JP3622883B2 - Array response simulator - Google Patents

Array response simulator Download PDF

Info

Publication number
JP3622883B2
JP3622883B2 JP34645997A JP34645997A JP3622883B2 JP 3622883 B2 JP3622883 B2 JP 3622883B2 JP 34645997 A JP34645997 A JP 34645997A JP 34645997 A JP34645997 A JP 34645997A JP 3622883 B2 JP3622883 B2 JP 3622883B2
Authority
JP
Japan
Prior art keywords
array
array response
input
antenna
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34645997A
Other languages
Japanese (ja)
Other versions
JPH11177330A (en
Inventor
正 松本
仁 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP34645997A priority Critical patent/JP3622883B2/en
Publication of JPH11177330A publication Critical patent/JPH11177330A/en
Application granted granted Critical
Publication of JP3622883B2 publication Critical patent/JP3622883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、アダプティブアレーアンテナやビーム追尾アンテナなどのための信号処理装置を開発、評価、試験するために用いられ、実際にアンテナを配置することなく、受信信号の各入射角をパラメータとして与え、各アンテナ素子を空間に並べた場合と同様の相対位相の変化を各アンテナ素子の受信信号に与えた複素振幅を並べたベクトルを出力するベクトルチャネルシミュレータに関する。
【0002】
【従来の技術】
移動通信の特徴は、無線伝搬環境がマルチパス伝搬路となることである。上り(移動局送信、基地局受信)通信路を考えると、移動局の周辺で散乱、回折、反射の影響を受けた送信素波の束は、直接、又はさらに遠方での反射を経た後に、基地局に到来する。従って、基地局では移動局の送信信号が、異なる到来角を持つ複数の成分にわかれた各パスを通って受信されることになる。これら、各パスに対応する成分は上記の送信素波の束で構成されており、この束を作るプロセス(散乱、回折、反射、等)は各パスで異なるから、それぞれのパスは独立なフェージングを受けていることになる。
【0003】
さて、最近このような移動通信環境における、アダプティブアレーアンテナの有効性が指摘されている。すなわち、アダプティブアレーアンテナの干渉キャンセル能力を有効に用いることで同一周波数の面的利用効率が向上したり、またその遅延波除去能力により等化器を不要にできる、等の効果が期待できる。
アダプティブアレーアンテナの開発における技術的課題は、アンテナ素子構成法や無線周波数帯回路構成、等のハードウェアにおける課題と、アンテナビーム制御や干渉キャンセル、等のアルゴリズムにおける課題とに大別される。もちろん、両者の特性は互いに影響しあうため、最終的には両者を一体的に考慮した最適設計が必要となることは言うまでもない。しかし、両者は本来個別の分野に属する技術であり、一方の検討過程においてはもう一方をモデル化して取り扱うことが多い。アルゴリズムの開発、評価、試験においても、アンテナ素子や無線周波数帯回路が理想的に動作するものと仮定して、複素ベースバンド表現を用いて信号を表現したり、シミュレーションを行ったりすることがほとんどである。
【0004】
本来、種々のアルゴリズムは最終的には実時間動作することになるので、そのアルゴリズムを実際の使用条件(シンボルレートやフレーム構成、等)に合わせた装置上で実行し、想定されるチャネル(アンテナ素子や無線周波数帯回路を含む)の環境を模擬する装置と接続することにより、現実に想定し得る環境下で評価することが必要となる。アダプティブアレーアンテナは複数のアンテナ素子出力を重みづけ合成することで、その指向性パターンを制御する。各アンテナ素子は空間的に離れているから、受信信号の位相(あるいは、複素ベースバンド表現では複素振幅)はアンテナ素子毎に異なり、その各素子間での相対的変化量は受信信号の入射角によって決まる(受信信号の各アンテナ素子における複素振幅を並べたベクトルをアレーレスポンスという)。このことは、アレーアンテナの形状と各受信信号(希望波の各マルチパス成分と干渉波の各マルチパス成分)の入射角が与えられれば、それらに対するアレーレスポンスが複素ベースバンド帯で模擬できることを意味する。ところが、そのようなアレーレスポンスシミュレータは知られていない。
【0005】
【発明が解決しようとする課題】
この発明は、アダプティブアレーアンテナのアルゴリズム開発や評価、試験を可能とするアレーレスポンスシミュレータを提供する。アレーの形状(素子数を含む)と各受信信号の入射角をパラメータとして入力することで、それらに応じたアレーレスポンスを発生する。これによって、各アンテナ素子が空間に並べられた場合と同様の相対位相の変化が各受信信号に発生する。
【0006】
【課題を解決するための手段】
この発明によれば、与えられた入射角に応じてアレーアンテナの各素子ごとに複素振幅を複素振幅生成手段で生成し、アレーアンテナの各素子における受信信号に対し、その入射角に対する複素振幅をそれぞれ乗算手段で複素乗算し、これら乗算結果を各アンテナ素子ごとに加算手段で加え合わせて、アレーアンテナの複数の受信信号に対するアレーレスポンスを模擬する。
【0007】
【発明の実施の形態】
まずこの発明の原理を説明し、その後、実施の形態を説明する。
アレーの形状を与えた時、参照点(任意)の受信する信号をz(t) とすると、i番目の素子の受信する信号z(t) (i=1〜N)は、
(t) =a(θ)z(t) (1)
で表わされる。ここで、a(θ)はアレーレスポンスであり、信号の到来する方向とアレー上の座標(任意)との相対的角度θの関数で与えられる。また、a(θ)を並べたベクトル
a(θ)=〔a(θ)a(θ)・・・a(θ)〕 (2)
をアレーレスポンスベクトルという。tはベクトルの転置を表わす。
【0008】
信号帯域幅がチャネルのコヒーレント帯域幅よりも狭ければ、ai (θ)は参照点と各素子との間の距離差に伴う位相変化量として表現され、
i (θ)=exp {jψi (θ)} (3)
となる。例えば、図1に示すようなN素子EL−1〜EL−Nが間隔dで直線上に配列されたリニアアレーの場合、参照点を第1素子にとれば
ψi (θ)=(2π/λ)(−1)d sinθ (4)
となる。但し、λは搬送波波長、dは素子間隔である。
【0009】
希望波がL個のパスにわかれて受信され、そのj番目のパス成分がθの方向からアレーに到来するものとする。また、M個の干渉源が存在してそのm番目がLum個のパスにわかれて受信され、さらにそのk番目のパス成分がθの方向からアレーに到来するものとする。このとき、合成受信信号ベクトルz(t) は

Figure 0003622883
で与えられる。但し、z (t) は参照点が受信する希望波の第jパス成分、z mk(t) は参照点が受信する第m干渉波の第kパス成分で、それぞれ
(t) =zdf (t) z(t) (6)
mk(t) =zuf mk(t) z (t) (7)
となる。ここで、zdf (t) は希望波の第jパス成分の複素振幅、z(t) は希望波の送信シンボル波形、zuf mk(t) は第m干渉波の第kパス成分の複素振幅、z (t) は第m干渉波の送信シンボル波形である。また、z(t) は雑音ベクトルで
(t) =〔zg1(t) zg2(t) ・・・zgN(t) 〕 (8)
であり、zgi(t) は第i素子に加えられる雑音である。zgi(t) は互いに独立なゼロ平均のガウス変数であり、
<z(t) >=0 (9)
<z (t)z (t) >=σ (10)
となる。但し、IはN次の単位行列である。また、σ は雑音電力である。
【0010】
以上の説明から、アレーレスポンスシミュレータは式(5)で表現されるプロセスを実時間実行する装置であればよいことがわかる。これは、図2に示す構成で実現できる。即ち制御部(CONT)11はシミュレータ全体の動作を制御し、以下に説明する各部の動作は制御部11が発生する制御情報CONT−INFによって制御される。入力端子12jから希望波の第jパス(j=1〜Ld )の受信信号入力Dj が入力され、入力端子13nkより第m干渉波の第kパス(m=1〜M、k=1〜Lum)の受信信号入力Imkが入力され、これらの入射角は制御部11から制御情報CONT−INFとしてアレーレスポンス形成部にそれぞれ入力される。つまり入力端子14jから希望波の第jパスの入射角入力−D−jが入力される入力端子12jの希望波の受信信号入力D−jと、入力端子14jの入射角入力A−D−jが希望波の第jパスのアレーレスポンス形成部AR−D−jに入力される。また、入力端子15mkより第m干渉波の第kパスの入射角入力が入力され、入力端子13mkからの第m干渉波受信信号I−m−kが、入力端子15mkから第m干渉波の入射角が第m干渉波の第kパスのアレーレスポンス形成部AR−I−m−kに入力される。
【0011】
各アレーレスポンス形成部AR−D−j,AR−I−m−kの各出力は、アンテナエレメント数に相当するN個の要素からなるベクトルであり、アレーレスポンス形成部AR−D−jから希望波の第jパスのアレー出力ベクトルAOD−jが出力され、アレーレスポンス形成部AR−I−m−kから第m干渉波の第kパスのアレー出力ベクトルAO−I−m−kが出力される。これらの出力ベクトルは全て(エレメント毎に)加算器16j1〜16jN,17m117 mNで複素加算され、さらに雑音ベクトル加算器181 〜18N で複素加算される。また第iエレメント(i=1〜N)に雑音発生器でN−iからの雑音が加算器18i で加算される。雑音ベクトルと複素加算されたアレー出力ベクトルはアレーレスポンスシミュレータ全体の出力Outとなる。
【0012】
アレーレスポンス形成部の構成例を図3に示す。上述のように、アレーレスポンス形成部の入力は、希望波D−j又は干渉波のパス成分I−m−kと、入射角情報A−D−j又はA−I−m−kである。アレーレスポンス形成部はN個のアンテナ素子に相当するN個の要素で構成される。それらは式(3)に対応したN個の複素振幅の発生回路E−1〜E−NとN個の複素乗算器M−1〜M−Nから構成される。第i番目の複素振幅の発生回路E−iでは、受信信号の入射角に対応したアレーレスポンスに対応する複素振幅a(θ)を発生する(上述のように、a(θ)はアレーの形状によって異なる。リニアアレーの場合のa(θ)は式(3)、(4)で与えられる)。複素振幅a(θ)は入力信号に複素乗算されて出力(AO−D−j又はARO−I−m−k)となる。
【0013】
【発明の効果】
以上、説明したようにこの発明によると、実際に空間にアンテナ素子を配置しなくても各入力信号の入射角に対応したアレーレスポンスベクトルが発生できる。出力にはこれらの合成信号が得られるから、このシミュレータの出力をサンプリングすればスナップショットベクトルが得られる。種々のアダプティブアレーアンテナのアルゴリズムや指向性パターン制御アルゴリズムは、このスナップショットベクトルを入力とする。従って、このシミュレータ装置に実際の使用条件(シンボルレートやフレーム構成、等)に合わせた信号を入力し、シミュレータ出力に上記のアルゴリズムを実行する装置を接続して全系を動作させれば、実際の環境に近い条件下での評価や試験が可能となる。
【0014】
また、移動通信電波伝搬環境における受信信号に対するアレーレスポンスを総合的に模擬するためには、図4に示すようにフェージング伝搬路を模擬するフェージングシミュレータ、つまり希望波送信波形Dが入力され、第jパスを通った希望波Dj (j=1・・・Ld)を出力する希望波フェージングシミュレータFS−D−1と、第m干渉波送信波形I−mが入力され、それぞれ、第kパスを通った干渉波I−m−k(m=1,・・・,M、k=1,・・・,LuM)をそれぞれ出力する干渉波フェージングシミュレータFS−I−mとを用い、これら各フェージングシミュレータの出力を、各パスごとに図2に示したこの発明のアレーレスポンスシミュレータの、対応するアレーレスポンス形成部AR−D−j,AR−I−m−kの各対応入力端子に供給すればよい。この場合、上記の実際の使用条件に合わせた信号をフェージングシミュレータに入力されることは言うまでもない。
【図面の簡単な説明】
【図1】N素子リニアアレーのアンテナ素子配置を示す図。
【図2】この発明に基づくアレーレスポンスシミュレータの実施例の機能構成を示すブロック図。
【図3】アレーレスポンス形成部の一機能的構成例を示すブロック図。
【図4】フェージング伝搬路を模擬するフェージングシミュレータをこの発明のアレーレスポンスシミュレータに接続する場合の一機能的構成例を示すブロック図。[0001]
BACKGROUND OF THE INVENTION
The present invention is used to develop, evaluate, and test a signal processing apparatus for an adaptive array antenna, a beam tracking antenna, and the like, and gives each incident angle of a received signal as a parameter without actually arranging the antenna. The present invention relates to a vector channel simulator that outputs a vector in which complex amplitudes in which a change in relative phase similar to that in a case where antenna elements are arranged in space are applied to a reception signal of each antenna element are arranged.
[0002]
[Prior art]
A feature of mobile communication is that the wireless propagation environment is a multipath propagation path. Considering an upstream (mobile station transmission, base station reception) communication path, a bundle of transmitted elementary waves affected by scattering, diffraction, and reflection around the mobile station is reflected directly or further after being reflected far away. Arrives at the base station. Therefore, in the base station, the transmission signal of the mobile station is received through each path divided into a plurality of components having different angles of arrival. These components corresponding to each path are composed of the bundle of transmitted elementary waves described above, and the process of creating this bundle (scattering, diffraction, reflection, etc.) is different for each path, so each path is an independent fading. Will be receiving.
[0003]
Recently, the effectiveness of an adaptive array antenna in such a mobile communication environment has been pointed out. That is, it can be expected that the effective use of the interference cancellation capability of the adaptive array antenna can improve the surface utilization efficiency of the same frequency, and the equalizer can be made unnecessary by the delayed wave removal capability.
Technical issues in the development of adaptive array antennas are broadly divided into hardware issues such as antenna element configuration methods and radio frequency band circuit configurations, and algorithms issues such as antenna beam control and interference cancellation. Of course, since the characteristics of the two influence each other, it is needless to say that ultimately an optimum design that takes both into account is necessary. However, both are technologies that belong to individual fields, and in one examination process, the other is often modeled and handled. In algorithm development, evaluation, and testing, it is often assumed that antenna elements and radio frequency circuits operate ideally, and that signals are represented and simulated using complex baseband representations. It is.
[0004]
Naturally, various algorithms will eventually operate in real time, so the algorithms are executed on a device that matches the actual usage conditions (symbol rate, frame configuration, etc.), and the expected channel (antenna It is necessary to evaluate in an environment that can be assumed in reality by connecting to a device that simulates the environment of the device and the radio frequency band circuit). An adaptive array antenna controls its directivity pattern by weighting and combining a plurality of antenna element outputs. Since each antenna element is spatially separated, the phase of the received signal (or complex amplitude in the complex baseband representation) differs for each antenna element, and the relative change between each element is the incident angle of the received signal. (A vector in which complex amplitudes of received signals at each antenna element are arranged is called an array response). This means that if the shape of the array antenna and the incident angle of each received signal (each multipath component of the desired wave and each multipath component of the interference wave) are given, the array response to them can be simulated in the complex baseband. means. However, such an array response simulator is not known.
[0005]
[Problems to be solved by the invention]
The present invention provides an array response simulator that enables algorithm development, evaluation, and testing of an adaptive array antenna. By inputting the array shape (including the number of elements) and the incident angle of each received signal as parameters, an array response corresponding to them is generated. As a result, a change in relative phase similar to the case where the antenna elements are arranged in space is generated in each received signal.
[0006]
[Means for Solving the Problems]
According to the present invention, the complex amplitude is generated by the complex amplitude generating means for each element of the array antenna in accordance with the given incident angle, and the complex amplitude for the incident angle is obtained for the received signal at each element of the array antenna. Complex multiplication is performed by multiplication means, and the multiplication results are added by addition means for each antenna element to simulate array responses to a plurality of received signals of the array antenna.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, the principle of the present invention will be described, and then embodiments will be described.
When the shape of the array is given and the signal received by the reference point (arbitrary) is z r (t), the signal z i (t) (i = 1 to N) received by the i-th element is
z i (t) = a i (θ) z r (t) (1)
It is represented by Here, a i (θ) is an array response, which is given as a function of the relative angle θ between the direction of arrival of the signal and the coordinates (arbitrary) on the array. Further, a vector (a) (a 1 (θ) a 2 (θ)... A N (θ)] t (2) in which a i (θ) are arranged.
Is called an array response vector. t represents the transpose of the vector.
[0008]
If the signal bandwidth is narrower than the coherent bandwidth of the channel, a i (θ) is expressed as the amount of phase change associated with the distance difference between the reference point and each element,
a i (θ) = exp {jψ i (θ)} (3)
It becomes. For example, in the case of a linear array in which N elements EL-1 to EL-N as shown in FIG. 1 are arranged on a straight line at intervals d, ψ i (θ) = (2π / λ) if the reference point is the first element. ) ( I- 1) d sinθ (4)
It becomes. Where λ is the carrier wavelength and d is the element spacing.
[0009]
Received desired wave is divided into L d pieces of the path, the j-th path components is assumed to come from the direction of theta j in array. Further, the m-th present are M interference source is received is divided into L um number of paths, further its k th path component shall arriving from the direction of theta k in the array. At this time, the combined received signal vector z (t) is
Figure 0003622883
Given in. Here, z d j (t) is the j-th path component of the desired wave received by the reference point, z u mk (t) is the k-th path component of the m-th interference wave received by the reference point, and z d j ( t) = z df j (t) z D (t) (6)
z u mk (t) = z uf mk (t) z U m (t) (7)
It becomes. Here, z df j (t) is the complex amplitude of the j-th path component of the desired wave, z D (t) is the transmission symbol waveform of the desired wave, and z uf mk (t) is the k-th path component of the m-th interference wave. , Z U m (t) is a transmission symbol waveform of the m-th interference wave. Z g (t) is a noise vector and z g (t) = [z g1 (t) z g2 (t)... Z gN (t)] t (8)
Z gi (t) is noise added to the i-th element. z gi (t) are mutually independent zero-mean Gaussian variables,
<Z g (t)> = 0 (9)
<Z g * (t) z g t (t)> = σ g 2 I N (10)
It becomes. Here, IN is an Nth-order unit matrix. Σ g 2 is noise power.
[0010]
From the above description, it can be understood that the array response simulator may be any device that executes the process expressed by Equation (5) in real time. This can be realized by the configuration shown in FIG. That is, the control unit (CONT) 11 controls the operation of the entire simulator, and the operation of each unit described below is controlled by control information CONT-INF generated by the control unit 11. Received signal input D j of the j-th path of the desired wave from the input terminal 12j (j = 1~L d) is input, the k paths of the m interference wave from an input terminal 13 nk (m = 1~M, k = 1 to L um ) received signal inputs I mk are input, and these incident angles are input from the control unit 11 to the array response forming unit as control information CONT-INF. That the reception signal input D-j of the desired wave of the input terminal 12j incident angle input A -D-j of the j-path of the desired wave from the input terminal 14j is input, the incident angle of the input terminal 14j inputs A-D- j is input to the array response forming unit AR-D-j of the jth pass of the desired wave. Further, the incident angle input of the k paths of the m interference wave from the input terminal 15 mk is input, the m interference wave receiving signal I-mk from the input terminal 13 mk is the m interference from the input terminal 15 mk The incident angle of the wave is input to the array response forming unit AR-Imk of the kth path of the mth interference wave.
[0011]
Each output of each array response forming unit AR-Dj, AR-Im-k is a vector composed of N elements corresponding to the number of antenna elements, and is requested from the array response forming unit AR-Dj. An array output vector AOD-j of the j-th path of the wave is output, and an array output vector AO-Im-k of the k-th path of the m-th interference wave is output from the array response forming unit AR-Im-k. The All of these output vectors are complex-added by adders 16 j1 to 16 jN and 17 m1 to 17 mN (for each element), and further complex-added by noise vector adders 18 1 to 18 N. Further, the noise from the N-i is added to the i-th element (i = 1 to N) by the adder 18 i by the noise generator. The array output vector complex-added with the noise vector becomes the output Out of the entire array response simulator.
[0012]
A configuration example of the array response forming unit is shown in FIG. As described above, the input of the array response forming unit is the desired wave Dj or the path component Imk of the interference wave, and the incident angle information ADj or AImk. The array response forming unit is composed of N elements corresponding to N antenna elements. They are composed of N complex amplitude generation circuits E-1 to EN corresponding to the equation (3) and N complex multipliers M-1 to MN. The i-th complex amplitude generation circuit E-i generates a complex amplitude a i (θ) corresponding to an array response corresponding to the incident angle of the received signal (as described above, a i (θ) is an array). (A i (θ) in the case of a linear array is given by equations (3) and (4)). The complex amplitude a i (θ) is complex-multiplied to the input signal to become an output (AO-Dj or ARO-Imk).
[0013]
【The invention's effect】
As described above, according to the present invention, an array response vector corresponding to the incident angle of each input signal can be generated without actually arranging antenna elements in space. Since these synthesized signals are obtained at the output, a snapshot vector can be obtained by sampling the output of the simulator. Various adaptive array antenna algorithms and directivity pattern control algorithms receive this snapshot vector as an input. Therefore, if a signal that matches the actual usage conditions (symbol rate, frame configuration, etc.) is input to this simulator device, and the device that executes the above algorithm is connected to the simulator output, the entire system is operated. It is possible to evaluate and test under conditions close to the environment.
[0014]
Further, in order to comprehensively simulate an array response to a received signal in a mobile communication radio wave propagation environment, a fading simulator that simulates a fading propagation path, that is, a desired wave transmission waveform D is input as shown in FIG. A desired wave fading simulator FS-D-1 that outputs a desired wave D j (j = 1... Ld) that has passed through the path and an m-th interference wave transmission waveform Im are input. The interference wave fading simulator FS-I-m that outputs the passed interference wave Imk (m = 1,..., M, k = 1,..., L uM ) respectively. The output of the fading simulator is obtained for each pair of corresponding array response forming units AR-Dj and AR-Imk of the array response simulator of the present invention shown in FIG. It may be supplied to the input terminal. In this case, it goes without saying that a signal that matches the actual use condition is input to the fading simulator.
[Brief description of the drawings]
FIG. 1 is a diagram showing an antenna element arrangement of an N element linear array.
FIG. 2 is a block diagram showing a functional configuration of an embodiment of an array response simulator according to the present invention.
FIG. 3 is a block diagram illustrating a functional configuration example of an array response forming unit.
FIG. 4 is a block diagram showing an example of a functional configuration when a fading simulator that simulates a fading propagation path is connected to the array response simulator of the present invention.

Claims (1)

各アンテナ素子を配置することなく各アレーアンテナ素子を空間に並べた場合と同様の相対位相の変化を模擬するアレーレスポンスシミュレータにおいて、
希望波信号の各パス成分とその入射角情報が入力され、アンテナエレメント数N個のベクトルをそれぞれ出力する複数の希望波のアレーレスポンス形成部と、
干渉波信号の各パス成分とその入射角情報が入力され、アンテナエレメント数N個のベクトルをそれぞれ出力する複数の干渉波のアレーレスポンス形成部と、
上記各アレーレスポンス形成部は入力された各入射角情報が入力され、受信信号の入射角に対応したアレーレスポンスに対応する複素振幅を上記アンテナエレメント毎に発生するN個の複素振幅発生回路と、これら発生した複素振幅と入力されたパス成分とを乗算してそれぞれ上記ベクトルを出力するN個の複素乗算器を含み、
上記希望波のアレーレスポンス形成部及び上記干渉波のアレーレスポンス形成部の各対応アンテナエレメント毎の出力ベクトルを加算してN個のアンテナエレメントの受信信号を出力する加算手段を備え、
アレーアンテナの複数の受信信号に対するアレーレスポンスを模擬することを特徴とするアレーレスポンスシミュレータ。
In an array response simulator that simulates changes in relative phase similar to when array antenna elements are arranged in space without arranging each antenna element,
Each path component of the desired wave signal and its incident angle information are input, and a plurality of desired wave array response forming units each outputting N vectors of antenna elements,
Each path component of the interference wave signal and the incident angle information thereof are input, and a plurality of interference wave array response forming units each outputting N vectors of antenna elements,
Each of the array response forming units receives each input incident angle information, and N complex amplitude generating circuits for generating a complex amplitude corresponding to the array response corresponding to the incident angle of the received signal for each antenna element; N complex multipliers for multiplying the generated complex amplitude and the input path component to output the vector respectively.
Adding means for adding output vectors for each corresponding antenna element of the array response forming unit of the desired wave and the array response forming unit of the interference wave and outputting a reception signal of the N antenna elements;
An array response simulator for simulating array responses to a plurality of received signals of an array antenna.
JP34645997A 1997-12-16 1997-12-16 Array response simulator Expired - Fee Related JP3622883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34645997A JP3622883B2 (en) 1997-12-16 1997-12-16 Array response simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34645997A JP3622883B2 (en) 1997-12-16 1997-12-16 Array response simulator

Publications (2)

Publication Number Publication Date
JPH11177330A JPH11177330A (en) 1999-07-02
JP3622883B2 true JP3622883B2 (en) 2005-02-23

Family

ID=18383575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34645997A Expired - Fee Related JP3622883B2 (en) 1997-12-16 1997-12-16 Array response simulator

Country Status (1)

Country Link
JP (1) JP3622883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698631B (en) * 2013-12-17 2016-06-08 天津七六四通信导航技术有限公司 DVB anti-interference antenna test system

Also Published As

Publication number Publication date
JPH11177330A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US5973638A (en) Smart antenna channel simulator and test system
Thoma et al. Identification of time-variant directional mobile radio channels
JP5280544B2 (en) Wireless test
JP4339801B2 (en) Direction-of-arrival estimation method and reception beam forming apparatus without using eigenvalue decomposition
JP4208717B2 (en) Radio channel simulation method and device
KR20140037184A (en) Over-the-air test
JPWO2004059876A1 (en) Transmission path simulation method and transmission path simulator
JP2014512725A (en) Over the air test
JP5474949B2 (en) Antenna evaluation apparatus and antenna evaluation method
US20070139268A1 (en) Method and apparatus for adaptive direction estimation of radio waves
SAKAGUCHI et al. A novel architecture for MIMO spatio-temporal channel sounder
Kim et al. Direction of arrival estimation based on temporal and spatial processing using a direct data domain (D/sup 3/) approach
Xiao et al. A time-variant wideband spatial channel model based on the 3GPP model
Martin et al. A statistical simulation model for the directional mobile radio channel and its configuration
JP3622883B2 (en) Array response simulator
JP3719949B2 (en) Fading simulator for array antenna
EP3631478B1 (en) Apparatuses, methods and a measurement system for characterizing a wireless communication component usable in non-anechoic environments
Rodríguez-Corbo et al. 3-D Ray Launching MIMO Channel Geometric Estimation
Hampicke et al. Measurement-based simulation of mobile radio channels with multiple antennas using a directional parametric data model
Mahler et al. Applying antenna synthesis methods on a path based MIMO channel model for verification
Thoma et al. Measurement and identification of mobile radio propagation channels
Kamiya et al. Development of an adaptive array based on subband signal processing
JP3966756B2 (en) Noise generator and propagation path simulator
Alimohammad et al. FPGA-accelerated baseband design and verification of broadband MIMO wireless systems
Liu et al. How to Extend 3D GBSM to Integrated Sensing and Communication Channel with Sharing Feature?

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20041118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees