
そこで本発明は、PSA装置から供給する製品ガス量を使用先の消費量に合わせて増減するにあたり、容易かつ円滑に流量変更を行うことができるPSA装置の運転方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記した目的を達成するため、本発明の圧力変動吸着分離装置の運転方法は、圧力変動吸着分離装置から導出される製品ガスの供給量を増量するとともに、前記圧力変動吸着分離装置を増量運転するにあたり、前記製品ガスの供給量を増量する信号の入力により、前記圧力変動吸着分離装置の運転状態を、増量後の供給製品ガス量に対応した運転モードに変更した後、製品ガス供給経路に設けた流量調節弁の開度を増量後の供給製品ガス量に見合う開度に調節することを特徴とし、この方法において、製品ガスの供給量を減量するに際しては、製品ガスの供給量を減量する信号の入力により、製品ガス供給経路に設けた流量調節弁の開度を減量後の供給製品ガス量に見合う開度に調節し、供給製品ガス量が略設定されたガス量になった後、前記圧力変動吸着分離装置の運転状態を、減量後の供給製品ガス量に対応した運転モードに変更することを特徴とし、前記圧力変動吸着分離装置における工程切換え時を起点として流量調整操作あるいは運転モードの変更操作を開始すること、減量する際の前記運転モードの変更は、流量調整操作を開始してから製品ガスの流量が設定流量に収束した後に行うこと、前記圧力変動吸着分離装置の製品ガス供給系統に設けた製品ガス圧縮機の吐出側と吸入側とに、循環流量制御弁を備えた循環経路を接続し、減量運転時には、前記減量信号の入力により、その減量程度に応じて前記循環流量制御弁をあらかじめ減量程度に応じて設定されている開度まで開くとともに、前記流量調節弁を減量後の供給製品ガス量に見合う開度に調節し、増量運転時には、前記増量信号の入力により、増量程度に応じて前記循環流量制御弁を閉じ方向に作動させるとともに、前記流量調節弁を増量後の供給製品ガス量に見合う開度に調節することもできる。
【0009】
【実施例】
以下、本発明を、図面に基づいてさらに詳細に説明する。
図1は、本発明方法を実施するための装置構成の一例を示すもので、圧力変動吸着分離装置(PSA装置)1の製品ガス供給系統に、製品ガス圧縮機2と、該製品ガス圧縮機2の吐出側と吸入側とを接続し、かつ、循環流量制御弁3を備えた循環経路4と、製品ガス圧縮機2の下流側の製品ガス供給経路5に設けた流量調節弁6と、製品ガスの圧力及び流量をそれぞれ測定する流量計F及び圧力計Pと、製品ガス供給量を変更する信号の入力により前記循環流量制御弁3の開度を調節するとともに、前記流量計F及び圧力計Pの測定値に基づいて前記流量調節弁6の開度を調節し、さらに、PSA装置1の運転モードを変更する制御器7とを設けたものである。
【0010】
上記PSA装置1は、例えば、窒素を優先的に吸着するゼオライトを用いた周知の酸素PSAであって、前記ゼオライトを充填した複数の吸着筒をそれぞれ吸着工程,再生工程や再加圧工程に順次切換えて連続的に酸素を製造するものであり、製品ガスである酸素は、PSA装置1から導出されて製品ガス圧縮機2で所定圧力まで昇圧された後、流量調節弁6を経て製品ガス供給経路5から使用先に供給される。
【0011】
上記構成において、製品ガスである酸素ガスの減量が必要となったときには、まず、制御器7にその信号が入力される。この信号入力は、制御器7に人為的に必要な減量程度を入力してもよく、使用先における酸素ガス使用量の減少に伴う酸素ガス流量の低下をセンサー(流量計F)で検知してこの信号を制御器7に入力するようにしてもよい。
【0012】
上記減量信号を受けた制御器7は、その減量程度に応じて製品ガス圧縮機2の循環経路4に設けた循環流量制御弁3をあらかじめ減量程度に応じて設定されている開度まで開くとともに、流量調節弁6を減量後の供給製品ガス量に見合う開度に調節する。これにより、製品ガス供給経路5から使用先に供給される製品酸素量が減量後の設定流量に変更される。
【0013】
そして、供給製品酸素量が略減量後の設定流量になった後、制御器7は、PSA装置1に減量程度に対応した運転モードに変更するための信号を出力する。これにより、PSA装置1は、サイクルタイムの延長等、従来から行われている減量運転操作に入り、延長された時間帯における真空ポンプ等の無負荷運転による消費動力の削減等を行う。
【0014】
一方、増量運転に移行する際には、前記同様に、制御器7に増量程度に合わせた信号が入力され、増量信号を受けた制御器7は、まず、PSA装置1にその増量程度に応じた運転モードに変更するための信号を出力し、PSA装置1は、サイクルタイムを変更して所定の運転モードに入る。
【0015】
そして、PSA装置1の運転が安定した後、制御器7から増量程度に応じて循環流量制御弁3を閉じ方向に作動させるとともに、流量調節弁6を増量後の供給製品ガス量に見合う開度に調節する。これにより、製品ガス供給経路5から使用先に供給される製品酸素量が増量後の設定流量に変更される。
【0016】
なお、上記のような減量あるいは増量開始信号は、PSA装置1における工程切換え時間の任意の時間帯に入るため、その都度、即座に対応することはシステムが複雑化して望ましくない。したがって、上記信号が工程のいかなる時点で入力されても、次の工程切換え時まで待って、そこを起点として流量調整操作あるいは運転モードの変更操作を開始することが望ましく、さらに、減量運転移行に際してのPSA装置1の運転モードの変更は、流量調整操作を開始してから製品ガスの流量が設定流量に収束するまでのサイクル数をあらかじめカウントしておき、これをプログラムとして入力しておくことによって、サイクルタイムの変更を確実に行うことができる。すなわち、流量調節時のサイクルタイムは、流量調節弁6における収束時間により決定される。
【0017】
図2乃至図5は、上記減量運転あるいは増量運転に移行する際におけるPSA装置1の運転モードMと、流量調節弁6の流量設定値Fmと、製品酸素の実際の流量Gとの関係の一例を示すもので、運転モードとしては、100%,75%,50%の3通りであり、PSA装置1の各モードにおけるサイクルタイムは、それぞれ60秒,80秒,120秒である。
【0018】
まず、図2において、100%運転時に75%に減量するとの信号入力があると、次の1サイクルの工程切換え時に制御器7から流量調節弁6に開度変更の信号が出力され、流量調節弁6の開度があらかじめ設定されている75%の流量に対応する開度に変更される。この開度変更は、急激な流量変化がシステムに悪影響を与えないように、1サイクル分の時間、この場合は60秒かけて所定の流量になるように流量設定値Fmが設定されており、流量調節弁6の開度は、この流量設定値Fmに従って徐々に調節される。そして、流量Gが所定の75%の流量に略達した時点で、PSA装置1の運転モードMが75%の減量運転に対応したモードに変更され、サイクルタイムが60秒から80秒に変更される。
【0019】
さらに、上記75%の減量運転時に50%に減量するとの信号入力があると、次の1サイクルの工程切換え時に流量調節弁6に開度変更の信号が出力され、流量調節弁6の開度があらかじめ設定されている50%の流量に対応する開度に変更される。この開度変更の際の流量設定値Fmも、この時点での1サイクルの時間である80秒かけて50%の流量になるように設定されており、流量調節弁6の開度は、この流量設定値Fmに従って徐々に調節される。そして、流量Gが所定の50%の流量に略達した時点で、PSA装置1の運転モードMが50%の減量運転に対応したモードに変更され、サイクルタイムが80秒から120秒に変更される。
【0020】
また、図3に示すように、100%運転時に50%に減量するとの信号入力があると、次の1サイクルの工程切換え時に流量調節弁6に開度変更の信号が出力され、流量調節弁6が50%の流量に対応する開度に、3サイクル分の時間である約180秒をかけて徐々に調節される。そして、流量Gが所定の50%の流量に略達しようとしたときに、PSA装置1の運転モードMが50%の減量運転に対応したモードに変更され、サイクルタイムが60秒から120秒に変更される。
【0021】
このように、減量運転に移行する操作においては、先に製品ガスの流量を流量調節弁6で減量運転の程度に見合う流量に減少させた後、PSA装置1を、その流量に見合う運転モードに変更することになる。これにより、PSA装置1を安定した状態で運転でき、製品純度が低下したりすることを防止できる。
【0022】
図4及び図5は、前記減量運転を行っているシステムを通常の100%、あるいは50%から75%に移行させる際の状態を示すものである。図4において、50%の減量運転を行っているときに、75%の減量運転に増量する際には、制御器7への信号入力により、次の工程切換え時にPSA装置1の運転モードMが75%の減量運転に対応したモードに変更され、サイクルタイムが120秒から80秒に変更される。次いで、制御器7から流量調節弁6に開度変更の信号が出力され、流量調節弁6の開度が75%の流量に対応する開度に変更される。
【0023】
上記流量調節弁6の開度変更を行う流量設定値Fmは、PSA装置1の運転モード変更から3サイクル分の時間、約240秒の間に徐々に流量Gを増加させるように設定されている。
【0024】
さらに、75%の減量運転から通常の100%の運転に増量する際には、上記同様に、次の工程切換え時にPSA装置1のサイクルタイムを80秒から60秒に変更した後、流量調節弁6の流量設定値Fmを5サイクル分の300秒かけて100%流量に対応する値に変更するようにしている。
【0025】
また、図5に示すように、50%の減量運転から通常の100%の運転に増量する際には、最初にPSA装置1のサイクルタイムを120秒から60秒に変更した後、流量調節弁6の流量設定値Fmを10サイクル分の600秒かけて100%流量に対応する値に変更するようにしている。
【0026】
このように、増量運転に移行する操作においては、先にPSA装置1を増量運転の程度に見合う運転モードに変更した後、流量調節弁6で製品ガスの流量を所定流量に調節するようにする。これにより、PSA装置1を安定した状態で運転でき、製品純度が低下したりすることを防止できる。これは、上記順序で増減量変更を行うことにより、吸着筒内の吸着前線(MTZ)の破過、即ち吸着剤の破過を防ぐことができるためである。
【0027】
また、本実施例に示すように、製品ガス圧縮機2に循環流量制御弁3を備えた循環経路4を設け、循環流量制御弁3の開度を調節して製品ガス圧縮機2から流量調節弁6側に流れる製品ガス量を増減させたり、あるいはアンロード弁を用いた流量制御システムを用いたりすることにより、流量調節弁6のみによる流量制御に比べて安定した状態で流量制御及び圧力制御を行うことができる。
【0028】
さらに、製品ガス供給経路5から使用先に供給する製品ガスの流量調節を上記循環流量制御弁3で行い、製品ガス供給経路5に流量調節弁6に代えて圧力調節弁を設け、使用先に供給する製品ガスの圧力を一定に保持するように構成することもできる。
【0029】
すなわち、循環流量制御弁3を開いて製品ガス圧縮機2から吐出された製品ガスの一部を循環経路4を通して製品ガス圧縮機2の吸入側に戻すことにより、製品ガス供給経路5に流れる製品ガス量を減らすことができ、逆に循環流量制御弁3を閉じることにより製品ガス供給経路5に流れる製品ガス量を増すことができるので、減量運転の程度に対応させて循環流量制御弁3の開度を設定しておけば、循環流量制御弁3の開度を調節するだけで製品ガスの流量を所望の流量に調節することができる。そして、製品ガス供給経路5に圧力調節弁を設けておくことにより、製品ガスの流量にかかわらず略一定の圧力で製品ガスを使用先に供給することができる。
【0030】
【発明の効果】
以上説明したように、本発明の圧力変動吸着分離装置の運転方法によれば、製品ガスの純度を所定値に維持した状態で減量運転あるいは増量運転に移行でき、製品ガスの流量変更を使用先の消費量に合わせて容易かつ円滑に行うことができる。
【図面の簡単な説明】
【図1】本発明を実施するための装置構成の一例を示す系統図である。
【図2】減量運転に移行する際のPSA装置の運転モードと、流量調節弁の流量設定値と、製品酸素の実際の流量との関係を示す図である。
【図3】同じく減量運転に移行する際の運転モードと流量設定値と実際の流量との関係を示す図である。
【図4】増量運転に移行する際の運転モードと流量設定値と実際の流量との関係を示す図である。
【図5】同じく増量運転に移行する際の運転モードと流量設定値と実際の流量との関係を示す図である。
【符号の説明】
1…PSA装置、2…製品ガス圧縮機、3…循環流量制御弁、4…循環経路、5…製品ガス供給経路、6…調節弁、7…制御器、F…流量計、P…圧力計[0001]
[Industrial application fields]
The present invention relates to a method for operating a pressure fluctuation adsorption separation device, and more particularly, to a procedure for switching an operation mode when the pressure fluctuation adsorption separation device is operated in an increase / decrease amount according to the amount of product gas used by a product gas usage destination.
[0002]
[Prior art]
Pressure fluctuation adsorption separation devices (hereinafter referred to as PSA devices) are widely used industrially as devices for separation or purification of various gases. For example, so-called oxygen PSA using zeolite having the property of preferentially adsorbing nitrogen as an adsorbent is operating as a device for separating and producing oxygen from air.
[0003]
The oxygen PSA is a continuous production of oxygen by sequentially switching a plurality of adsorption cylinders filled with zeolite, for example, three adsorption cylinders, to an adsorption process and a regeneration process, but is used on an industrial scale. The oxygen PSA that is used consumes a very large amount of power in proportion to the amount of oxygen generated. Therefore, when the oxygen consumption of the user is reduced, the operation state of the oxygen PSA is changed to the weight reduction operation mode to generate oxygen. The power consumption is reduced while reducing the amount.
[0004]
That is, in the PSA apparatus such as the oxygen PSA, the operation mode of the apparatus is changed in accordance with the increase / decrease of the product gas consumption, and the product gas generation amount is increased / decreased. The operation mode was changed while monitoring the flow characteristics such as product gas generation rate, generation speed, purity, pressure, etc., and the product gas supply amount was increased or decreased.
[0005]
[Problems to be solved by the invention]
However, recent large oxygen PSA uses a so-called VSA process that performs atmospheric pressure adsorption and vacuum regeneration, so the product oxygen pressure at the outlet of the adsorption cylinder is approximately atmospheric pressure, and the product oxygen taken out from the adsorption cylinder is In order to compress and supply to a pressure desired by the user, it is necessary to provide a compressor in the product gas supply path.
[0006]
Therefore, in order to change the product supply amount in a PSA apparatus equipped with such a compressor for product gas compression, means for changing the flow rate of the product gas, means for changing the discharge amount of the product gas compressor, It is necessary to construct an operation system that integrates the two.
[0007]
Therefore, an object of the present invention is to provide a method for operating a PSA apparatus that can easily and smoothly change the flow rate when increasing or decreasing the amount of product gas supplied from the PSA apparatus in accordance with the consumption amount of the user. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the operation method of the pressure fluctuation adsorption separation device of the present invention increases the supply amount of the product gas derived from the pressure fluctuation adsorption separation device and increases the operation of the pressure fluctuation adsorption separation device. In this case, the operation state of the pressure fluctuation adsorption separation device is changed to an operation mode corresponding to the amount of product gas after the increase by inputting a signal for increasing the amount of supply of the product gas, and then provided in the product gas supply path. and the degree of opening of the flow control valve is characterized in that to adjust the degree of opening commensurate with the feed product gas amount after increasing, in this method, when weight loss the supply amount of the product gas is reduced the supply amount of the product gas After the signal is input, the opening of the flow control valve provided in the product gas supply path is adjusted to the opening corresponding to the amount of supplied product gas after the reduction, and after the amount of supplied product gas reaches the set amount of gas, Previous The operating state of the pressure swing adsorption separation apparatus, and varying puff characterized Rukoto the operating mode corresponding to the supplied product gas amount after weight loss, the flow rate adjusting operation or operation as a starting point at step switching in the pressure swing adsorption separation apparatus Starting the mode change operation, changing the operation mode when reducing the volume is performed after the flow rate adjustment operation is started and the product gas flow rate has converged to the set flow rate, and the product of the pressure fluctuation adsorption separation device A circulation path having a circulation flow rate control valve is connected to the discharge side and the suction side of the product gas compressor provided in the gas supply system, and during the weight reduction operation, according to the amount of reduction by inputting the weight reduction signal. Open the circulation flow control valve to an opening set in advance according to the amount of reduction, and adjust the flow control valve to an opening that matches the amount of supplied product gas after reduction. Is the input of the increase signal, actuates in a direction closing said circulation flow rate control valve in accordance with the order of increasing, it is also possible to adjust the degree of opening commensurate with the flow control valve to supply the product gas amount after the increase.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows an example of an apparatus configuration for carrying out the method of the present invention. A product gas compressor 2 and a product gas compressor are provided in a product gas supply system of a pressure fluctuation adsorption separation apparatus (PSA apparatus) 1. 2, a circulation path 4 having a circulation flow rate control valve 3 connected to the discharge side and the suction side, and a flow rate adjustment valve 6 provided in a product gas supply path 5 on the downstream side of the product gas compressor 2, The flowmeter F and pressure gauge P for measuring the pressure and flow rate of the product gas, and the opening of the circulating flow control valve 3 are adjusted by the input of a signal for changing the product gas supply amount. A controller 7 that adjusts the opening of the flow rate control valve 6 based on the measured value of the meter P and further changes the operation mode of the PSA device 1 is provided.
[0010]
The PSA device 1 is, for example, a well-known oxygen PSA using zeolite that preferentially adsorbs nitrogen. A plurality of adsorption cylinders filled with the zeolite are sequentially subjected to an adsorption process, a regeneration process, and a repressurization process. Oxygen, which is a product gas, is led out from the PSA device 1 and boosted to a predetermined pressure by the product gas compressor 2 and then supplied to the product gas via the flow control valve 6. It is supplied from the path 5 to the user.
[0011]
In the above configuration, when it is necessary to reduce the oxygen gas that is the product gas, first, the signal is input to the controller 7. This signal input may be input to the controller 7 about the amount of reduction that is artificially required, and the sensor (flow meter F) detects a decrease in the oxygen gas flow rate associated with a decrease in the amount of oxygen gas used at the user. This signal may be input to the controller 7.
[0012]
Upon receipt of the weight reduction signal, the controller 7 opens the circulation flow rate control valve 3 provided in the circulation path 4 of the product gas compressor 2 to an opening set in advance according to the amount of reduction, according to the amount of reduction. The flow rate adjustment valve 6 is adjusted to an opening degree corresponding to the supply product gas amount after the reduction. Thereby, the amount of product oxygen supplied to the user from the product gas supply path 5 is changed to the set flow rate after the reduction.
[0013]
Then, after the supply product oxygen amount reaches the set flow rate after the substantial reduction, the controller 7 outputs a signal for changing to the operation mode corresponding to the reduction amount to the PSA device 1. As a result, the PSA device 1 enters a conventional weight reduction operation such as extending the cycle time, and reduces power consumption by no-load operation such as a vacuum pump in the extended time zone.
[0014]
On the other hand, when shifting to the increase operation, similarly to the above, the controller 7 receives a signal corresponding to the increase amount, and the controller 7 receiving the increase signal first responds to the PSA device 1 according to the increase amount. The PSA device 1 changes the cycle time and enters a predetermined operation mode.
[0015]
After the operation of the PSA device 1 is stabilized, the controller 7 operates the circulating flow rate control valve 3 in the closing direction according to the degree of increase, and the opening degree corresponding to the amount of supplied product gas after the flow rate control valve 6 is increased. Adjust to. Thereby, the amount of product oxygen supplied from the product gas supply path 5 to the user is changed to the set flow rate after the increase.
[0016]
In addition, since the decrease or increase start signal as described above enters an arbitrary time zone of the process switching time in the PSA apparatus 1, it is not desirable to respond immediately each time because the system becomes complicated. Therefore, it is desirable to wait until the next process switching, at any time in the process, and start the flow rate adjustment operation or the operation mode change operation from that point. The operation mode of the PSA device 1 is changed by counting the number of cycles from the start of the flow rate adjustment operation until the product gas flow rate converges to the set flow rate, and inputting this as a program. The cycle time can be changed reliably. That is, the cycle time during flow rate adjustment is determined by the convergence time in the flow rate control valve 6.
[0017]
FIGS. 2 to 5 show an example of the relationship between the operation mode M of the PSA device 1, the flow rate setting value Fm of the flow control valve 6 and the actual flow rate G of product oxygen when shifting to the above-described reduction operation or increase operation. The operation modes are 100%, 75%, and 50%, and the cycle times in each mode of the PSA device 1 are 60 seconds, 80 seconds, and 120 seconds, respectively.
[0018]
First, in FIG. 2, if there is a signal input indicating that the amount is reduced to 75% during 100% operation, a signal for changing the opening is output from the controller 7 to the flow rate adjusting valve 6 at the time of the next one-cycle process switching. The opening degree of the valve 6 is changed to an opening degree corresponding to a preset flow rate of 75%. In order to prevent this sudden change in flow rate from adversely affecting the system, the flow rate set value Fm is set so that the predetermined flow rate is obtained over a period of one cycle, in this
[0019]
Further, if there is a signal input indicating that the amount is reduced to 50% during the 75% reduction operation, an opening change signal is output to the flow rate control valve 6 at the next process switching in one cycle, and the flow rate control valve 6 opens. Is changed to an opening corresponding to a preset flow rate of 50%. The flow rate setting value Fm at the time of changing the opening degree is also set to be 50% over 80 seconds, which is the time of one cycle at this time point. It is gradually adjusted according to the flow rate set value Fm. When the flow rate G substantially reaches the predetermined 50% flow rate, the operation mode M of the PSA device 1 is changed to the mode corresponding to the 50% reduction operation, and the cycle time is changed from 80 seconds to 120 seconds. The
[0020]
Also, as shown in FIG. 3, when there is a signal input indicating that the amount is reduced to 50% during 100% operation, a signal for changing the opening is output to the flow rate control valve 6 at the time of the next one-cycle process switching. 6 is gradually adjusted to an opening corresponding to a flow rate of 50% over about 180 seconds, which is a time for 3 cycles. When the flow rate G is about to reach a predetermined 50% flow rate, the operation mode M of the PSA device 1 is changed to a mode corresponding to the 50% reduction operation, and the cycle time is changed from 60 seconds to 120 seconds. Be changed.
[0021]
As described above, in the operation to shift to the weight reduction operation, the flow rate of the product gas is first reduced to the flow rate suitable for the level of the weight reduction operation by the flow rate control valve 6, and then the PSA device 1 is set to the operation mode corresponding to the flow rate. Will change. Thereby, the PSA apparatus 1 can be operated in a stable state, and the product purity can be prevented from being lowered.
[0022]
4 and 5 show a state when the system performing the weight reduction operation is shifted from the normal 100%, or from 50% to 75%. In FIG. 4, when performing a 50% weight reduction operation, when increasing to a 75% weight reduction operation, the operation mode M of the PSA device 1 is changed at the next process switching by a signal input to the controller 7. The mode is changed to a mode corresponding to the 75% reduction operation, and the cycle time is changed from 120 seconds to 80 seconds. Next, an opening degree change signal is output from the controller 7 to the flow rate adjustment valve 6, and the opening degree of the flow rate adjustment valve 6 is changed to an opening degree corresponding to a flow rate of 75%.
[0023]
The flow rate setting value Fm for changing the opening degree of the flow rate control valve 6 is set so as to gradually increase the flow rate G in about 240 seconds, which is a time corresponding to three cycles from the change of the operation mode of the PSA device 1. .
[0024]
Further, when increasing from 75% reduction operation to normal 100% operation, the flow control valve is changed after changing the cycle time of the PSA device 1 from 80 seconds to 60 seconds at the next process switching as described above. The flow rate setting value Fm of 6 is changed to a value corresponding to the 100% flow rate over 300 seconds for 5 cycles.
[0025]
In addition, as shown in FIG. 5, when increasing from 50% reduction operation to normal 100% operation, the cycle time of the PSA device 1 is first changed from 120 seconds to 60 seconds, and then the flow control valve. The flow rate setting value Fm of 6 is changed to a value corresponding to the 100% flow rate over 600 seconds for 10 cycles.
[0026]
As described above, in the operation for shifting to the increase operation, the flow rate of the product gas is adjusted to a predetermined flow rate by the flow rate adjusting valve 6 after the PSA device 1 is first changed to the operation mode corresponding to the extent of the increase operation. . Thereby, the PSA apparatus 1 can be operated in a stable state, and the product purity can be prevented from being lowered. This is because it is possible to prevent breakthrough of the adsorption front (MTZ) in the adsorption cylinder, that is, breakthrough of the adsorbent, by changing the increase / decrease amount in the above order.
[0027]
Further, as shown in the present embodiment, the product gas compressor 2 is provided with a circulation path 4 having a circulation flow rate control valve 3, and the flow rate is adjusted from the product gas compressor 2 by adjusting the opening degree of the circulation flow rate control valve 3. By increasing or decreasing the amount of product gas flowing to the valve 6 side, or by using a flow control system using an unload valve, the flow control and pressure control are stable in comparison with the flow control using only the flow control valve 6. It can be performed.
[0028]
Furthermore, the flow rate of the product gas supplied from the product gas supply path 5 to the user is adjusted by the circulating flow control valve 3, and a pressure control valve is provided in the product gas supply path 5 instead of the flow rate control valve 6. It can also be configured to keep the pressure of the supplied product gas constant.
[0029]
That is, by opening the circulation flow rate control valve 3 and returning a part of the product gas discharged from the product gas compressor 2 to the suction side of the product gas compressor 2 through the circulation path 4, the product flowing in the product gas supply path 5 The amount of gas can be reduced, and conversely, the amount of product gas flowing through the product gas supply path 5 can be increased by closing the circulation flow rate control valve 3. If the opening degree is set, the flow rate of the product gas can be adjusted to a desired flow rate only by adjusting the opening degree of the circulation flow rate control valve 3. By providing a pressure control valve in the product gas supply path 5, the product gas can be supplied to the user at a substantially constant pressure regardless of the flow rate of the product gas.
[0030]
【The invention's effect】
As described above, according to the operation method of the pressure fluctuation adsorption separation device of the present invention, the product gas purity can be shifted to the decrease operation or the increase operation while the purity of the product gas is maintained at a predetermined value, and the product gas flow rate change can be performed at the use destination. Can be carried out easily and smoothly according to the amount of consumption.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of a device configuration for carrying out the present invention.
FIG. 2 is a diagram showing a relationship among an operation mode of the PSA device when shifting to a weight reduction operation, a flow rate setting value of a flow rate control valve, and an actual flow rate of product oxygen.
FIG. 3 is a diagram showing a relationship among an operation mode, a flow rate set value, and an actual flow rate when similarly shifting to a weight reduction operation.
FIG. 4 is a diagram showing a relationship among an operation mode, a flow rate set value, and an actual flow rate when shifting to an increase operation.
FIG. 5 is a diagram showing a relationship among an operation mode, a flow rate set value, and an actual flow rate when similarly shifting to an increase operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... PSA apparatus, 2 ... Product gas compressor, 3 ... Circulation flow control valve, 4 ... Circulation path, 5 ... Product gas supply path, 6 ... Control valve, 7 ... Controller, F ... Flow meter, P ... Pressure gauge
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32644094A JP3623814B2 (en) | 1994-12-27 | 1994-12-27 | Operation method of pressure fluctuation adsorption separation device |
US08/578,224 US5704964A (en) | 1994-12-27 | 1995-12-26 | Pressure swing adsorption process |
CN95109999A CN1091630C (en) | 1994-12-27 | 1995-12-27 | Pressure swing adsorptions eparating method |
CNB011435305A CN1200759C (en) | 1994-12-27 | 2001-12-07 | Pressure variation adsorption separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32644094A JP3623814B2 (en) | 1994-12-27 | 1994-12-27 | Operation method of pressure fluctuation adsorption separation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08173745A JPH08173745A (en) | 1996-07-09 |
JP3623814B2 true JP3623814B2 (en) | 2005-02-23 |
Family
ID=18187833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32644094A Expired - Fee Related JP3623814B2 (en) | 1994-12-27 | 1994-12-27 | Operation method of pressure fluctuation adsorption separation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623814B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5171697B2 (en) * | 2009-03-11 | 2013-03-27 | 株式会社アドバン理研 | Pressure swing adsorption gas generator |
JP5325937B2 (en) * | 2011-06-15 | 2013-10-23 | 株式会社日立産機システム | Gas separation device |
JP5039861B1 (en) * | 2012-01-30 | 2012-10-03 | 住友精化株式会社 | Product gas supply method and product gas supply system |
-
1994
- 1994-12-27 JP JP32644094A patent/JP3623814B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08173745A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0932439B1 (en) | Closed-loop feedback control for oxygen concentrator | |
US6348082B1 (en) | Gas fractionalization system and associated method | |
US5258056A (en) | PSA system with product turndown and purity control | |
US5917135A (en) | Gas concentration sensor and control for oxygen concentrator utilizing gas concentration sensor | |
EP2210640B1 (en) | Oxygen concentrator | |
US5704964A (en) | Pressure swing adsorption process | |
US4168149A (en) | Gas separation | |
KR100554777B1 (en) | Pressure swing adsorption apparatus and method | |
US5042994A (en) | Control of pressure swing adsorption operations | |
JP3623814B2 (en) | Operation method of pressure fluctuation adsorption separation device | |
KR101969614B1 (en) | Product gas supply method and product gas supply system | |
JP5864994B2 (en) | Gas separation apparatus and method | |
JP2004344241A (en) | Oxygen concentrator and method of controlling the same | |
JPS6217008A (en) | Concentrating method or nitrogen utilizing pressure swing adsorption | |
JP2007054678A (en) | Stabilization method for stabilizing concentration of gas and gas concentrator | |
JPH10118439A (en) | Gas separating device based on psa process | |
JPH08173744A (en) | Method for controlling supply amount of product gas in pressure variation adsorption separator | |
JP2003286009A (en) | Oxygen concentrator | |
JPH05277322A (en) | Reduced operation of pressure swing adsorber | |
JPS6247802B2 (en) | ||
JPH0231814A (en) | Gas separation device | |
JP2003119004A (en) | Apparatus for concentrating oxygen | |
JPH072205B2 (en) | Pressure fluctuation adsorption device reducing operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040618 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040916 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041126 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |