JP3623192B2 - Continuous transmission control system for satellite communication system - Google Patents

Continuous transmission control system for satellite communication system Download PDF

Info

Publication number
JP3623192B2
JP3623192B2 JP2001380995A JP2001380995A JP3623192B2 JP 3623192 B2 JP3623192 B2 JP 3623192B2 JP 2001380995 A JP2001380995 A JP 2001380995A JP 2001380995 A JP2001380995 A JP 2001380995A JP 3623192 B2 JP3623192 B2 JP 3623192B2
Authority
JP
Japan
Prior art keywords
continuous
continuous transmission
transmission power
satellite
service area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380995A
Other languages
Japanese (ja)
Other versions
JP2003188785A (en
Inventor
佳子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001380995A priority Critical patent/JP3623192B2/en
Publication of JP2003188785A publication Critical patent/JP2003188785A/en
Application granted granted Critical
Publication of JP3623192B2 publication Critical patent/JP3623192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radio Relay Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、衛星を介して複数のサービス地域に通信または放送を行う衛星通信システムにおいて、各サービス地域の地域気象情報による信号強度減衰の補償・修正に供される制御方式に関するものである。
【0002】
【従来の技術】
従来の衛星通信システムでは、衛星通信または衛星放送において、通信または放送の電波減衰につながる電波障害量情報の1つである降雨減衰量を予め統計的手法によって推定し、目標とする回線稼動率を満たす降雨減衰量の推定値を見込んだ一定の強さの電波を、衛星から地球局あるいは地球局から衛星へ放射している。この降雨減衰量を考慮して余裕を持たせることを降雨マージンと称している。通信または放送の品質確保のために一定値の固定された電波障害量の降雨マージンを見込んでいる従来の通信・放送衛星は、推定値に基いているので、実際には降雨量が多くて推定による降雨マージンでは降雨減衰量を補償できない地域や、晴天で降雨マージンが必要でない地域が存在したりして、衛星の限りある電力を有効に用いていなかった。
【0003】
そこで、降雨減衰量の推定値を用いずに、実際の降雨量によって電力制御する衛星通信システムが、特開平5−41683号公報に示されている。
図5は、特開平5−41683号公報に掲載された従来の衛星通信・放送電力制御方式を示す構成図である。図において、A,B,Cは通信または放送電波を受信する複数、例えば3箇所のサービス地域、Sa,Sb,Scはサービス地域A,B,Cそれぞれの降雨等の地域気象情報、Sdは各サービス地域A,B,Cから寄せられた地域気象情報Sa,Sb,Scを集合した全気象情報、S1は送信電力制御情報、1は地域気象情報収集及び配信機関、2は演算装置、3は衛星管制局、4は衛星、5はマルチビームアンテナ、T1は送信電力制御情報S1を衛星4へ伝える電波、Ta,Tb,Tcは通信または放送の複数の各サービス地域A,B,C向けの通信電波または放送電波である。ここで、衛星内のアンテナに供給される供給送信電力総量のうち、各サービス地域A,B,Cのそれぞれに対して見込んだ降雨マージンに相当する送信電力が予めそれぞれ設定される。その各サービス地域に対して設定された降雨マージンに相当する送信電力の全サービス地域での合計を降雨減衰補償用送信電力としている。
【0004】
次に動作について説明する。各サービス地域A,B,Cの地域気象情報Sa,Sb,Scは地域気象情報収集及び配信機関1を経由して、各サービス地域A,B,Cの集合された気象情報Sdとして即時または間欠的に演算装置2へ入力される。演算装置2は、全気象情報Sdに基づき、降雨減衰補償用送信電力をサービス地域A,B,Cへ振分け配分する情報、即ち送信電力制御情報S1を導く。この時、降雨減衰補償用送信電力を降雨による回線品質の劣化がより大きいと予測されるサービス地域A,B,Cへ優先的に振分け配分する。演算装置2で得られた送信電力制御情報S1は衛星管制局3を経由して送信電力制御情報を伝える電波T1として衛星4に伝えられる。衛星4は電波T1により伝えられた送信電力制御情報S1に基づき各サービス地域A,B,C向けの送信電力を制御し、各サービス地域向けの通信電波または放送電波Ta,Tb,Tcをマルチビームアンテナ5から放射する。
【0005】
【発明が解決しようとする課題】
従来は以上のように構成されていたので、降雨量が多すぎると、降雨減衰補償用送信電力の限界を超えることがある。このように降雨量の増加による降雨減衰量を、送信電力を増加することで補償しきれない時には、回線品質が劣化して信号強度が減衰し、情報が欠落するという問題点があった。
【0006】
この発明は、上記のような問題点を解消するためになされたもので、降雨減衰補償用送信電力の限界を超える降雨量の場合でも、信号強度減衰を補償して情報をサービス地域に送達できる信頼性の高い衛星通信システムの連送制御方式を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係わる衛星通信システムの連送制御方式は、衛星を介して複数のサービス地域に通信または放送する際、通信または放送電波の減衰につながる前記各サービス地域の地域気象に係る電波障害量情報に基いて前記各サービス地域への連送回数を設定する連送回数設定手段と、その連送の時間間隔を設定する連送間隔設定手段と、この設定した連送回数と連送間隔になるように、前記衛星から前記各サービス地域への連送回数と連送間隔
を制御する連送回数連送間隔制御手段とを備えたことを特徴とするものである。
【0008】
また、この発明に係わる衛星通信システムの連送制御方式において、前記地域気象に係る電波障害量情報は降雨量であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償する送信電力を確保できない時、前記降雨減衰量を補償するような連送回数を設定することを特徴とするものである。
【0009】
また、この発明に係わる衛星通信システムの連送制御方式において、前記地域気象に係る電波障害量情報は降雨量であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償するような送信電力と連送回数を設定するものとし、前記衛星から前記各サービス地域への送信電力が前記設定した送信電力になるように構成したことを特徴とするものである。
【0010】
また、この発明に係わる衛星通信システムの連送制御方式における前記連送間隔設定手段は、前記地域気象の風速に基いて連送の時間間隔を設定することを特徴とするものである。
【0011】
【発明の実施の形態】
参考例1
図1は参考例1に係る衛星通信システムの要部を示す構成図である。図において、A,B,Cは通信または放送電波を受信する複数、例えば3箇所のサービス地域、Sa,Sb,Scはサービス地域A,B,Cそれぞれの地域気象情報、Sdは各サービス地域A,B,Cから寄せられた地域気象情報Sa,Sb,Scを集合した全気象情報、S10は各サービス地域A,B,Cの送信電力・連送制御情報、1は地域気象情報収集及び配信機関、3は衛星管制局、4は衛星、5はマルチビームアンテナ、10は演算・連送制御装置、T1は送信電力・連送制御情報S10のうちの各サービス地域A,B,Cへの送信電力制御情報を衛星4へ伝える電波、Ta,Tb,Tcは通信または放送の複数の各サービス地域A,B,C向けの通信電波または放送電波である。また、図2は参考例1に係る連送制御方式を説明するグラフで、横軸に降雨量(mm/h)、縦軸に連送回数(回)を示す。
【0012】
衛星を介して複数のサービス地域に通信または放送する際、各サービス地域の地域気象に係る電波障害によって、通信または放送電波の信号強度減衰が生じる。
【0013】
この参考例1では、例えば地域気象の降雨量が通信または放送電波の減衰を招く電波障害量であるとしている。このため、各サービス地域A,B,Cの地域気象の降雨量情報に基いて各サービス地域A,B,Cへの信号強度減衰を演算し、この信号強度減衰に応じて衛星内のアンテナへの供給送信電力総量を振分け配分して、信号強度減衰の補償または修正を行うように制御している。
【0014】
次にこの参考例1の動作について説明する。図1において、各サービス地域A,B,Cの地域気象情報Sa,Sb,Scは地域気象情報収集及び配信機関1を経由して、各サービス地域A,B,Cの集合された全気象情報Sdとして即時または間欠的に演算・連送制御装置10へ入力される。演算・連送制御装置10は、全気象情報Sdに基づき、降雨減衰補償用送信電力を各サービス地域A,B,Cへ配分する情報を作成する。
即ち、衛星内のアンテナへの供給送信電力総量には、各サービス地域A,B,Cの降雨減衰量を考慮して持たせた余裕(降雨マージン)に相当する送信電力があるが、その一部または全部を、全サービス地域に対する降雨減衰補償用送信電力とする。演算・連送制御装置10によって、降雨減衰補償用送信電力を、降雨による回線品質の劣化がより大きいと予測されるサービス地域A,B,Cへ優先的に振分け配分する情報、即ち送信電力制御情報を導く。そして全サービス地域の降雨減衰量を補償するような送信電力を確保できた場合、各サービス地域の連送回数を1回として連送制御情報を作成する。
【0015】
次に、いずれか1つまたは複数のサービス地域の降雨量が多くて、全サービス地域の降雨減衰量を補償する送信電力を降雨減衰補償用送信電力で確保できない場合について説明する。全気象情報Sdの降雨量情報に基いて、降雨減衰補償用送信電力を各サービス地域A,B,Cへ配分する情報を作成する際、例えば降雨量が少ないサービス地域から順にその降雨マージンに相当する送信電力を振分け配分していく。複数のサービス地域のうちでその降雨減衰量を補償する送信電力を確保できた地域に対しては、連送回数を1回として設定する。
また、複数のサービス地域のうちでその降雨減衰量を補償する送信電力を確保できないサービス地域に対しては、図2に示すように降雨量に従って2回以上の連送回数を設定して連送制御情報とする。このサービス領域の送信電力制御情報は送信電力の基準値でもよいし、降雨減衰補償用送信電力がまだあればこれに基準値をプラスした送信電力を設定してもよい。
【0016】
この様に設定した情報は、送信電力・連送制御情報S10として、衛星管制局3へ伝えられる。衛星管制局3では、連送制御情報に基づき連送制御が実施されるが、送信電力制御情報の方は電波T1として衛星4に伝えられ、衛星4は電波T1により伝えられた送信電力制御情報に基づいて、各サービス地域A,B,C向けの送信電力を制御し、各サービス地域向けの通信波または放送波Ta,Tb,Tcをマルチビームアンテナ5から放射する。
【0017】
連送制御は、図2に示されるように、降雨量が増大するに従って、最初は連送回数を1回として送信電力を増やすことで降雨減衰量を補償するが、降雨量による降雨減衰量を補償するような送信電力を確保できなくなると、連送回数を2回、3回と増やしていく。
【0018】
さらに、降雨量に応じて連送回数を増加させるだけではなく、例えば、送信する情報の重要度をも考慮して連送回数を設定することもできる。即ち、降雨率xの時のエラー率をαとし、エラー許容率をβとして、連送回数yが次式を満たすように設定する。
αy <β
ここでxは降雨率(mm/h)を意味し、エラー率α=BER(Bit Error Rate)であり、エラー許容率β=BERの許容限界値である。
降雨率xの時のエラー率をαとし、エラー許容率をβとして、予め演算・連送制御装置10に記憶しておけば、全降雨量情報Sdから降雨率xを演算することで連送回数yを設定することができる。
上記の式におけるエラー許容率βを、情報の重要度等に応じて設定すれば、連送回数yも情報の重要度に合わせて変化し、降雨減衰を補償できると共に、特に重要な情報を確実に通信することができる。
【0019】
また、上記の図2に基く連送制御では、連送回数が1回の時には、送信電力を増やすことで降雨減衰を補償し、連送回数が2回以上の時には、降雨量に対して一定の送信電力としている。これに対し、連送回数が2回以上の時にも降雨減衰を考慮して送信電力を変化させてもよい。連送回数が2回以上の時も送信電力を変化させることで、より降雨減衰に適した送信電力及び連送回数を設定することができ、確実に情報を送信できるとともに送信電力の節約を図ることができる。
【0020】
また、演算・連送制御装置10で送信電力・連送制御情報S10を作成する際、図3に示すように設定してもよい。図3は、1つのサービス地域の連送制御を示すもので、横軸に降雨量(mm/h)、縦軸に連送回数と送信電力を示している。グラフ内の実線は連送回数であり、点線は送信電力である。送信電力の最大値は、このサービス地域で確保できる所定の送信電力である。図3に示したグラフを利用して、ある降雨量の時にそのx軸の値からy軸の値である連送回数と送信電力とを決定する。この制御方式では、全サービス地域の降雨減衰量を補償する送信電力を降雨減衰補償用送信電力で確保できない場合に連送回数を増やすのではなく、ある地域でその時点の降雨量に応じて最適な送信電力と連送回数を設定する。このため、より降雨減衰に適した送信電力及び連送回数を設定することができ、確実に情報を送信できるとともに送信電力の節約を図ることができる。
【0021】
なお、地域気象情報Sa,Sb,Sc及び気象情報Sdの電波障害量情報としては、気象庁が提供するAMeDAS(アメダス)毎正時1時間降水量、レーダアメダス合成降水量、降水量の短時間予報等が考えられる。地域気象情報収集及び配信機関1としては、気象庁や日本気象協会、民間の気象情報会社等が考えられる。
また、降雨量の他に気象情報Sdに係る電波障害量情報としては、降雪量、風力、温度、湿度、濃霧、落雷等が考えられ、これらが原因となる電波障害量情報に対しても、連送回数を設定して連送することで、回線劣化を防ぐことができる衛星通信システムが得られる。
【0022】
実施の形態1
図4はこの発明の実施の形態1による衛星通信システムの連送制御方式を説明するグラフで、1つのサービス地域の連送の時間間隔制御を示すものであり、横軸に風速(km/h)、縦軸に連送間隔(分)を示す。
参考例 1では、連送制御を行う場合、連送の時間間隔をとらずに連続して行っていたが、この実施の形態1では、連送の時間間隔を設定して、所定時間置いてから連送するように制御している。ここで、衛星通信システムの構成や、連送回数の設定などは、参考例1と同様である。
【0023】
例えば、参考例1の演算・連送制御装置10で降雨減衰を補償するように連送回数を設定しても、風速が遅い場合には雨雲が停滞しており、何度送っても同じということになりかねない。このような場合には雨雲が移動してから連送を行うようにするため、この実施の形態では、風速に基いて時間間隔を設定している。即ち、図4に示すように風速が遅い場合には連送間隔を長く設定する。一方、風速が速い場合には雨雲の移動も速いので、連続して送っても、実際にはサービス地域内には複数の受信局があり、そのサービス地域内の前回とは異なる受信局に情報を送達することができる。従って、風速が速くなるにつれて連送間隔を短く設定する。この時の各サービス地域の風速は、図1に示したように、地域気象情報収集及び配信機関1に集められた各サービス地域A,B,Cの気象情報Sa,Sb,Scに含まれているはずであり、演算・連送制御装置10に送られる複数のサービス地域の地域気象情報を集合した気象情報Sdに含まれる。
またこの様に設定した連送の時間間隔の情報は、送信電力・連送制御情報S10として、衛星管制局3へ伝えられる。衛星管制局3では、連送間隔制御情報に基づき連送間隔制御が実施される。
このように、演算・連送制御装置10において、連送間隔を状況に応じて変化させることで、確実に情報を送信でき、衛星通信システムの信頼性を向上できる。
【0024】
なお、上記では風速に応じて連送間隔を変化させたが、通信電波が混み合う時間帯などの場合には連送の時間間隔を長く設定してもよい。また、例えば通信状況を一定時間毎に検知して、電波の込み合った状態が解消された時点で送信するように構成してもよい。
なお、上記では、複数のサービス地域の数をA,B,Cの3箇所にしているが、これに限るものではない。
【0025】
【発明の効果】
以上説明したように、この発明によれば、衛星を介して複数のサービス地域に通信または放送する際、通信または放送電波の減衰につながる前記各サービス地域の地域気象に係る電波障害量情報に基いて前記各サービス地域への連送回数を設定する連送回数設定手段と、その連送の時間間隔を設定する連送間隔設定手段と、この設定した連送回数と連送間隔になるように、前記衛星から前記各サービス地域への連送回数と連送間隔を制御する連送回数連送間隔制御手段とを備えたことにより、電波の減衰を送信電力で補償できない時でも情報を信頼性高くサービス地域に送達でき、さらに、前記衛星から前記各サービス地域への連送間隔を制御することにより、状況に適した連送制御を行なうことができ、信頼性を向上できる衛星通信システムの連送制御方式が得られる。
【0026】
また、前記地域気象に係る電波障害量情報は地域気象の降雨量情報であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償する送信電力を確保できない時、前記降雨減衰量を補償するような連送回数を設定することにより、降雨減衰を送信電力で補償できない時でも情報を信頼性高くサービス地域に送達できる衛星通信システムの制御方式が得られる。
【0027】
また、前記地域気象に係る電波障害量情報は地域気象の降雨量であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償するような送信電力と連送回数を設定するものとし、前記衛星から前記各サービス地域への送信電力が前記設定した送信電力になるように構成したことにより、降雨量に適した送信電力量に設定でき、送信電力の節約を図ることのできる衛星通信システムの連送制御方式が得られる。
【0028】
さらにまた、前記連送間隔設定手段は、前記地域気象の風速によって連送の時間間隔を設定することにより、状況に適した連送制御を行なうことができ、より信頼性を向上できる衛星通信システムの連送制御方式が得られる。
【図面の簡単な説明】
【図1】参考例1における衛星通信システムの要部を示す構成図である。
【図2】参考例1に係る制御方式を説明するもので、1つのサービス地域の降雨量に対する連送回数を示すグラフである。
【図3】参考例1に係る他の制御方式を説明するもので、1つのサービス地域の降雨量に対する連送回数及び送信電力を示すグラフである。
【図4】この発明の実施の形態1に係る制御方式を説明するもので、1つのサービス地域の風速に対する連送間隔を示すグラフである。
【図5】従来の衛星通信システムの要部を示す構成図である。
【符号の説明】
1 地域気象情報収集及び配信機関 3 衛星管制局
4 衛星 10 演算・連送制御装置
A,B,C 通信または放送のサービス地域
Sa、Sb、Sc 各サービス地域A、B、Cの地域気象情報
Sd 複数のサービス地域の地域気象情報を集合した気象情報
S10 送信電力・連送制御情報。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control system used for compensation / correction of signal intensity attenuation by regional weather information in each service area in a satellite communication system that communicates or broadcasts to a plurality of service areas via a satellite.
[0002]
[Prior art]
In conventional satellite communication systems, in satellite communication or satellite broadcasting, rainfall attenuation, which is one of radio wave interference information that leads to radio attenuation of communication or broadcasting, is estimated in advance by a statistical method, and the target line availability is determined. A radio wave of a certain strength that expects an estimated value of the amount of rain attenuation to be satisfied is radiated from the satellite to the earth station or from the earth station to the satellite. Giving a margin in consideration of this amount of rain attenuation is called a rain margin. The conventional communication / broadcasting satellite, which expects a fixed margin of radio interference to ensure the quality of communication or broadcasting, is based on the estimated value, so it actually estimates that there is a lot of rainfall. The rain margin due to has not been able to compensate for the amount of rain attenuation, and there were areas where the rain margin was not needed in fine weather, and the limited power of the satellite was not used effectively.
[0003]
Therefore, a satellite communication system in which power control is performed based on an actual rainfall amount without using an estimated value of the rain attenuation is disclosed in Japanese Patent Laid-Open No. 5-41683.
FIG. 5 is a block diagram showing a conventional satellite communication / broadcast power control system described in Japanese Patent Laid-Open No. 5-41683. In the figure, A, B, and C are a plurality of, for example, three service areas that receive communication or broadcast radio waves, Sa, Sb, and Sc are local weather information such as rainfall in each of the service areas A, B, and C, and Sd is each Total weather information obtained by gathering the local weather information Sa, Sb, Sc received from the service areas A, B, C, S1 is transmission power control information, 1 is a local weather information collection and distribution organization, 2 is a computing device, 3 is Satellite control station, 4 is a satellite, 5 is a multi-beam antenna, T1 is a radio wave that transmits transmission power control information S1 to the satellite 4, Ta, Tb, and Tc are for a plurality of communication or broadcast service areas A, B, and C Communication radio wave or broadcast radio wave. Here, transmission power corresponding to the rain margin expected for each of the service areas A, B, and C among the total transmission power supplied to the antenna in the satellite is set in advance. The total transmission power corresponding to the rain margin set for each service area in all service areas is used as the rain attenuation compensation transmission power.
[0004]
Next, the operation will be described. The local meteorological information Sa, Sb, Sc of each service area A, B, C is immediately or intermittently obtained as the aggregated weather information Sd of each service area A, B, C via the local meteorological information collection and distribution agency 1. Is input to the arithmetic unit 2. Based on the total weather information Sd, the arithmetic device 2 derives information for distributing and distributing rainfall attenuation compensation transmission power to the service areas A, B, and C, that is, transmission power control information S1. At this time, the transmission power for rain attenuation compensation is preferentially allocated to service areas A, B, and C where the degradation of the line quality due to rain is predicted to be greater. The transmission power control information S1 obtained by the arithmetic device 2 is transmitted to the satellite 4 as a radio wave T1 for transmitting the transmission power control information via the satellite control station 3. The satellite 4 controls transmission power for each service area A, B, C based on the transmission power control information S1 transmitted by the radio wave T1, and multi-beams communication radio waves or broadcast radio waves Ta, Tb, Tc for each service area. Radiates from the antenna 5.
[0005]
[Problems to be solved by the invention]
Conventionally, the configuration is as described above. If the amount of rainfall is excessive, the limit of the transmission power for rain attenuation compensation may be exceeded. Thus, when the amount of rain attenuation due to the increase in rainfall cannot be compensated for by increasing the transmission power, there is a problem that the line quality deteriorates, the signal strength is attenuated, and information is lost.
[0006]
The present invention has been made to solve the above-described problems, and even when the amount of rainfall exceeds the limit of transmission power for rain attenuation compensation, it is possible to compensate for signal strength attenuation and deliver information to a service area. It is an object to obtain a continuous transmission control method of a highly reliable satellite communication system.
[0007]
[Means for Solving the Problems]
The continuous transmission control method of the satellite communication system according to the present invention provides information on the amount of radio interference related to the local weather in each service area that leads to attenuation of communication or broadcast radio waves when communicating or broadcasting to a plurality of service areas via a satellite. Based on the above, the continuous transmission number setting means for setting the continuous transmission frequency to each service area, the continuous transmission interval setting means for setting the time interval of the continuous transmission, and the set continuous transmission frequency and continuous transmission interval . As described above, it is characterized by comprising continuous transmission number continuous interval control means for controlling the number of continuous transmissions from the satellite to each service area and the continuous transmission interval .
[0008]
Further, in the continuous transmission control system of the satellite communication system according to the present invention, the radio disturbance amount information related to the local weather is a rainfall amount, and the continuous transmission count setting means is configured to determine the local transmission frequency setting means for each service area. When the transmission power for compensating the rain attenuation amount due to the rainfall amount cannot be secured, the number of continuous transmissions is set so as to compensate for the rain attenuation amount.
[0009]
Further, in the continuous transmission control system of the satellite communication system according to the present invention, the radio disturbance amount information related to the local weather is a rainfall amount, and the continuous transmission count setting means is configured to determine the local transmission frequency setting means for each service area. The transmission power and the number of continuous transmissions are set so as to compensate for the rain attenuation due to the rainfall, and the transmission power from the satellite to each service area is set to the set transmission power. To do .
[0010]
Further, the continuous transmission interval setting means in the continuous transmission control system of the satellite communication system according to the present invention sets the continuous transmission time interval based on the wind speed of the local weather.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Reference Example 1
FIG. 1 is a configuration diagram illustrating a main part of a satellite communication system according to Reference Example 1 . In the figure, A, B, and C are a plurality of, for example, three service areas that receive communication or broadcast radio waves, Sa, Sb, and Sc are local weather information of service areas A, B, and C, and Sd is each service area A. , B, and C are all meteorological information gathered from local weather information Sa, Sb, and Sc, S10 is transmission power / continuous transmission control information for each service area A, B, and C, and 1 is local meteorological information collection and distribution Organization, 3 is a satellite control station, 4 is a satellite, 5 is a multi-beam antenna, 10 is a calculation / continuous transmission control device, T1 is a transmission power / continuous transmission control information S10 to each service area A, B, C Radio waves Ta, Tb, and Tc for transmitting transmission power control information to the satellite 4 are communication radio waves or broadcast radio waves for a plurality of service areas A, B, and C for communication or broadcasting. FIG. 2 is a graph for explaining the continuous transmission control method according to Reference Example 1 , in which the horizontal axis indicates the amount of rainfall (mm / h), and the vertical axis indicates the number of continuous transmissions (times).
[0012]
When communicating or broadcasting to a plurality of service areas via a satellite, signal strength attenuation of communication or broadcast radio waves occurs due to radio wave interference related to local weather in each service area.
[0013]
In the reference example 1 , for example, the rainfall amount in the local weather is the amount of radio interference that causes attenuation of communication or broadcast radio waves. For this reason, the signal intensity attenuation to each service area A, B, C is calculated based on the rainfall information of the local weather in each service area A, B, C, and to the antenna in the satellite according to this signal intensity attenuation. The total amount of transmission power to be distributed is distributed and distributed so as to compensate or correct the signal strength attenuation.
[0014]
Next, the operation of the reference example 1 will be described. In FIG. 1, the regional weather information Sa, Sb, Sc of each service area A, B, C is collected through the local weather information collection and distribution agency 1, and the total weather information of each service area A, B, C is collected. Sd is input to the calculation / continuous transmission control device 10 immediately or intermittently. The calculation / continuous transmission control device 10 creates information for allocating the transmission power for rain attenuation compensation to the service areas A, B, and C based on the total weather information Sd.
That is, the total transmission power supplied to the antenna in the satellite includes transmission power corresponding to a margin (rainfall margin) provided in consideration of the rain attenuation amount of each service area A, B, C. All or part of the transmission power is used for rain attenuation compensation for all service areas. Information that preferentially distributes and distributes the transmission power for rain attenuation compensation to the service areas A, B, and C that are predicted to have a greater degradation of the line quality due to the rain, that is, transmission power control. Guide information. If transmission power that compensates for rain attenuation in all service areas can be secured, continuous transmission control information is created with the number of continuous transmissions in each service area set to one.
[0015]
Next, a case where there is a large amount of rainfall in any one or a plurality of service areas, and transmission power for compensating for rain attenuation in all service areas cannot be secured by transmission power for rain attenuation compensation will be described. When creating information for allocating transmission power for rain attenuation compensation to each service area A, B, C based on the rainfall information of all weather information Sd, for example, corresponding to the rain margin in order from the service area with the least rainfall The transmission power to be distributed is distributed and distributed. The number of consecutive transmissions is set to one for a region where transmission power for compensating for the rain attenuation amount can be secured among a plurality of service regions.
Also, for service areas that cannot secure transmission power to compensate for the rain attenuation amount among a plurality of service areas, as shown in FIG. Control information. The transmission power control information of this service area may be a reference value of transmission power, or if there is still rain attenuation compensation transmission power, a transmission power obtained by adding the reference value to this may be set.
[0016]
The information set in this way is transmitted to the satellite control station 3 as transmission power / continuous transmission control information S10. In the satellite control station 3, continuous transmission control is performed based on the continuous transmission control information, but the transmission power control information is transmitted to the satellite 4 as the radio wave T1, and the satellite 4 transmits the transmission power control information transmitted by the radio wave T1. Based on the above, the transmission power for each service area A, B, C is controlled, and communication waves or broadcast waves Ta, Tb, Tc for each service area are radiated from the multi-beam antenna 5.
[0017]
As shown in FIG. 2, the continuous transmission control compensates for the rain attenuation by initially increasing the transmission power by increasing the transmission power to 1 as the rainfall increases. If transmission power that compensates cannot be secured, the number of continuous transmissions is increased to 2 or 3.
[0018]
Furthermore, not only can the number of continuous transmissions be increased in accordance with the amount of rainfall, but also the number of continuous transmissions can be set in consideration of the importance of information to be transmitted, for example. That is, the error rate at the rainfall rate x is set to α, the error allowable rate is set to β, and the continuous transmission count y is set to satisfy the following equation.
α y
Here, x means the rainfall rate (mm / h), the error rate α = BER (Bit Error Rate), and the error allowable rate β = the allowable limit value of BER.
If the error rate at the time of the rainfall rate x is α and the allowable error rate is β and stored in advance in the calculation / continuous transmission control device 10, it is continuously transmitted by calculating the rainfall rate x from the total rainfall information Sd. The number of times y can be set.
If the error tolerance β in the above equation is set according to the importance of the information, etc., the number of consecutive transmissions y will also change according to the importance of the information, and it can compensate for rain attenuation and ensure particularly important information. Can communicate with.
[0019]
In the continuous transmission control based on FIG. 2 described above, when the number of continuous transmissions is one, the transmission power is increased to compensate for rain attenuation, and when the number of continuous transmissions is two or more, the rainfall amount is constant. As the transmission power. On the other hand, the transmission power may be changed in consideration of rain attenuation even when the number of continuous transmissions is two or more. By changing the transmission power even when the number of consecutive transmissions is two or more, it is possible to set the transmission power and the number of consecutive transmissions more suitable for rain attenuation, so that information can be transmitted reliably and transmission power can be saved. be able to.
[0020]
Further, when the transmission power / continuous transmission control information S10 is created by the arithmetic / continuous transmission control device 10, it may be set as shown in FIG. FIG. 3 shows continuous transmission control in one service area, with the horizontal axis representing rainfall (mm / h) and the vertical axis representing the number of continuous transmissions and transmission power. The solid line in the graph is the number of continuous transmissions, and the dotted line is the transmission power. The maximum value of the transmission power is a predetermined transmission power that can be secured in this service area. Using the graph shown in FIG. 3, the number of continuous transmissions and transmission power, which are y-axis values, are determined from the x-axis values at a certain amount of rainfall. This control method does not increase the number of continuous transmissions when the transmission power for compensating the rain attenuation in all service areas cannot be secured by the transmission power for rain attenuation compensation, but it is optimal according to the rainfall at that time in a certain area. Set the appropriate transmission power and number of continuous transmissions. For this reason, transmission power and the number of continuous transmissions more suitable for rain attenuation can be set, information can be transmitted reliably, and transmission power can be saved.
[0021]
In addition, as radio wave interference amount information of regional weather information Sa, Sb, Sc and weather information Sd, AMeDAS (Amedas) hourly hourly precipitation provided by the Japan Meteorological Agency, radar AMeDAS combined precipitation, precipitation short-term forecast Etc. are considered. As the regional meteorological information collection and distribution organization 1, the Japan Meteorological Agency, Japan Meteorological Association, private weather information companies, etc. can be considered.
In addition to the rainfall amount, the radio wave interference amount information related to the weather information Sd may include snowfall, wind power, temperature, humidity, heavy fog, lightning strike, etc. By setting the number of times of continuous transmission and performing continuous transmission, a satellite communication system capable of preventing line deterioration can be obtained.
[0022]
Embodiment 1 FIG .
FIG. 4 is a graph for explaining the continuous transmission control method of the satellite communication system according to the first embodiment of the present invention, showing the time interval control of continuous transmission in one service area, and the horizontal axis represents wind speed (km / h). ), The vertical interval indicates the continuous transmission interval (minutes).
In Reference Example 1 , when continuous transmission control is performed, continuous transmission is performed without taking a continuous transmission time interval. However, in the first embodiment, a continuous transmission time interval is set and a predetermined time is set. It is controlled to send continuously. Here, the configuration of the satellite communication system, the setting of the number of continuous transmissions, and the like are the same as those in Reference Example 1 .
[0023]
For example, even if the calculation / continuous transmission control device 10 of Reference Example 1 sets the number of continuous transmissions so as to compensate for rain attenuation, the rain cloud is stagnant when the wind speed is slow, and it is the same no matter how many times it is sent. That could be a problem. In such a case, in order to perform continuous sending after the rain cloud moves, in this embodiment, the time interval is set based on the wind speed. That is, as shown in FIG. 4, when the wind speed is slow, the continuous transmission interval is set long. On the other hand, when the wind speed is high, the movement of the rain clouds is fast, so even if it is sent continuously, there are actually multiple receiving stations in the service area, and information is received at a receiving station different from the previous one in that service area. Can be delivered. Therefore, the continuous transmission interval is set shorter as the wind speed increases. The wind speed of each service area at this time is included in the weather information Sa, Sb, Sc of each service area A, B, C collected in the local weather information collection and distribution organization 1, as shown in FIG. The weather information Sd is a set of regional weather information of a plurality of service areas sent to the calculation / continuous transmission control device 10.
The information on the continuous transmission time interval set in this way is transmitted to the satellite control station 3 as transmission power / continuous transmission control information S10. In the satellite control station 3, continuous transmission interval control is performed based on the continuous transmission interval control information.
Thus, in the calculation / continuous transmission control device 10, by changing the continuous transmission interval according to the situation, information can be transmitted reliably, and the reliability of the satellite communication system can be improved.
[0024]
In the above description, the continuous transmission interval is changed according to the wind speed. However, the continuous transmission time interval may be set longer in a time zone where communication radio waves are crowded. Further, for example, the communication status may be detected at regular time intervals and transmitted when the crowded state is resolved.
In the above description, the number of service areas is three, A, B, and C. However, the present invention is not limited to this.
[0025]
【The invention's effect】
As described above, according to the present invention, when communicating or broadcasting to a plurality of service areas via a satellite, the radio disturbance amount information related to the local weather in each service area that leads to attenuation of communication or broadcast radio waves is used. The continuous transmission number setting means for setting the number of continuous transmissions to each service area, the continuous transmission interval setting means for setting the time interval of the continuous transmission, and the set number of continuous transmissions and the continuous transmission interval. And a continuous transmission time continuous interval control means for controlling the continuous transmission frequency and the continuous transmission interval from the satellite to each service area, so that even when the attenuation of radio waves cannot be compensated by the transmission power, the information can be reliable. higher be delivered to the service area, further, by controlling the successive sending interval of the each service area from the satellite, it is possible to perform continuous transmission control appropriate to the situation, the satellite communication system capable of improving reliability Continuous transmission control system is obtained.
[0026]
Further, the radio wave interference amount information related to the local weather is rainfall information of the local weather, and the continuous transmission number setting means transmits to each service area to compensate for the rain attenuation amount due to the rainfall of the region. A control system for a satellite communication system that can reliably deliver information to a service area even when rain attenuation cannot be compensated by setting the number of continuous transmissions to compensate for the rain attenuation when power cannot be secured. Is obtained.
[0027]
Further, the radio disturbance amount information related to the local weather is the rainfall amount of the local weather, and the continuous transmission number setting means compensates the rain attenuation amount due to the rainfall amount of the region for each service area. The transmission power and the number of continuous transmissions shall be set, and the transmission power from the satellite to each service area is configured to be the set transmission power, so that it can be set to a transmission power amount suitable for the rainfall amount, A continuous transmission control method for a satellite communication system capable of saving transmission power can be obtained .
[0028]
Furthermore, the continuous transmission interval setting means can perform continuous transmission control suitable for the situation by setting the continuous transmission time interval according to the wind speed of the local weather, and can further improve reliability. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a main part of a satellite communication system in Reference Example 1. FIG.
FIG. 2 is a graph illustrating the control method according to Reference Example 1 , and is a graph showing the number of times of continuous transmission with respect to rainfall in one service area.
FIG. 3 is a graph for explaining another control method according to Reference Example 1 and showing the number of continuous transmissions and transmission power with respect to rainfall in one service area.
FIG. 4 is a graph for explaining a control method according to Embodiment 1 of the present invention, and is a graph showing a continuous transmission interval with respect to wind speed in one service area;
FIG. 5 is a block diagram showing a main part of a conventional satellite communication system.
[Explanation of symbols]
1 Regional meteorological information collection and distribution organization 3 Satellite control station 4 Satellite 10 Arithmetic / continuous transmission control device A, B, C Communication or broadcasting service area Sa, Sb, Sc Local weather information Sd of each service area A, B, C Weather information S10 that collects regional weather information of a plurality of service areas. Transmission power / continuous transmission control information.

Claims (4)

衛星を介して複数のサービス地域に通信または放送する際、通信または放送電波の減衰につながる前記各サービス地域の地域気象に係る電波障害量情報に基いて前記各サービス地域への連送回数を設定する連送回数設定手段と、その連送の時間間隔を設定する連送間隔設定手段と、この設定した連送回数と連送間隔になるように、前記衛星から前記各サービス地域への連送回数と連送間隔を制御する連送回数連送間隔制御手段とを備えたことを特徴とする衛星通信システムの連送制御方式。When communicating or broadcasting to multiple service areas via satellite, set the number of continuous transmissions to each service area based on the radio disturbance amount information related to the local weather of each service area that leads to attenuation of communication or broadcast radio waves And a continuous transmission interval setting means for setting a time interval of the continuous transmission, and a continuous transmission from the satellite to each of the service areas so that the set number of continuous transmissions and the continuous transmission interval are obtained. A continuous transmission control method for a satellite communication system, comprising: a continuous transmission number continuous interval control means for controlling a frequency and a continuous transmission interval . 前記地域気象に係る電波障害量情報は降雨量であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償する送信電力を確保できない時、前記降雨減衰量を補償するような連送回数を設定することを特徴とする請求項1記載の衛星通信システムの連送制御方式。When the radio wave interference amount information related to the regional weather is the rainfall amount, the continuous transmission count setting means cannot secure transmission power for the service area to compensate for the rain attenuation amount due to the rainfall amount in the region, The continuous transmission control method for a satellite communication system according to claim 1, wherein the number of continuous transmissions is set so as to compensate for the rain attenuation. 前記地域気象に係る電波障害量情報は降雨量であり、前記連送回数設定手段は、前記各サービス地域に対し、その地域の前記降雨量による降雨減衰量を補償するような送信電力と連送回数を設定するものとし、前記衛星から前記各サービス地域への送信電力が前記設定した送信電力になるように構成したことを特徴とする請求項1記載の衛星通信システムの連送制御方式。The radio wave interference amount information related to the local weather is the rainfall amount, and the continuous transmission number setting means transmits the transmission power and the continuous transmission so as to compensate the rain attenuation amount due to the rainfall amount of the local region for each service area. 2. The continuous transmission control method for a satellite communication system according to claim 1, wherein the number of times is set, and the transmission power from the satellite to each service area is set to the set transmission power. 前記連送間隔設定手段は、前記地域気象の風速に基いて連送の時間間隔を設定することを特徴とする請求項記載の衛星通信システムの連送制御方式。The continuous feeding interval setting means, continuous transmission control system for a satellite communication system according to claim 1, wherein setting the time interval between successive sending on the basis of wind speed of the local weather.
JP2001380995A 2001-12-14 2001-12-14 Continuous transmission control system for satellite communication system Expired - Fee Related JP3623192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380995A JP3623192B2 (en) 2001-12-14 2001-12-14 Continuous transmission control system for satellite communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380995A JP3623192B2 (en) 2001-12-14 2001-12-14 Continuous transmission control system for satellite communication system

Publications (2)

Publication Number Publication Date
JP2003188785A JP2003188785A (en) 2003-07-04
JP3623192B2 true JP3623192B2 (en) 2005-02-23

Family

ID=27591816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380995A Expired - Fee Related JP3623192B2 (en) 2001-12-14 2001-12-14 Continuous transmission control system for satellite communication system

Country Status (1)

Country Link
JP (1) JP3623192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321235A (en) * 2004-05-06 2005-11-17 Nippon Hoso Kyokai <Nhk> Radio wave attenuation calculation system, maximum attenuation analysis system, rate of influence of rainfall analysis system and radio wave attenuation calculation program
WO2007007383A1 (en) * 2005-07-08 2007-01-18 Fujitsu Limited Transmitting apparatus, receiving apparatus and information communication method

Also Published As

Publication number Publication date
JP2003188785A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
US7047029B1 (en) Adaptive transmission system
US6141534A (en) Communication satellite system with dynamic downlink resource allocation
CN1327636C (en) Satellite communications system and method using multiple simultaneous data rates
JP3127918B1 (en) Road-to-vehicle communication system, roadside communication station and on-vehicle mobile station
US7532860B2 (en) Method of using feedback from consumer terminals to adaptively control a satellite system
DE60034282T2 (en) Quality of service based CDMA broadcast scheduling
AU5794101A (en) Apparatus and method for acquiring an uplink traffic channel in wireless communications systems
JP3217549B2 (en) Method and apparatus for transferring digital data packets over a wireless channel
US10547474B2 (en) Intelligent shortwave frequency management systems and associated methods
US9485010B1 (en) Adaptive coding and modulation for spot beam satellite broadcast
JP3623192B2 (en) Continuous transmission control system for satellite communication system
US8897207B2 (en) Method for fade mitigation in a satellite communication network
US5926467A (en) Method and apparatus for doppler based multiple access communication control
JP2879836B2 (en) Transmission power control method for satellite communication and broadcasting
US6771929B1 (en) Satellite communication system threshold leveling techniques
EP3621255A1 (en) Gateway, user terminal, methods for operating the same and wireless communication network
EP1137198A2 (en) Method and apparatus for downlink communication resource control
CZ209392A3 (en) Method of and apparatus for data transmission
JP2000091975A (en) Transmission power control system
US8682334B2 (en) System and method for increasing area density of terrestrial broadcast stations
EP2782266B1 (en) Satellite communication system using hierarchical modulation to transmit a plurality of modulated signals of high and low priority.
CN105162717A (en) Control method and control system for inbound traffic of RDSS satellite communication system
KR20140025095A (en) Device for vehicle communication and method thereof
US20230318734A1 (en) Adaptive Satellite Wireless Communication Parameter Selections
KR20100118450A (en) Apparatus and method for resource management in relay based cellular networks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

LAPS Cancellation because of no payment of annual fees