JP3623339B2 - Ozone water production apparatus and production method - Google Patents

Ozone water production apparatus and production method Download PDF

Info

Publication number
JP3623339B2
JP3623339B2 JP17724797A JP17724797A JP3623339B2 JP 3623339 B2 JP3623339 B2 JP 3623339B2 JP 17724797 A JP17724797 A JP 17724797A JP 17724797 A JP17724797 A JP 17724797A JP 3623339 B2 JP3623339 B2 JP 3623339B2
Authority
JP
Japan
Prior art keywords
water
ozone water
anode
ozone
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17724797A
Other languages
Japanese (ja)
Other versions
JPH1121684A (en
Inventor
隆 谷岡
喜之 西村
三佐人 品川
充夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP17724797A priority Critical patent/JP3623339B2/en
Publication of JPH1121684A publication Critical patent/JPH1121684A/en
Application granted granted Critical
Publication of JP3623339B2 publication Critical patent/JP3623339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はオゾン水の製造装置及び製造方法に関し、詳細にはオゾンが溶解しているオゾン水を水の電気分解によって製造するにあたり、目標とするオゾン濃度に応じて効率よくオゾン水を製造することのできる装置と方法に関するものである。
【0002】
【従来の技術】
オゾンは強力な酸化力を有していることから、殺菌,消毒,脱色,脱臭,酸化分解や酸化処理等、様々な分野で利用されており、オゾンを溶解しているオゾン水は、オゾンガスに比べて安全で利用し易いという理由でその需要が増加している。
【0003】
オゾン水を製造する方法としては、まずオゾンガスを生成し、次いでオゾンガスと水を混合させて溶解させるオゾン曝気法が知られている。但し、オゾンガスは水への溶解効率が低いために、せっかく高濃度のオゾンガスを生成しても、その10〜20%程度しか有効に利用することができず、残りのオゾンガスはオゾン分解触媒で無害化処理して大気中に放出されることが一般的である。しかも、上記オゾン曝気法で得られるオゾン水濃度は2,3ppm程度であることから、大腸菌の殺菌や植物の活性化等には効果的であっても、他の抗生の強い細菌の殺菌にはあまり効果がなく、また漂白や脱臭にも大きな効果を期待することはできない。
【0004】
そこで、特開平8−134677号公報に開示されている様に、水電解法により高濃度のオゾン水を製造できる装置が開発されている。図1に示す様に、上記製造装置は、固形電解質膜1を介して陽極室と陰極室を設け、陽極室と陰極室には夫々金網からなる電極14,24と概略菱形の開口部を有するラス網13,23とが上記固形電解質膜側から順次配設されて通水路が形成されることにより構成されている。尚、図1において11,21は電極端子、12,22は給電板、15,25はジャケット、16,26は水流入口、17,27は(オゾン)水流出口を夫々示す。上記装置によれば、オゾンガスの無害化処理を必要とせず、水道水などを直接電気分解してオゾン水を製造することが可能であり、工業的に望まれている5ppm以上の高濃度オゾン水を製造することが可能となる。
【0005】
但し、オゾン水の製造装置としては、高い濃度のオゾン水だけでなく、低い濃度のオゾン水を製造することも要求されることが一般的である。電解時の電流密度とオゾン濃度には相関関係があることが知られており、低濃度のオゾン水を得るには、電流密度を低くすればよい。但し、電流密度を低く設定すると、オゾンの生成に必要な電流の利用効率が著しく下がり、オゾン水濃度の広い範囲において効率の良いオゾン水生成ができないことから、改善の余地を残していた。
【0006】
図2は、電流密度とオゾン水濃度の関係を示すグラフであり、電流密度がおよそ0.5A/cm 以上の範囲では、オゾン水濃度はほぼ電流密度に比例していることが分かる。但し、比例関係を示す直線は原点を通る直線ではなく、電流密度がおよそ0.5A/cm 未満になるとオゾン水濃度は極端に低くなり、0.3A/cm 未満ではほとんどオゾン水が生成されなくなっている。具体的には、例えば濃度が10mg/Lのオゾン水は約0.8A/cm の電流密度で得られるが、その半分の濃度のオゾン水を得るには、電流密度も半分(0.4A/cm )にすればよいというのではなく、約4分の3の0.6A/cm 程度の電流密度が必要である。
【0007】
また、図3はオゾン水1gを生成するのに消費される電力(以下、オゾン収率という)と電流密度の関係を示すグラフである。低電流密度条件(例えば、0.4A/cm 、オゾン水濃度では4mg/L以下)では、極端にオゾン収率が大きな値となり、オゾン水の生成効率が悪くなることが分かる。
【0008】
この様に、電流密度を低くすれば低濃度のオゾン水を得ることは可能であるが、低電流密度条件ではオゾン水生成時の電流効率(実際にオゾン生成に利用された電流値/印加電流値)が悪くなり、生産効率は極めて低くなる。
【0009】
高い電流密度で低濃度のオゾン水を生成する方法としては、オゾン水製造装置に供給する水の量を増量することが考えられる。但し、電解槽内には図1に示す様に電極用金網とラス網が密入されていることから流路抵抗が高く、供給水量には制約があることから、最適供給水量を低濃度のオゾン水に合わせると、高濃度のオゾン水を製造する場合の供給水量を少なくせざるを得ず、高濃度のオゾン水を製造する際の生産効率が低下してしまう。
【0010】
そこで、一旦、高濃度のオゾン水を生成し、これを水で希釈して低濃度オゾン水を製造する方法が採用されているが、水を混合して希釈する際にオゾンが分解し易く、希釈率以下にオゾン水濃度が低下するので必ずしも効率の良い方法とは言えない。
【0011】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は低濃度のオゾン水であっても効率よく製造することのできるオゾン水の製造装置及び製造方法を提供しようとするものである。
【0012】
【課題を解決するための手段】
上記課題を解決した本発明に係るオゾン水の製造装置とは、固形電解質膜を介して陽極室と陰極室を設け、陽極室と陰極室には夫々通水路を形成してなるオゾン水の製造装置において、前記陽極室側の電極が、通水方向に分割されて相互に電気的に絶縁された複数の電極セグメントからなることを要旨とするものであり、前記陰極室側の電極も通水方向に分割されて相互に電気的に絶縁された複数の電極セグメントから形成することが望ましい。
【0013】
尚、上記オゾン水の製造装置を詳細に説明すると、固形電解質膜の一方面側にオゾン発生触媒機能を有した金網よりなる陽極電極を配設し、他面側に金網よりなる陰極電極を配設し、上記固形電解質膜の陽極電極側と陰極電極側とには、陽極電極を覆う陽極ジャケットと、陰極電極を覆う陰極ジャケットとを設け、上記陽極ジャケットと陰極ジャケットとには、原料水が該陽極ジャケット内及び陰極ジャケット内を流過するようになす流入口と流出口とを夫々設け、上記陽極電極と陰極電極との間に直流電圧を印加してなるオゾン水の製造装置であって、上記陽極電極が、通水方向に分割されて相互に電気的に絶縁された複数の電極セグメントからなるオゾン水製造装置である。
【0014】
また上記課題を解決した本発明に係るオゾン水の製造方法とは、固形電解質膜を介して陽極室と陰極室を設け、陽極室と陰極室には夫々通水路を形成してなるオゾン水の製造装置を用いてオゾン水を製造するにあたり、前記陽極室側の電極を通水方向に絶縁的に複数に分割し、オゾン水の目標濃度に応じて通電する陽極電極セグメントの数を変更することを要旨としている。低濃度のオゾン水を製造するにあたっては一部の陽極電極セグメントに通電すればよいが、この場合、通水方向上流側の電極セグメントのみに通電することが望ましく、電流密度は0.5A/cm 以上で電解を行うことが推奨される。
【0015】
更に、専ら通水方向上流側の陽極電極セグメントに通電することによりオゾン水を製造するにあたり、長期間の使用によりオゾン水の生成効率が低下した後は、陽極室側の通水方向を反対にすると共に、反対にされた該通水方向の上流側の陽極電極セグメントに通電してオゾン水の製造を行なうことが望ましい。
【0016】
【発明の実施の形態及び実施例】
図4は、本発明に係る製造装置の代表例を示す概略説明図であり、陽極室側は2つの陽極電極セグメント10a,10bに分割されている。各陽極電極セグメントは陽極端子11a,11b、陽極給電体12a,12b、ラス網(Ti製グレイチング)13a,13b、貴金属触媒14a,14bから構成されており、夫々の電極セグメントは相互に電気的に絶縁されている。従って、高濃度のオゾン水を製造する場合には、両方の陽極電極セグメントを使用し、低濃度のオゾン水を製造する場合には、片側の陽極電極セグメントを用いることにより、高い電流密度を維持したままで、電解を行うことがことができる。尚、図4において、15は陽極ジャケット、16は陽極側水流入口、17はオゾン水出口、21は陰極端子、22は陰極給電板、23はラス網(Ti製グレイチング)、24は触媒、25は陰極ジャケット、26は陰極側水流入口、27は陰極水出口、30は直流電源を夫々示す。
【0017】
尚、直流電源30の陽極側と陽極側電極端子は、スイッチ等の電気的な接続手段を介して接続すれば良く、例えばマグネティックコンタクター等の電気的な切り替え手段を採用すれば陽極セグメントの切り替えが容易にできる。
【0018】
本発明によれば、目的とする濃度に応じて予め陽極電極を複数に分割しておけば、低濃度のオゾン水を製造する場合であっても、0.5A/cm 以上の最適な電流密度条件を採用することができるので、オゾンの発生効率を低下させることなく低濃度のオゾン水を製造することができ、低濃度から高濃度まで広い範囲に亘り高効率でオゾン水が製造できる。
【0019】
また陽極電極が相互に電気的に絶縁された複数個の電極セグメントに分割されて、夫々に陽極端子が取り付けられているので、陽極端子と陽極給電体の先端までの距離が短くなり、通電した際の電気抵抗によるオーム損が低減されるという副次的効果も得られる。
【0020】
図5は、陰極セグメントも上流側と下流側に2つのセグメントに分割した例を示す概略図である。通電する陽極セグメント10a (10b)に対面する陰極セグメント20a (20b)にだけ通電することにより電流効率はより一層向上する。
【0021】
尚、一部の陽極電極セグメントに通電するにあたっては、通水方向上流側の電極セグメントのみに通電することが推奨される。陽極側に供給される水の流れ方向に対して、上流側に配置された電極セグメントに通電して水電解によりオゾン水を生成すれば、通電していない下流側は未溶解のオゾンと水の溶解促進部として機能し、より高濃度のオゾン水を生成することが可能である。従って、発生オゾンに対するオゾン溶解量を増加させることになり、オゾン水の生成効率が改善できる。陽極電極の通電部分を、図6に示す様に、上流側,中央部,下流側に分けて、供給水量を8リットル/分、電流密度を0.83A/cm 、電流通電面積を60cm の条件でオゾン水を製造した。夫々の場合のオゾン水濃度を表1に示す。
【0022】
【表1】

Figure 0003623339
【0023】
中央部や下流側に陽極側通電部を設けるよりも、上流側に陽極側通電部を設け、下流側を溶解混合部とすることにより、オゾン濃度が高くなることが分かる。換言すれば、上流側の陽極セグメントに通電することにより未溶解のオゾンを少なくすることができ、オゾン臭の少ないオゾン水が生成できる。
【0024】
前述の図3のグラフからも明らかな様にオゾン収率の観点から、オゾン水を製造する際の電流密度は0.5A/cm 以上が好ましく、0.7A/cm 以上がより好ましい。電流密度の上限は、高過ぎてもオゾン濃度は飽和して電流の利用効率は低下するので1.0A/cm 以下が望ましい。
【0025】
尚、陽極電極は白金等の貴金属触媒を用いることができるが、これらの触媒は、電解条件下ではオゾン生成に寄与するが電解を行わない場合には、オゾンを分解することが懸念される。上流側の陽極セグメントでオゾンを生成しても下流側の陽極セグメントでオゾンが分解されているおそれがある。そこで図4に示される装置において、上流側の陽極セグメント1(10a)に白金触媒を用い、下流側の陽極セグメント2(10b)の触媒に白金を用いた場合と、触媒を用いない場合において、オゾン濃度に差異があるか否かを調べた。結果は図8に示す様に、下流側の陽極セグメント2に白金触媒を配設した方が、オゾンの溶解を促進してオゾン水濃度は高くなっている。従って、上流側だけで電解を行い、下流側で電解を行わなくてもオゾンが分解されることはないものと考えられる。
【0026】
ところで、通電された電極に接触している高分子電解質膜は、長時間の電解に伴い、膜内に不純物が蓄積するものであり電解性能の低下が避けられない。酸性溶液を用いて洗浄するなどの再生処理により、高分子電解質膜の性能をある程度まで回復させることは可能である。しかしながら100%回復させることは困難であり、再生処理を繰り返しても徐々に性能は低下する。
【0027】
そこで本発明の製造方法において、低濃度のオゾン水を効率よく製造するにあたり、専ら通水方向上流側の陽極電極セグメントに通電してオゾン水を製造することによりオゾン水の生成効率が低下した場合には、陽極側のオゾンと水の溶解促進部として機能していた下流側に、通電部を変更して陽極側の水の流れ方向を逆にすることによって、未通電部で不純物が蓄積していない電解質膜部を電解部として使用すれば、初期状態のオゾン水生成能まで復元することが可能である。
【0028】
図7は、4つの陽極セグメント10a,10b,10c,10dを有するオゾン水製造装置を示す概略説明図であり、(A)は通水方向上流側の陽極セグメント10a,10bに陽極端子が設けられて通電する構成となっている。長期間の使用により高分子電解質膜の上流側部分の電解性能が低下することが予想される。その場合には、(B)に示す通り、(A)の場合ではオゾン水流出口であった17に原料水を供給すると共に、陽極端子を陽極セグメント10c,10dに設けて、通電すれば良い。尚、この際、陰極室側の通水方向は、そのままでも良く、図7(B)に示す通り、陽極側と同様に反対方向にしても良い。
【0029】
【発明の効果】
本発明は以上の様に構成されているので、低濃度のオゾン水であっても効率よく製造することのできるオゾン水の製造装置及び製造方法が提供できることとなった。
【図面の簡単な説明】
【図1】従来のオゾン水製造装置を示す概略説明図である。
【図2】電流密度とオゾン水濃度の関係を示すグラフである。
【図3】電流密度とオゾン収率の関係を示すグラフである。
【図4】本発明に係るオゾン水製造装置の代表例を示す概略説明図である。
【図5】本発明に係るオゾン水製造装置であって、陰極電極も分割された例を示す概略説明図である。
【図6】陽極電極の通電部の位置を示す説明図である。
【図7】本発明に係るオゾン水の製造方法の代表例を示す概略説明図である。
【図8】下流側の陽極セグメントに貴金属触媒を用いた場合と用いない場合における電流とオゾン水濃度の関係を示すグラフである。
【符号の説明】
11,21 電極端子
12,22 給電板
13,23 ラス網
14,24 電極
15,25 ジャケット
16,26 水流入口
17,27 (オゾン)水流出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for producing ozone water, and in particular, to produce ozone water efficiently according to a target ozone concentration in producing ozone water in which ozone is dissolved by electrolysis of water. It is related with the apparatus and method which can be performed.
[0002]
[Prior art]
Since ozone has a strong oxidizing power, it is used in various fields such as sterilization, disinfection, decoloration, deodorization, oxidative decomposition and oxidation treatment. Ozone water that dissolves ozone is converted into ozone gas. The demand is increasing because it is safer and easier to use.
[0003]
As a method for producing ozone water, an ozone aeration method is known in which ozone gas is first generated and then ozone gas and water are mixed and dissolved. However, since ozone gas has low dissolution efficiency in water, even if high concentration ozone gas is generated, only about 10 to 20% of it can be used effectively, and the remaining ozone gas is harmless by the ozone decomposition catalyst. Generally, it is released into the atmosphere after chemical treatment. Moreover, since the ozone water concentration obtained by the ozone aeration method is about 2-3 ppm, it is effective for sterilization of Escherichia coli, plant activation, etc. It is not very effective, and it cannot be expected to have a great effect on bleaching and deodorization.
[0004]
Therefore, as disclosed in JP-A-8-134777, an apparatus capable of producing high-concentration ozone water by a water electrolysis method has been developed. As shown in FIG. 1, the manufacturing apparatus includes an anode chamber and a cathode chamber with a solid electrolyte membrane 1 interposed therebetween, and the anode chamber and the cathode chamber have electrodes 14 and 24 each made of a metal mesh and a generally rhombic opening. The lath nets 13 and 23 are sequentially arranged from the solid electrolyte membrane side to form a water passage. In FIG. 1, 11 and 21 are electrode terminals, 12 and 22 are power supply plates, 15 and 25 are jackets, 16 and 26 are water inlets, and 17 and 27 are (ozone) water outlets. According to the above apparatus, ozone water can be produced by directly electrolyzing tap water etc. without requiring ozone gas detoxification treatment, and industrially desired high concentration ozone water of 5 ppm or more. Can be manufactured.
[0005]
However, as an apparatus for producing ozone water, it is generally required to produce not only high concentration ozone water but also low concentration ozone water. It is known that there is a correlation between the current density during electrolysis and the ozone concentration, and in order to obtain low-concentration ozone water, the current density may be lowered. However, if the current density is set low, the efficiency of use of the current necessary for generating ozone is remarkably reduced, and efficient ozone water generation cannot be performed in a wide range of ozone water concentration, leaving room for improvement.
[0006]
FIG. 2 is a graph showing the relationship between the current density and the ozone water concentration. It can be seen that the ozone water concentration is substantially proportional to the current density when the current density is approximately 0.5 A / cm 2 or more. However, the straight line indicating the proportional relationship is not a straight line passing through the origin. When the current density is less than about 0.5 A / cm 2, the concentration of ozone water becomes extremely low, and when it is less than 0.3 A / cm 2 , almost all ozone water is generated. It is no longer being done. Specifically, for example, ozone water having a concentration of 10 mg / L is obtained at a current density of about 0.8 A / cm 2 , but in order to obtain ozone water having a concentration of half that, the current density is also half (0.4 A / Cm 2 ), a current density of about three quarters of about 0.6 A / cm 2 is required.
[0007]
FIG. 3 is a graph showing the relationship between electric power consumed to generate 1 g of ozone water (hereinafter referred to as ozone yield) and current density. It can be seen that under low current density conditions (for example, 0.4 A / cm 2 and ozone water concentration of 4 mg / L or less), the ozone yield becomes extremely large and the generation efficiency of ozone water is deteriorated.
[0008]
In this way, it is possible to obtain low-concentration ozone water by reducing the current density. However, under low current density conditions, the current efficiency at the time of ozone water generation (current value actually used for ozone generation / applied current) Value) and production efficiency becomes extremely low.
[0009]
As a method of generating low concentration ozone water with high current density, it is conceivable to increase the amount of water supplied to the ozone water production apparatus. However, as shown in FIG. 1, since the electrode wire mesh and lath mesh are tightly packed in the electrolytic cell, the flow resistance is high and the supply water amount is limited. Therefore, the optimum supply water amount is reduced to a low concentration. If it matches with ozone water, the amount of supplied water in producing high-concentration ozone water must be reduced, and the production efficiency in producing high-concentration ozone water is reduced.
[0010]
Therefore, once a method of producing high-concentration ozone water and diluting it with water to produce low-concentration ozone water, ozone is easily decomposed when diluting by mixing water, Since the ozone water concentration falls below the dilution rate, it is not necessarily an efficient method.
[0011]
[Problems to be solved by the invention]
The present invention has been made paying attention to the circumstances as described above, and an object thereof is to provide an apparatus and a method for producing ozone water that can be efficiently produced even with low-concentration ozone water. To do.
[0012]
[Means for Solving the Problems]
The apparatus for producing ozone water according to the present invention that has solved the above problems is the production of ozone water in which an anode chamber and a cathode chamber are provided via a solid electrolyte membrane, and a water passage is formed in each of the anode chamber and the cathode chamber. The apparatus is characterized in that the electrode on the anode chamber side is composed of a plurality of electrode segments that are divided in the water flow direction and are electrically insulated from each other, and the electrode on the cathode chamber side is also water flow. It is desirable to form a plurality of electrode segments that are divided in directions and electrically insulated from each other.
[0013]
The ozone water production apparatus will be described in detail. An anode electrode made of a metal mesh having an ozone generation catalyst function is arranged on one side of the solid electrolyte membrane, and a cathode electrode made of a metal mesh is arranged on the other side. An anode jacket that covers the anode electrode and a cathode jacket that covers the cathode electrode are provided on the anode electrode side and the cathode electrode side of the solid electrolyte membrane, and raw water is supplied to the anode jacket and the cathode jacket. An apparatus for producing ozone water in which an inlet and an outlet are provided to flow through the anode jacket and the cathode jacket, respectively, and a DC voltage is applied between the anode electrode and the cathode electrode. The ozone water production apparatus is composed of a plurality of electrode segments in which the anode electrode is divided in the water flow direction and electrically insulated from each other.
[0014]
The method for producing ozone water according to the present invention that solves the above problems includes an anode chamber and a cathode chamber that are provided with a solid electrolyte membrane, and a water channel is formed in each of the anode chamber and the cathode chamber. When manufacturing ozone water using a manufacturing device, the electrode on the anode chamber side is divided into a plurality of insulating layers in the direction of water, and the number of anode electrode segments to be energized is changed according to the target concentration of ozone water. Is the gist. In producing low-concentration ozone water, it is sufficient to energize some anode electrode segments. In this case, it is desirable to energize only the electrode segment upstream in the water flow direction, and the current density is 0.5 A / cm. It is recommended to perform electrolysis at 2 or more.
[0015]
In addition, when producing ozone water by energizing the anode electrode segment exclusively upstream of the water flow direction, after the generation efficiency of the ozone water has decreased due to long-term use, the water flow direction on the anode chamber side is reversed. In addition, it is desirable to produce ozone water by energizing the anode electrode segment on the upstream side in the water flow direction which has been reversed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 4 is a schematic explanatory view showing a typical example of the manufacturing apparatus according to the present invention, and the anode chamber side is divided into two anode electrode segments 10a and 10b. Each anode electrode segment is composed of anode terminals 11a and 11b, anode feeders 12a and 12b, lath nets (Ti gratings) 13a and 13b, and noble metal catalysts 14a and 14b. The electrode segments are electrically connected to each other. Is insulated. Therefore, when producing high-concentration ozone water, both anode electrode segments are used, and when producing low-concentration ozone water, high current density is maintained by using one anode electrode segment. Thus, electrolysis can be performed. In FIG. 4, 15 is an anode jacket, 16 is an anode water inlet, 17 is an ozone water outlet, 21 is a cathode terminal, 22 is a cathode feeding plate, 23 is a lath net (Ti grating), 24 is a catalyst, Reference numeral 25 denotes a cathode jacket, 26 denotes a cathode side water inlet, 27 denotes a cathode water outlet, and 30 denotes a DC power source.
[0017]
The anode side and the anode side electrode terminal of the DC power supply 30 may be connected via an electrical connection means such as a switch. For example, if an electrical switching means such as a magnetic contactor is employed, the anode segment is switched. Can be easily done.
[0018]
According to the present invention, if the anode electrode is divided into a plurality according to the target concentration in advance, an optimum current of 0.5 A / cm 2 or more can be obtained even in the case of producing low-concentration ozone water. Since the density condition can be adopted, low-concentration ozone water can be produced without reducing ozone generation efficiency, and ozone water can be produced with high efficiency over a wide range from low concentration to high concentration.
[0019]
In addition, the anode electrode is divided into a plurality of electrode segments that are electrically insulated from each other, and the anode terminal is attached to each of them, so the distance between the anode terminal and the tip of the anode feeder is shortened, and the current is supplied. There is also a secondary effect that ohmic loss due to electrical resistance is reduced.
[0020]
FIG. 5 is a schematic view showing an example in which the cathode segment is also divided into two segments on the upstream side and the downstream side. Current efficiency is further improved by energizing only the cathode segment 20a (20b) facing the anode segment 10a (10b) to be energized.
[0021]
In addition, when energizing some anode electrode segments, it is recommended to energize only the electrode segment upstream in the water flow direction. If ozone water is generated by water electrolysis by energizing the electrode segment arranged on the upstream side with respect to the flow direction of water supplied to the anode side, the downstream side that is not energized is undissolved ozone and water. It functions as a dissolution promoting part and can generate ozone water with a higher concentration. Therefore, the amount of ozone dissolved in the generated ozone is increased, and the generation efficiency of ozone water can be improved. As shown in FIG. 6, the current-carrying part of the anode electrode is divided into an upstream side, a central part, and a downstream side, the supply water amount is 8 liters / minute, the current density is 0.83 A / cm 2 , and the current conduction area is 60 cm 2. Ozone water was produced under the conditions of Table 1 shows the concentration of ozone water in each case.
[0022]
[Table 1]
Figure 0003623339
[0023]
It can be seen that the ozone concentration is increased by providing the anode-side energization part on the upstream side and the downstream side as the dissolution and mixing part, rather than providing the anode-side energization part at the center or downstream side. In other words, undissolved ozone can be reduced by energizing the upstream anode segment, and ozone water with less ozone odor can be generated.
[0024]
As apparent from the graph of FIG. 3 described above, from the viewpoint of ozone yield, the current density when producing ozone water is preferably 0.5 A / cm 2 or more, and more preferably 0.7 A / cm 2 or more. The upper limit of the current density is preferably 1.0 A / cm 2 or less because the ozone concentration is saturated and the current use efficiency is lowered even if it is too high.
[0025]
In addition, although noble metal catalysts, such as platinum, can be used for an anode electrode, these catalysts contribute to ozone generation under electrolysis conditions, but when electrolysis is not performed, there is a concern that ozone may be decomposed. Even if ozone is generated in the upstream anode segment, ozone may be decomposed in the downstream anode segment. Therefore, in the apparatus shown in FIG. 4, when a platinum catalyst is used for the upstream anode segment 1 (10a) and platinum is used for the catalyst of the downstream anode segment 2 (10b), and when no catalyst is used, It was investigated whether there was a difference in ozone concentration. As a result, as shown in FIG. 8, when the platinum catalyst is disposed in the anode segment 2 on the downstream side, the ozone water concentration is promoted and the ozone water concentration is high. Therefore, it is considered that ozone is not decomposed even if electrolysis is performed only on the upstream side and electrolysis is not performed on the downstream side.
[0026]
By the way, the polymer electrolyte membrane in contact with the energized electrode accumulates impurities in the membrane with long-term electrolysis, and the degradation of electrolytic performance is inevitable. It is possible to recover the performance of the polymer electrolyte membrane to some extent by a regeneration treatment such as washing with an acidic solution. However, it is difficult to recover 100%, and the performance gradually deteriorates even if the reproduction process is repeated.
[0027]
Therefore, in the production method of the present invention, in efficiently producing low-concentration ozone water, the production efficiency of ozone water is reduced by producing ozone water by energizing the anode electrode segment upstream of the water flow direction exclusively. Impurities accumulate in the non-energized part by changing the energization part to reverse the flow direction of the water on the anode side to the downstream side that functioned as the ozone and water dissolution promoting part on the anode side. If the electrolyte membrane part that is not used is used as the electrolytic part, it is possible to restore the ozone water generating ability in the initial state.
[0028]
FIG. 7 is a schematic explanatory view showing an ozone water production apparatus having four anode segments 10a, 10b, 10c, and 10d. FIG. 7A shows an anode terminal provided on the anode segments 10a and 10b on the upstream side in the water flow direction. It becomes the composition which energizes. It is expected that the electrolytic performance of the upstream portion of the polymer electrolyte membrane will deteriorate due to long-term use. In that case, as shown in (B), in the case of (A), the raw water is supplied to 17 which is the ozone water outlet, and the anode terminals are provided in the anode segments 10c and 10d and energized. In this case, the water flow direction on the cathode chamber side may be left as it is, or as shown in FIG.
[0029]
【The invention's effect】
Since this invention is comprised as mentioned above, it came to be able to provide the manufacturing apparatus and manufacturing method of ozone water which can manufacture efficiently even if it is low concentration ozone water.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a conventional ozone water production apparatus.
FIG. 2 is a graph showing the relationship between current density and ozone water concentration.
FIG. 3 is a graph showing the relationship between current density and ozone yield.
FIG. 4 is a schematic explanatory view showing a typical example of an ozone water production apparatus according to the present invention.
FIG. 5 is a schematic explanatory view showing an example of the ozone water producing apparatus according to the present invention in which a cathode electrode is also divided.
FIG. 6 is an explanatory diagram showing a position of a current-carrying part of an anode electrode.
FIG. 7 is a schematic explanatory view showing a representative example of a method for producing ozone water according to the present invention.
FIG. 8 is a graph showing the relationship between current and ozone water concentration when a noble metal catalyst is used for the anode segment on the downstream side and when it is not used.
[Explanation of symbols]
11, 21 Electrode terminals 12, 22 Power feeding plates 13, 23 Lath mesh 14, 24 Electrodes 15, 25 Jacket 16, 26 Water inlet 17, 27 (Ozone) Water outlet

Claims (6)

固形電解質膜を介して陽極室と陰極室を設け、陽極室と陰極室には夫々通水路を形成してなるオゾン水の製造装置において、
前記陽極室側の電極が、通水方向に分割されて相互に電気的に絶縁された複数の電極セグメントからなることを特徴とするオゾン水の製造装置。
In an ozone water production apparatus in which an anode chamber and a cathode chamber are provided via a solid electrolyte membrane, and a water passage is formed in each of the anode chamber and the cathode chamber,
The apparatus for producing ozone water, wherein the electrode on the anode chamber side is composed of a plurality of electrode segments which are divided in the water flow direction and are electrically insulated from each other.
前記陰極室側の電極が通水方向に分割されて相互に電気的に絶縁された複数の電極セグメントからなる請求項1に記載の製造装置。The manufacturing apparatus according to claim 1, wherein the cathode chamber side electrode is composed of a plurality of electrode segments which are divided in the direction of water flow and are electrically insulated from each other. 固形電解質膜を介して陽極室と陰極室を設け、陽極室と陰極室には夫々通水路を形成してなるオゾン水の製造装置を用いてオゾン水を製造するにあたり、
前記陽極室側の電極を通水方向に絶縁的に複数に分割し、オゾン水の目標濃度に応じて通電する陽極電極セグメントの数を変更することを特徴とするオゾン水の製造方法。
In producing ozone water using an ozone water production apparatus in which an anode chamber and a cathode chamber are provided via a solid electrolyte membrane, and a water passage is formed in each of the anode chamber and the cathode chamber,
A method for producing ozone water, wherein the electrode on the anode chamber side is divided into a plurality of insulating layers in the direction of water and the number of anode electrode segments to be energized is changed according to the target concentration of ozone water.
一部の陽極電極セグメントに通電するにあたり、通水方向上流側の電極セグメントのみに通電する請求項3に記載の製造方法。The manufacturing method according to claim 3, wherein, when energizing some of the anode electrode segments, energization is performed only on the electrode segments on the upstream side in the water flow direction. 電流密度0.5A/cm 以上で電解を行う請求項3または4に記載の製造方法。The production method according to claim 3 or 4, wherein electrolysis is performed at a current density of 0.5 A / cm 2 or more. 専ら通水方向上流側の陽極電極セグメントに通電することによりオゾン水を製造するにあたり、
長期間の使用によりオゾン水の生成効率が低下した後は、陽極室側の通水方向を反対にすると共に、反対にされた該通水方向の上流側の陽極電極セグメントに通電してオゾン水の製造を行なう請求項4または5に記載の製造方法。
In producing ozone water by energizing the anode electrode segment exclusively upstream of the water flow direction,
After the generation efficiency of ozone water decreases due to long-term use, the water flow direction on the anode chamber side is reversed, and the anode electrode segment on the upstream side in the water flow direction that has been reversed is energized to generate ozone water. The manufacturing method of Claim 4 or 5 which manufactures.
JP17724797A 1997-07-02 1997-07-02 Ozone water production apparatus and production method Expired - Fee Related JP3623339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17724797A JP3623339B2 (en) 1997-07-02 1997-07-02 Ozone water production apparatus and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17724797A JP3623339B2 (en) 1997-07-02 1997-07-02 Ozone water production apparatus and production method

Publications (2)

Publication Number Publication Date
JPH1121684A JPH1121684A (en) 1999-01-26
JP3623339B2 true JP3623339B2 (en) 2005-02-23

Family

ID=16027737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17724797A Expired - Fee Related JP3623339B2 (en) 1997-07-02 1997-07-02 Ozone water production apparatus and production method

Country Status (1)

Country Link
JP (1) JP3623339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133592B2 (en) * 2007-05-09 2013-01-30 日科ミクロン株式会社 Ozone water generator
JP5791841B1 (en) * 2015-04-17 2015-10-07 日科ミクロン株式会社 Ozone water production equipment
CN108286057B (en) * 2018-02-10 2019-10-08 中氧科技(广州)有限公司 A kind of high efficiency anticorrosion ozone electrolytic preparation device
CN108411329B (en) * 2018-02-10 2019-10-08 中氧科技(广州)有限公司 A kind of rate-compatible self-loopa ozone electrolytic preparation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP4528840B2 (en) * 2008-02-29 2010-08-25 日科ミクロン株式会社 Ozone water generator

Also Published As

Publication number Publication date
JPH1121684A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3859358B2 (en) Electrolyzed water production equipment
JP3793229B2 (en) Single and dual electrolytic cells for aqueous solution deionization and their arrangement
US20070017801A1 (en) High electric field electrolysis cell
EP2035599B1 (en) Electrode, method of manufacture and use thereof
US20080156642A1 (en) System for the Disinfection of Low-Conductivity Liquids
JP2003512918A5 (en)
JP3623339B2 (en) Ozone water production apparatus and production method
JP4997678B2 (en) Electrodeionization equipment
JP2005105289A (en) Hydrogen water feeder
JP3448545B2 (en) Rapid oxidation equipment
KR20200134267A (en) Electrolyzer with bipolar electrode for wastewater treatment
KR20060007369A (en) High electric field electrolysis cell
JPH1147774A (en) Ozone water making apparatus
JP2009106884A (en) Water treatment and gas treatment apparatus
JP2002219464A (en) Electrolytic treatment method and system
JPH1133559A (en) Ozone water making apparatus
US11739433B2 (en) Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
KR100607868B1 (en) Ozone apparatus to connect electrolysis-core in parallel
JP2010207682A (en) Hydrazine-containing water treatment device and method
JP2007245120A (en) Electrically operated apparatus for producing deionized water
US6093305A (en) Method of producing hydrogen halide and oxygen
JPH0910769A (en) Production of electrolytic ion water
WO1999041204A1 (en) Electrolytic cell with porous membranes to concentrate anions
CN214991891U (en) Ozone water preparation facilities
DE19631842A1 (en) Device and method for the continuous electrolytic treatment of drinking and industrial water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees