JP3623072B2 - Sliding device - Google Patents

Sliding device Download PDF

Info

Publication number
JP3623072B2
JP3623072B2 JP14061997A JP14061997A JP3623072B2 JP 3623072 B2 JP3623072 B2 JP 3623072B2 JP 14061997 A JP14061997 A JP 14061997A JP 14061997 A JP14061997 A JP 14061997A JP 3623072 B2 JP3623072 B2 JP 3623072B2
Authority
JP
Japan
Prior art keywords
wear
resin
sliding
ceramic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14061997A
Other languages
Japanese (ja)
Other versions
JPH10331856A (en
Inventor
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14061997A priority Critical patent/JP3623072B2/en
Publication of JPH10331856A publication Critical patent/JPH10331856A/en
Application granted granted Critical
Publication of JP3623072B2 publication Critical patent/JP3623072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種産業機械、工作機械、OA機器等において使用される摺動装置に関するものである。
【0002】
【従来の技術】
従来より各種軸受け、案内装置、バルブ、ポンプ等複数の摺動部材同士を摺動させて利用する摺動装置が用いられている。
【0003】
このような摺動装置において各摺動部材の材質としては金属材が一般的であったが、近年耐摩耗特性を高めるためにセラミックスが用いられている。しかし互いに摺動する摺動部材を共にセラミックス等の硬質材で形成すると摩耗量が大きくなってしまう傾向があるなど、摺動装置を構成する摺動部材の材質の組合せは非常に重要である。
【0004】
そこで一方の摺動部材をセラミックスで構成し、他方の摺動部材を樹脂で構成し、両者を摺動させることで摩耗を減らすようにした摺動装置が提案されている。例えば、特開昭62−210275号や特開昭63−85269号公報には、ベーンポンプやコンプレッサーにおいて、一方の摺動部材を高硬度、高靱性で耐摩耗性に優れたセラミックスとし、他方の摺動部材をポリイミド系樹脂に固体潤滑材を添加した樹脂組成物で構成することが提案されている。
【0005】
【発明が解決しようとする課題】
ところで上記のセラミックスと樹脂の組合せからなる摺動装置では、セラミックスの表面粗さが悪いと樹脂がアブレッシブ(研磨)摩耗を起こし潤滑性を付与したポリイミド樹脂でも潤滑効果を発揮することなく摩耗してしまうことがあった。
【0006】
セラミックスと樹脂の組合せでは一般的に、セラミックスの表面粗さを小さくすることで樹脂のアブレッシブ摩耗は低減できるが、逆にセラミックスの摺動面を鏡面状態まで仕上げて表面粗さを小さくすると接触面積が大きくなり摩擦トルクの増大により発熱し、樹脂側が溶融摩耗する問題が起こる。これに対して、長時間や高負荷の摺動時に高い摩擦熱が発生すると樹脂が軟化するためアブレッシブ摩耗は発生しにくくなるのであるが、これにかわってセラミックスの表面酸化反応による腐食摩耗(酸化摩耗)が顕在化する傾向がある。例えばSiC,その他のSi化合物を用いた場合、摩耗粉が発生しやすく、その結果、セラミックス製摺動部材が摩耗して表面が粗くなり、ひいては樹脂摺動部材側を摩耗させてしまうという問題があった。
【0007】
【課題を解決するための手段】
本発明は上記問題に鑑み、酸化物系セラミックスからなる摺動部材と耐熱樹脂からなる摺動部材を互いに摺動させるようにした摺動装置であって、セラミックス製摺動部材を表面粗さがRa0.2〜0.7で、大きめの粒子と該大きめの粒子の谷間に存在する小さめの粒子とによって球状結晶表面を呈した、ビッカース硬度12GPa以上のものとするとともに、樹脂製摺動部材を熱変形温度150℃以上且つロックウェル硬度HRがRスケール120以上となしたことを特徴とする。
【0008】
【作用】
本発明によれば、摺動性に優れるセラミックと樹脂との組合せからなるため、互いの摩耗量を低くすることができる。
【0009】
また、表面粗さがRa0.2〜0.7で球状結晶を呈したセラミックスを用いたことにより接触面積が小さく、加えて、ロックウエル硬度HRがRスケール120以上の樹脂材料を用いたので樹脂側がセラミックス表面の微小谷間に食い込み過ぎることもないのでアブレッシブ摩耗を起こしにくく、摩擦による発熱も比較的小さい。
【0010】
さらに、このように発熱しにくいことに加えて、熱変形温度150℃以上の樹脂材料を用いたことにより発熱による溶融摩耗は発生しにくい。
【0011】
また、発熱が大きくなってしまった場合にも、セラミックスとして酸化物を用いたことにより(酸化物を主としてものを含む)、前記酸化摩耗が発生しない。
【0012】
したがって、様々な摺動条件においても良好に対応できるものである。
【0013】
【発明の実施の形態】
本発明の摺動装置の実施形態を図によって説明する。
図1および図2に本発明摺動装置の実施形態としての軸受装置とディスクバルブをそれぞれ示し、まず、図1に示す軸受装置は、酸化物系セラミックスからなる摺動部材:軸11とこれを支持する樹脂製の摺動部材:軸受12からなり、この軸11が不図示の駆動装置により回転方向あるいは直線方向に駆動し、その際に軸受12と摺動するようになっている。
【0014】
次ぎに、図2に示すディスクバルブは、酸化物系セラミックスからなる板状の摺動部材、第一弁体21と樹脂製の摺動部材、第二弁体22を互いの主面同士を当接させて重ね合わせたものであり、上記主面を摺動させて、互いの貫通孔の連通、遮断を切り換えるようにしてある。
【0015】
これらの実施形態において、酸化物系セラミック製の軸11および第一弁体21はいずれも表面粗さがRa0.2〜0.7で球状結晶表面を呈した摺動部材であり、他方、樹脂製の軸受21および第二弁体22はいずれも熱変形温度150℃以上且つロックウエル硬度HRがRスケール120以上のものである。
【0016】
上記酸化物系セラミックスとしては、アルミナ、ジルコニア、ジルコニア分散アルミナ、アルミナ分散ジルコニア、アルティックなどで摺動面のビッカーズ硬度が12GPa以上のもの、あるいは、これらを主成分としたものが好ましい。
【0017】
図3に、上記セラミック製摺動部材1の表面状態を示す模式図を示し、同図に示すように、セラミック製摺動部材1の表面2は大きめの粒子3の谷間に小さめの粒子4が存在し且つそれぞれの粒子3、4が球状を維持した状態で、その表面粗さがRa0.2〜0.7となっている。これに対して図4に示すように、鏡面仕上げしたセラミック製摺動部材5では、表面2が小さめの粒子4のみで構成され且つその表面部分が削られて平坦面となっている。
【0018】
図3のようにセラミックスの表面が球状結晶状を呈するようにする方法は以下に説明するとおりである。
【0019】
球状結晶表面のセラミックスは、一旦焼結させたものを表面仕上げした後、再度、熱処理することによって、図3に示すように大きめの粒子3から小さめの粒子4を派生せしめ、通常、丸みを帯びた20μm程度の比較的大きな球状結晶の谷間に3μm程度の小結晶が形成されたものである。なお、球状結晶表面を得るための他の方法としてエッチング処理により同程度の表面粗さを持ち、大きな粒子の表面が滑らか且つなだらかとなった球状結晶表面を得ることができる。
【0020】
一方、上記樹脂材料としてはナイロン、フェノール、ポリイミド、ポリフェニレンサルフェイド、ポリアセタール、ポリカーボネート、ポリミアミド、ポリエーテルエーテルケトン、または、樹脂にフィラー(例えばGF/ガラスファイバー、CF/カーボンファイバー)を添加した複合材料などの中から熱変形温度150℃以上且つロックウエル硬度HR120以上のもの選択することができる。
【0021】
なお、セラミック製摺動部材5に対応する摺動部材は射出成形や加熱圧縮成形または、粉末成型後に加熱硬化させる方法により部材全体を前記樹脂で構成したものの他、金属やセラミック、他の樹脂などからなる部材の摺動面のみに前記樹脂を適宜コーティングしたものであっても構わない。
【0022】
このように構成される上記摺動部材は、球状結晶表面を呈したセラミックスを用いたことにより接触面積が小さく、加えて、比較的硬度の大きな樹脂材料を用いたので樹脂側がセラミックス表面の微小谷間に食い込み過ぎることもないのでアブレッシブ摩耗を起こしにくく、摩擦による発熱も比較的小さい。
【0023】
さらに、このように発熱しにくいことに加えて、耐熱性樹脂材料を用いたことにより発熱による溶融摩耗は発生しにくい。
【0024】
また、発熱が大きくなってしまった場合にも、セラミックスとして酸化物を用いたことにより、前記酸化摩耗が発生しない。
【0025】
なお、上記セラミックスの表面粗さがRa0.2未満の場合は接触面積が大きくなり、鏡面仕上げと同様に摩擦トルクが増大し発熱量が多くなる恐れがあり、これに伴い摩耗量が多くなる問題があり、また、表面粗さがRa0.7超過の場合、樹脂側にアブレッシブ摩耗を発生させる恐れがある。
【0026】
また、上記樹脂材料のロックウエル硬度HRがRスケール120未満の場合、樹脂側がセラミックス表面の微小谷間に食い込み過ぎ、摩擦トルクが増大し発熱量が多くなる恐れがある。
【0027】
さらに、上記樹脂材料の熱変形温度が150℃未満の場合、耐熱性が低いので、長時間や高負荷の摺動時に高い摩擦熱が発生する時に、比較的容易に溶融摩耗を起こしやすい。
【0028】
ところで、本発明において樹脂の変形温度の求め方は、テストピースに18.6kg/cmの応力を加えて加熱したときに2.5mm以上の変形が始まる温度を測定するものであり、詳細はJIS K−7207に準拠して行った。また、ロックウェル硬度は、鋼球に基準荷重、測定荷重を加え再び基準荷重に戻したときの試験片表面に出来たくぼみ深さの正味の増加分から計算式でもとめたものである。本発明で試料に用いた樹脂の測定はRスケールで行った。 なお、本発明の摺動装置の他実施形態としては、ベーンポンプ、プランジャーポンプ等の各種ポンプ装置、ベアリング、スピンドル等の軸受装置、ガイドレール、リニアステージ等の案内装置、シール部材を備えたメカニカルシール、コピー機の定着装置における分離等のOA機器関連装置、カッター、加工治具、ダイス等の工作用装置、あるいは歯車、キャプスタン等の部材を備えた各種産業機械用装置などがある。
【0029】
【実験例】
以下、本発明の有効性を確認するため各種セラミック材料と各種樹脂材料の組合せにおける摺動特性についてBOD(ボール・オン・ディスク)型試験機で実験した。図5は、この実験に供した試験機の構造を示し、同図に示すように、ディスク31の表面にボール32を点接触させて一定の荷重で押しつけるとともに、ディスク31を一定の速度で回転させるようになっており、この試験機を用いて摩擦係数と摩耗量を測定した。
【0030】
予備実験(実験例1)
前記ディスク材31としてアルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミ、サファイア、アルティック、超硬合金、サーメット、チタン酸カルシウム、SKH、ボール材32としてアルミナ、ナイロン、ポリイミド樹脂、ポリフェニレンサルファイトにガラスフィアバー40重量%添加したもの(以下、PPS−GF40と略称する)からそれぞれなるものを用意した。
これら各種材質の組合せで、大気雰囲気中で無潤滑の試験を行った。ディスク31及びボール32の摺動面はすべてラッピング加工で鏡面仕上げし、ディスク31の回転速度5m/s、ボール32の押しつけ荷重1kgで15分間運転したときの摩耗係数と摩耗量を測定した。結果は表3に示す通りである。
【0031】
【表1】

Figure 0003623072
【0032】
【表2】
Figure 0003623072
【0033】
【表3】
Figure 0003623072
【0034】
表3から明らかなように、前記試験条件では、セラミックスとセラミック又は金属との組合せの場合(No.1〜11)、アブレッシブな摩耗量が多く、且つ、組合せによって摩耗量も大きく異なることが判った。ディスク31がサーメットまたは炭化珪素の組合せでは摩耗が比較的小さいが、それ以外のセラミックスとの組合せでは摩耗量がかなり多い。
【0035】
これに対してボール32に樹脂を用いたもの(No.12〜44)ではディスク31側の摩耗がなくなるか、或いはあってもかなり減少する。ボール32の摩耗形態としては、凝着摩耗、溶融摩耗が支配的であった。ボール32の摩耗は自己の材質、或いは相手側の材質によっても異なっているが、熱変形温度150℃以上且つロックウエル硬度HRがRスケール120以上のポリイミド樹脂、PPS−GF40は前記セラミック或いはナイロンと比べて摩耗量が小さく、他方、ディスク31の摩耗は、ポリイミド樹脂、PPS−GF40のボール32を用いた場合、その材質に大きく左右されることなく全体的に摩耗量が少ない。これは、ポリイミド、PPS−GF40の持つ耐熱性が影響し摺動時に発生した摩擦熱に対して溶融摩耗を抑えられたものである。
【0036】
また、ポリイミド樹脂、PPS−GF40のボール32を用いた場合、ディスク31側の材質としてアルミナ、ジルコニア、アルティック、サファイアなどの酸化物系セラミックスを用いた組合せでは、ディスク31の摩耗も起こらず、ボール32の摩耗量もかなり少なかった。
【0037】
なお、表3のNo.15,16,20,29の如く、本実験では、ボール32をナイロンで構成し、ディスク31をそれぞれ炭化珪素、窒化アルミ、超硬合金、SKHで構成した場合、ディスク31の摩耗がない上にボール32の摩耗量もかなり少ないが、別途、回転数を上げた試験を行った結果、これらの組合せはいずれも、表面酸化反応による腐食摩耗が顕著となり、ボール32もディスク31も摩耗量が飛躍的に増大してしまうという結果であった。
【0038】
以上のように、この予備実験からは、セラミックと樹脂の組合せで、しかも樹脂材料として熱変形温度150℃以上且つロックウエル硬度HR120以上の樹脂材料と酸化物系セラミックを用いることが摺動特性上好ましいことを確認した。なお、酸化物系セラミックスでもチタン酸カルシウムではディスク31の摩耗も発生し摩耗特性が若干劣っていた(No.32,43)。これは比較的硬度が低いためにアブレッシブ摩耗が起こったためで、上記酸化物系セラミックスとしてはビッカーズ硬度が12GPa以上のものが好適であると考えられる。
【0039】
実験例2
次ぎにアルミナでディスク31を構成し、ボール32をナイロン、ポリイミド、PPS−GF40、ナイロン66GF30%添加品、POMGF25%添加品で構成し、上記実験例1と同様の実験を行った。なお、本実験ではアルミナとして鏡面処理したままのアルミナと、表面が球状結晶を呈したアルミナを用い、球状結晶のアルミナは熱処理温度や熱処理前の仕上げを調整し面粗さを違えた複数種類のものをそれぞれ実験に供した。
【0040】
【表4】
Figure 0003623072
【0041】
表4から明らかなように耐熱性の低いナイロンを用いた場合、ナイロン(ボール32)の摩耗量が多く、ディスク31の表面には溶融したナイロンが付着しているものがあった。これに対して、熱変形温度150℃以上のポリイミド、PPS−GF40、ナイロン66GF30%添加品、POMGF25%添加品ではナイロンに比べて結果が極めて優れていた。
【0042】
また、ポリイミド、PPS−GF40、ナイロン66GF30%添加品、POMGF25%添加品について、他方のアルミナは表面粗さがRa0.2〜0.7の球状結晶状表面のものが鏡面化したままのアルミナよりも、摩耗量が少なく且つ摩擦係数も小さかった。
【0043】
以上より、樹脂としては熱変形温度150℃以上のもの、酸化物系セラミックスとしては表面粗さがRa0.2〜0.7の球状結晶状のものが好ましいことが判った。
【0044】
なお、本実験例では熱処理で球状表面を形成したアルミナを用いたが、ケミカルエッチングで球状表面を形成したアルミナを用いてもほぼ同等の結果であった。
【0045】
実験例3
次ぎに、耐熱性が150℃以上のもので硬度がそれぞれ異なる、ポリイミドGF20%添加品、フッ素樹脂GF25%添加品、全芳香族ポリエステル、ポリエーテルエーテルケトンの4種の樹脂でボール32をそれぞれ構成し、他方、ディスク31を鏡面仕上げのままのアルミナと表面粗さがRa0.5の球状結晶状表面のアルミナでそれぞれ構成し、前記実験例1と同様の実験を行った。その結果を表5に示す。
【0046】
【表5】
Figure 0003623072
【0047】
表5から明らかなように、ロックウエル硬度がR120未満のポリイミドGF20%添加品、フッ素樹脂GF25%添加品、全芳香族ポリエステルでは摩耗量も多く、また摩擦係数も大きいのに対して、ロックウエル硬度がR120以上のポリエーテルエーテルケトンは摩耗量も少なく且つ摩擦係数も小さかった。これをさらに検討すると、ロックウエル硬度HRがRスケール120未満の樹脂では鏡面仕上げのアルミナの方が結果が悪かったことから、樹脂の硬度が低い場合、セラミックスの球状結晶の谷間に樹脂が入り込むのではないかと考えられる。これと対比的にロックウエル硬度がR120以上のポリエーテルエーテルケトンでは球状結晶状表面のアルミナの方がよい結果であった。
【0048】
以上の結果から樹脂はロックウエル硬度HRがRスケール120以上であることが好ましいことが判った。
【0049】
【発明の効果】
叙上のように本発明の摺動装置は、球状結晶表面を呈したセラミックスを用いたことにより接触面積が小さく、加えて、比較的硬度の大きな樹脂材料を用いたので樹脂側がセラミックス表面の微小谷間に食い込み過ぎることもないので摩擦トルクが低減されるので省力化が可能である。また、アブレッシブ摩耗を起こしにくく、摩擦による発熱も比較的小さく、さらに、このように発熱しにくいことに加えて、耐熱性樹脂材料を用いたことにより発熱による溶融摩耗は発生しにくいので、摩耗量が少なく耐久性があり、特に、高負荷、高荷重下で良好に使用できるという極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の摺動装置の実施形態を示す概略図である。
【図2】本発明の摺動装置の別実施形態を示す概略図である。
【図3】球状結晶表面を呈したセラミックスの表面を示す概略図である。
【図4】鏡面仕上げしたセラミックスの表面を示す概略図である。
【図5】BOD型試験機を示す概略図である。
【符号の説明】
11:軸
12:軸受
21:第一弁体
22:第二弁体
31:ディスク
32:ボール
1:セラミックス製摺動部材
2:表面
3:大きめの粒子
4:小さめの粒子
5:セラミックス製摺動部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sliding device used in various industrial machines, machine tools, OA equipment and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, sliding devices that use a plurality of sliding members such as various bearings, guide devices, valves, and pumps by sliding are used.
[0003]
In such a sliding device, a metal material is generally used as the material of each sliding member, but ceramics have been used in recent years in order to improve wear resistance. However, the combination of the materials of the sliding members constituting the sliding device is very important, for example, if the sliding members that slide with each other are made of a hard material such as ceramics, the amount of wear tends to increase.
[0004]
Therefore, a sliding device has been proposed in which one sliding member is made of ceramics, the other sliding member is made of resin, and both are slid to reduce wear. For example, in Japanese Patent Application Laid-Open Nos. Sho 62-210275 and 63-85269, in a vane pump and a compressor, one sliding member is made of a ceramic having high hardness, high toughness and excellent wear resistance, and the other sliding member. It has been proposed that the moving member is composed of a resin composition obtained by adding a solid lubricant to a polyimide resin.
[0005]
[Problems to be solved by the invention]
By the way, in the sliding device composed of a combination of the above ceramics and resin, if the surface roughness of the ceramic is poor, the resin will wear out without exhibiting a lubricating effect even if the resin causes abrasive (polishing) wear and imparts lubricity. There was a case.
[0006]
In general, a combination of ceramic and resin can reduce the abrasive wear of the resin by reducing the surface roughness of the ceramic, but conversely, if the surface roughness is reduced by finishing the sliding surface of the ceramic to a mirror surface state, the contact area is reduced. Becomes larger and generates heat due to an increase in friction torque, causing a problem that the resin side melts and wears. On the other hand, if high frictional heat is generated during sliding for a long time or under a high load, the resin softens, and therefore, abrasive wear is less likely to occur. Instead, corrosion wear (oxidation) due to the surface oxidation reaction of ceramics occurs. There is a tendency that wear) becomes obvious. For example, when SiC or other Si compounds are used, wear powder is likely to be generated, and as a result, the ceramic sliding member is worn and the surface becomes rough, and as a result, the resin sliding member side is worn. there were.
[0007]
[Means for Solving the Problems]
In view of the above problems, the present invention is a sliding device in which a sliding member made of an oxide-based ceramic and a sliding member made of a heat-resistant resin are slid to each other. Ra 0.2 to 0.7, and a Vickers hardness of 12 GPa or more, with a spherical crystal surface formed by larger particles and smaller particles present in the valleys of the larger particles, and a resin sliding member The heat deformation temperature is 150 ° C. or higher and the Rockwell hardness HR is R scale 120 or higher.
[0008]
[Action]
According to this invention, since it consists of a combination of ceramic and resin excellent in slidability, it is possible to reduce the amount of wear of each other.
[0009]
In addition, the contact area is small due to the use of ceramics having a surface roughness of Ra 0.2 to 0.7 and spherical crystals. In addition, since a resin material having a Rockwell hardness HR of R scale 120 or more is used, the resin side is Since it does not bite into the micro valleys on the ceramic surface, it is difficult to cause abrasive wear, and the heat generated by friction is relatively small.
[0010]
Furthermore, in addition to being difficult to generate heat in this way, the use of a resin material having a heat distortion temperature of 150 ° C. or higher makes it difficult for melt wear due to heat generation to occur.
[0011]
Further, even when the heat generation becomes large, the oxidation wear does not occur due to the use of oxides as ceramics (including mainly oxides).
[0012]
Therefore, it can cope with various sliding conditions well.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a sliding device of the present invention will be described with reference to the drawings.
1 and 2 show a bearing device and a disk valve as embodiments of the sliding device of the present invention, respectively. First, the bearing device shown in FIG. 1 is a sliding member made of oxide ceramics: a shaft 11 and this. A resin sliding member to be supported: a bearing 12, and this shaft 11 is driven in a rotational direction or a linear direction by a driving device (not shown), and slides with the bearing 12 at that time.
[0014]
Next, the disk valve shown in FIG. 2 has a plate-shaped sliding member made of oxide ceramics, a first valve body 21 and a resin sliding member, and a second valve body 22 that are in contact with each other. The main surfaces are slid to switch between communication and blocking of each through hole.
[0015]
In these embodiments, the oxide ceramic shaft 11 and the first valve body 21 are both sliding members having a surface roughness of Ra 0.2 to 0.7 and a spherical crystal surface, while the resin is made of resin. Both the bearing 21 and the second valve body 22 made of heat have a heat deformation temperature of 150 ° C. or higher and a Rockwell hardness HR of R scale 120 or higher.
[0016]
The oxide ceramic is preferably alumina, zirconia, zirconia-dispersed alumina, alumina-dispersed zirconia, Altic or the like and having a sliding surface with a Vickers hardness of 12 GPa or more, or a material containing these as a main component.
[0017]
FIG. 3 is a schematic diagram showing the surface state of the ceramic sliding member 1. As shown in the figure, the surface 2 of the ceramic sliding member 1 has small particles 4 in the valleys of the large particles 3. In a state where the particles 3 and 4 are spherical, the surface roughness is Ra 0.2 to 0.7. On the other hand, as shown in FIG. 4, in the ceramic sliding member 5 having a mirror finish, the surface 2 is composed of only the small particles 4 and the surface portion is cut to be a flat surface.
[0018]
The method for making the surface of the ceramic exhibit a spherical crystal shape as shown in FIG. 3 is as described below.
[0019]
The ceramics on the surface of the spherical crystal are surface-finished once sintered, and then heat treated again to derive the smaller particles 4 from the larger particles 3 as shown in FIG. In addition, a small crystal of about 3 μm is formed in a valley of a relatively large spherical crystal of about 20 μm. In addition, as another method for obtaining the spherical crystal surface, a spherical crystal surface having the same surface roughness by etching treatment and having a smooth and smooth surface of large particles can be obtained.
[0020]
On the other hand, the resin material is nylon, phenol, polyimide, polyphenylene sulfide, polyacetal, polycarbonate, polymamide, polyether ether ketone, or a composite material in which a filler (for example, GF / glass fiber, CF / carbon fiber) is added to the resin. Among them, those having a heat distortion temperature of 150 ° C. or higher and a Rockwell hardness of HR 120 or higher can be selected.
[0021]
In addition, the sliding member corresponding to the ceramic sliding member 5 is formed by injection molding, heat compression molding, or a method in which the entire member is made of the above resin by heat curing after powder molding, metal, ceramic, other resin, etc. The resin may be appropriately coated only on the sliding surface of the member made of.
[0022]
The sliding member configured as described above has a small contact area due to the use of ceramics having a spherical crystal surface, and in addition, since a resin material having a relatively high hardness is used, the resin side has a minute valley on the ceramics surface. Therefore, it is difficult to cause abrasive wear, and heat generated by friction is relatively small.
[0023]
Furthermore, in addition to being difficult to generate heat in this manner, melt wear due to heat generation is less likely to occur due to the use of a heat resistant resin material.
[0024]
Further, even when the heat generation becomes large, the oxidation wear does not occur due to the use of the oxide as the ceramic.
[0025]
In addition, when the surface roughness of the ceramic is less than Ra0.2, the contact area becomes large, and similarly to the mirror finish, there is a possibility that the friction torque increases and the heat generation amount may increase, and the amount of wear increases accordingly. In addition, when the surface roughness is more than Ra 0.7, there is a risk of causing abrasive wear on the resin side.
[0026]
In addition, when the Rockwell hardness HR of the resin material is less than the R scale 120, the resin side may bite into minute valleys on the ceramic surface, which may increase the friction torque and increase the heat generation amount.
[0027]
Furthermore, when the heat deformation temperature of the resin material is less than 150 ° C., the heat resistance is low, and therefore, when high frictional heat is generated during sliding for a long time or under a high load, melt wear is likely to occur relatively easily.
[0028]
By the way, in the present invention, the resin deformation temperature is determined by measuring the temperature at which deformation of 2.5 mm or more starts when a test piece is heated by applying a stress of 18.6 kg / cm 2. This was performed in accordance with JIS K-7207. The Rockwell hardness is also determined by a calculation formula from the net increase in the depth of the indentation formed on the surface of the test piece when a standard load and a measurement load are applied to the steel ball and then returned to the standard load. The resin used for the sample in the present invention was measured on the R scale. As other embodiments of the sliding device of the present invention, various pump devices such as a vane pump and a plunger pump, bearing devices such as a bearing and a spindle, a guide device such as a guide rail and a linear stage, and a mechanical equipped with a seal member There are OA equipment related devices such as seals, separation in a fixing device of a copying machine, machine devices such as cutters, processing jigs, dies, or various industrial machine devices equipped with members such as gears and capstans.
[0029]
[Experimental example]
Hereinafter, in order to confirm the effectiveness of the present invention, the sliding characteristics in the combination of various ceramic materials and various resin materials were tested with a BOD (ball on disk) type tester. FIG. 5 shows the structure of the testing machine used for this experiment. As shown in FIG. 5, the ball 32 is brought into point contact with the surface of the disk 31 and pressed with a constant load, and the disk 31 is rotated at a constant speed. The coefficient of friction and the amount of wear were measured using this testing machine.
[0030]
Preliminary experiment (Experiment 1)
The disk material 31 is alumina, zirconia, silicon nitride, silicon carbide, aluminum nitride, sapphire, Altic, cemented carbide, cermet, calcium titanate, SKH, and the ball material 32 is alumina, nylon, polyimide resin, polyphenylene sulfite. A glass fiber bar having 40% by weight added (hereinafter abbreviated as PPS-GF40) was prepared.
Using a combination of these various materials, a non-lubricated test was performed in an air atmosphere. The sliding surfaces of the disk 31 and the ball 32 were all mirror-finished by lapping, and the wear coefficient and the wear amount were measured when the disk 31 was operated for 15 minutes at a rotational speed of 5 m / s and a pressing load of the ball 32 of 1 kg. The results are as shown in Table 3.
[0031]
[Table 1]
Figure 0003623072
[0032]
[Table 2]
Figure 0003623072
[0033]
[Table 3]
Figure 0003623072
[0034]
As is apparent from Table 3, it was found that, in the case of the combination of ceramics and ceramic or metal (No. 1 to 11), the amount of abrasive wear is large and the amount of wear varies greatly depending on the combination. It was. When the disk 31 is a combination of cermet or silicon carbide, the wear is relatively small, but when it is combined with other ceramics, the wear amount is considerably large.
[0035]
On the other hand, in the case where the resin is used for the ball 32 (No. 12 to 44), the wear on the disk 31 side is eliminated or even reduced. As the wear form of the ball 32, adhesion wear and melt wear were dominant. The wear of the ball 32 varies depending on its own material or the material on the other side, but a polyimide resin having a heat deformation temperature of 150 ° C. or higher and a Rockwell hardness HR of R scale 120 or higher, and PPS-GF40 is compared with the above ceramic or nylon. On the other hand, the wear amount of the disk 31 is not greatly affected by the material of the polyimide resin and PPS-GF40 ball 32, and the wear amount is small overall. This is because the heat resistance of the polyimide, PPS-GF40 is affected, and the melt wear is suppressed against the frictional heat generated during sliding.
[0036]
Further, in the case of using a polyimide resin, PPS-GF40 ball 32, in the combination using oxide ceramics such as alumina, zirconia, Altic, sapphire as the material of the disk 31, the disk 31 does not wear, The wear amount of the balls 32 was also very small.
[0037]
In Table 3, No. As in the case of 15, 16, 20, 29, in this experiment, when the ball 32 is made of nylon and the disk 31 is made of silicon carbide, aluminum nitride, cemented carbide, or SKH, the disk 31 is not worn. Although the wear amount of the ball 32 is considerably small, as a result of separately conducting a test with an increased rotation speed, the corrosion wear due to the surface oxidation reaction is remarkable in any of these combinations, and the wear amount of both the ball 32 and the disk 31 is drastically increased. Result.
[0038]
As described above, from this preliminary experiment, it is preferable in terms of sliding characteristics that a combination of ceramic and resin and a resin material having a heat deformation temperature of 150 ° C. or higher and a Rockwell hardness of HR120 or higher and an oxide ceramic are used as the resin material. It was confirmed. Even in the case of oxide ceramics, the wear of the disk 31 was caused by calcium titanate, and the wear characteristics were slightly inferior (Nos. 32, 43). This is because abrasive wear occurred because the hardness was relatively low, and it is considered that the oxide ceramics preferably has a Vickers hardness of 12 GPa or more.
[0039]
Experimental example 2
Next, the disk 31 was composed of alumina, and the ball 32 was composed of nylon, polyimide, PPS-GF40, nylon 66GF 30% added product, and POMGF 25% added product, and the same experiment as in Experimental Example 1 was performed. In this experiment, alumina that had been mirror-finished as alumina and alumina that had spherical crystals on the surface were used, and the alumina of spherical crystals was adjusted to the heat treatment temperature and the finish before heat treatment, and the surface roughness was varied. Each was subjected to an experiment.
[0040]
[Table 4]
Figure 0003623072
[0041]
As is clear from Table 4, when nylon having low heat resistance was used, the wear amount of nylon (ball 32) was large, and there was a case where molten nylon adhered to the surface of the disk 31. In contrast, the polyimide, PPS-GF40, nylon 66GF 30% addition product, and POMGF 25% addition product having a heat distortion temperature of 150 ° C. or higher had extremely superior results compared to nylon.
[0042]
Also, for polyimide, PPS-GF40, nylon 66GF added 30%, and POMGF added 25%, the other alumina has a spherical crystal surface with a surface roughness of Ra 0.2-0.7 than alumina with a mirror surface. However, the amount of wear was small and the friction coefficient was small.
[0043]
From the above, it was found that the resin preferably has a heat distortion temperature of 150 ° C. or higher, and the oxide ceramic is preferably a spherical crystal having a surface roughness of Ra 0.2 to 0.7.
[0044]
In this experimental example, alumina having a spherical surface formed by heat treatment was used, but the results were almost the same even when alumina having a spherical surface formed by chemical etching was used.
[0045]
Experimental example 3
Next, each ball 32 is composed of four types of resins, a heat-resistant material of 150 ° C. or higher and a different hardness, each of which includes a polyimide GF 20% -added product, a fluororesin GF25% -added product, wholly aromatic polyester, and polyetheretherketone. On the other hand, the disk 31 was composed of alumina with a mirror finish and alumina with a spherical crystal surface with a surface roughness of Ra0.5, and the same experiment as in the experimental example 1 was performed. The results are shown in Table 5.
[0046]
[Table 5]
Figure 0003623072
[0047]
As is apparent from Table 5, the Rockwell hardness is less than R120, a polyimide GF 20% addition product, a fluororesin GF25% addition product, and a wholly aromatic polyester have a large amount of wear and a large friction coefficient. Polyether ether ketones of R120 or higher had a small amount of wear and a small friction coefficient. When this is further examined, since the result of the mirror-finished alumina was worse for the resin with Rockwell hardness HR less than R scale 120, if the resin hardness is low, the resin may not enter the valleys of the spherical crystals of the ceramic. It is thought that there is not. In contrast, with polyether ether ketone having a Rockwell hardness of R120 or higher, alumina with a spherical crystal surface was a better result.
[0048]
From the above results, it was found that the resin preferably has a Rockwell hardness HR of R scale 120 or more.
[0049]
【The invention's effect】
As described above, the sliding device of the present invention has a small contact area due to the use of ceramics having a spherical crystal surface, and in addition, since a resin material having a relatively high hardness is used, the resin side has a very small ceramic surface. Since it does not bite into the valleys too much, the friction torque is reduced and labor saving is possible. In addition, it is difficult to cause abrasive wear, heat generation due to friction is relatively small, and in addition to such heat generation, it is difficult to generate melt wear due to heat generation by using a heat-resistant resin material. In particular, it has an excellent effect that it can be used well under high load and high load.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a sliding device of the present invention.
FIG. 2 is a schematic view showing another embodiment of the sliding device of the present invention.
FIG. 3 is a schematic view showing the surface of a ceramic exhibiting a spherical crystal surface.
FIG. 4 is a schematic view showing the surface of a ceramic that has been mirror-finished.
FIG. 5 is a schematic view showing a BOD type testing machine.
[Explanation of symbols]
11: Shaft 12: Bearing 21: First valve body 22: Second valve body 31: Disk 32: Ball 1: Ceramic sliding member 2: Surface 3: Large particles 4: Small particles 5: Ceramic sliding Element

Claims (1)

互いに摺接する一方の摺動部材の少なくとも摺動面を、表面粗さがRa0.2〜0.7で、大きめの粒子と該大きめの粒子の谷間に存在する小さめの粒子とによって球状結晶表面を呈した、ビッカース硬度12GPa以上の酸化物系セラミックスで構成するとともに、
他方の摺動部材の少なくとも摺動面を熱変形温度150℃以上且つロックウェル硬度HRがRスケール120以上の樹脂材料で構成してなる摺動装置。
At least the sliding surface of one sliding member in sliding contact with each other has a surface roughness Ra of 0.2 to 0.7, and a spherical crystal surface is formed by larger particles and smaller particles existing between valleys of the larger particles. Presented with oxide ceramics with a Vickers hardness of 12 GPa or more ,
A sliding device comprising at least the sliding surface of the other sliding member made of a resin material having a heat deformation temperature of 150 ° C. or higher and a Rockwell hardness HR of R scale 120 or higher.
JP14061997A 1997-05-29 1997-05-29 Sliding device Expired - Fee Related JP3623072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061997A JP3623072B2 (en) 1997-05-29 1997-05-29 Sliding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061997A JP3623072B2 (en) 1997-05-29 1997-05-29 Sliding device

Publications (2)

Publication Number Publication Date
JPH10331856A JPH10331856A (en) 1998-12-15
JP3623072B2 true JP3623072B2 (en) 2005-02-23

Family

ID=15272929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061997A Expired - Fee Related JP3623072B2 (en) 1997-05-29 1997-05-29 Sliding device

Country Status (1)

Country Link
JP (1) JP3623072B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183078A (en) * 2001-12-17 2003-07-03 Ngk Spark Plug Co Ltd Guide rail
JP2017206745A (en) * 2016-05-19 2017-11-24 日本電気硝子株式会社 Sheet glass holder

Also Published As

Publication number Publication date
JPH10331856A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
Inasaki Grinding of hard and brittle materials
Fischer et al. Friction and wear of tough and brittle zirconia in nitrogen, air, water, hexadecane and hexadecane containing stearic acid
EP0587906B1 (en) Sliding member and production thereof
US20040179762A1 (en) Coated rolling element bearing cages
Stachowiak et al. Metallic film transfer during metal-ceramic unlubricated sliding
US4824262A (en) Unlubricated sliding member
Kayaba et al. Effect of the hardness of hardened steels and the action of oxides on fretting wear
Jianxin et al. Wear resistance of Al2O3/TiB2 ceramic cutting tools in sliding wear tests and in machining processes
EP1217235A2 (en) Rolling bearing
CN1087816C (en) Rolling element bearing comprising zirconium material
Jianxin Friction and wear behaviour of Al2O3/TiB2/SiCw ceramic composites at temperatures up to 800 C
Sun et al. Unlubricated friction and wear behaviour of zirconia ceramics
JP2007513297A (en) Differential having cross-shaft thin film coating and method for manufacturing the same
JP3623072B2 (en) Sliding device
Woydt et al. Dry and water-lubricated slip-rolling of Si3N4-and SiC-based ceramics
JPH1084682A (en) Vibration wave driving device and equipment having vibration wave driving device
He et al. Friction and wear behaviour of ceramic-hardened steel couples under reciprocating sliding motion
JP2003004040A (en) Rolling guide apparatus
US6107725A (en) Vibration type driving device and apparatus using the same
Wedeven et al. Tribological examination of unlubricated and graphite-lubricated silicon nitride under traction stress
Bell et al. Paper XIII (ii) Some effects of hardness and microstructure on the lubricated wear of steels
Ravikiran Effect of pin specimen contact length in the sliding direction on tribological results of pin-on-disc tests
Hyuga et al. Tribological behavior of a Si3N4/carbon short fiber composite under water lubrication
JPH09291940A (en) Sliding device
JP3389414B2 (en) Sliding device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees