JP3622777B2 - Image reading optical system and image reading optical apparatus - Google Patents

Image reading optical system and image reading optical apparatus Download PDF

Info

Publication number
JP3622777B2
JP3622777B2 JP04984096A JP4984096A JP3622777B2 JP 3622777 B2 JP3622777 B2 JP 3622777B2 JP 04984096 A JP04984096 A JP 04984096A JP 4984096 A JP4984096 A JP 4984096A JP 3622777 B2 JP3622777 B2 JP 3622777B2
Authority
JP
Japan
Prior art keywords
light
image reading
reading optical
optical system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04984096A
Other languages
Japanese (ja)
Other versions
JPH09247367A (en
Inventor
光晴 松本
博 土屋
徹 石川
晃 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04984096A priority Critical patent/JP3622777B2/en
Publication of JPH09247367A publication Critical patent/JPH09247367A/en
Application granted granted Critical
Publication of JP3622777B2 publication Critical patent/JP3622777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光コンピュータや光学式文字読取装置(OCR)などの光情報処理装置の入力部に用いることができる画像読取光学系および画像読取光学装置に関する。
【0002】
【従来の技術】
光源から出射された光をレンズにて平行光化して、これを対象物に向けて照射し、対象物にて反射された平行光を得ることにより対象物の画像を読み取るようにした場合、この読み取り(反射光の取り出し)の光路上に前記レンズを存在させたのでは、反射平行光がレンズで集光され、光源に戻ってしまうため、光源の影になって出力が得られない。このため、図6に示すように、光源51およびレンズ52を反射光路上から外れた位置に設け、光源51からの光をビームスプリッタ53にて反射させて対象物54に導き、対象物54にて反射された光を透過させて出力するようにした画像読取光学系が知られている。このような光学系は、金属顕微鏡などにも見ることができる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記図6に示した構造では、光源および光源に付随する光学系が光軸に対して垂直方向に大きく張り出す形となる。これは小型化の障害となるだけでなく、取り回しにも不便である。
【0004】
本発明は、上記の事情に鑑み、小型で、しかも本体から張り出さない照明装置を有する画像読取光学系および画像読取光学装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の画像読取光学系、対象物に向けて光を照射し、対象物にて反射された光にて対象物の画像を読み取るようにした画像読取光学系において、前記光を照射する光源と、前記光源からの光の波面を平行光化した高次回折光を対象物に照射するとともに対象物にて反射された前記高次回折光に係る画像読み出し検出光としての0次回折光を出力する回折格子とを備えたことを特徴とする。また、前記の画像読み出し検出光としての0次回折光又は回折光が平行光であってもよい。また、前記光源を対象物にて反射された光が通る光路上に配置してもよい。
【0006】
上記の構成であれば、平行光を回折格子の1次回折光において生成することができ、そして、この回折格子は対象物にて反射された前記平行光の照射光とは異なる次数の0次回折光を出力するものであるから、従来のごとく平行光をレンズで得る場合の問題は生じず、前記回折格子を前記対象物にて反射された光が通る光軸上に配置でき、前記光源を前記対象物にて反射された光が通る光軸上或いは光軸の近傍に配置できるので小型化が可能である。
【0007】
また、本発明の画像読取光学装置は、上記構成の画像読取光学系の周囲に光吸収壁を設けたことを特徴とする。
【0008】
前述した回折格子を具備する画像読取光学系においては、前記光源からの光のうち平行光化されなかった光は拡散光となって目的とする対象物表面から外れる方向へと進んでしまう。また、対象物表面にて反射された平行光で回折格子を経た例えば0次回折光以外の光も拡散光となり、これが迷光となって読み取り精度に悪影響を与えるおそれがある。上記構成の画像読取光学装置であれば、画像読取光学系の周囲に光吸収壁を設けたので、前記拡散光は上記光吸収壁により吸収される。
【0009】
前記光源は前記光吸収壁上に配置されていてもよい。かかる構成であれば、光吸収壁が光源の配置座となるので、別に配置座を形成する必要がなくなり、画像読取光学装置の製造を簡略化できる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
【0011】
図1は、画像10に向けて平行光を照射し、反射された平行光にて画像を読み取るようにしたこの発明の画像読取光学系1を示した模式図である。この画像読取光学系1は、前記画像10にて反射された光が通る光路上に光源2を配置している。光源2としては、波長780nmの赤外半導体レーザーを用いた。また、光源2は前記反射された平行光の光軸中央に配置しているが、反射光に生じる光源2による影は比較的小さいものとなっている。
【0012】
光源2と画像10との間には、透過型の回折格子3が配置されている。この回折格子3によって前記光源2からの光が回折されることになるが、回折格子3は高次回折光(この実施の形態では1次回折光)が平行光となるように回折パターンが形成されて成るものであり、この平行光が画像10に対して垂直に入射される。画像10にて反射された平行光(以下、反射平行光と略記する)が回折格子3を経るときにも回折され、上記回折パターンにより、反射平行光の高次回折光は拡散光となるが、反射平行光の0次回折光は平行光のままであり、この平行光が図示しない受光部に向けて出力されることになる。即ち往路は1次回折光を使い、復路は0次回折光を使うようにした光学系となっている。
【0013】
図2は、回折格子3の拡大断面図である。回折格子3は例えば厚さ1mmの石英板から成る。また、1次回折光と0次回折光の比率が略1対1となるように回折格子3の格子パターンを設定してある。この場合の格子パターンは、矩形溝とし、溝深さを0.5μmとしている。格子パターンが矩形溝に限られるものでないことは勿論である。
【0014】
以上のように、画像読取光学系1は回折格子3の1次回折光において平行光を生成し、また、この回折格子3は画像10にて反射された平行光の0次回折光を出力するものであるから、平行光をレンズで得る場合の問題は生じない。そして、光源2および回折格子3を反射光路上に配置できたことによって、張り出し部分を生じることがない。
【0015】
図3は、画像読取光学装置11の他の構成例を示した模式図である。この画像読取光学装置11は、画像読取光学系1において光軸の中央にあった半導体レーザの位置をずらして光軸の近傍に配置するとともに、光吸収壁15を設けて成るものである。光吸収壁15は、例えば、光を吸収する塗料が塗布されて成る。
【0016】
前記図1に示した構造では、半導体レーザの影を生ずる。また、前記光源2からの光のうち平行光化されなかった光は拡散光となって目的とする画像10から外れる方向へと進んでしまう。同様に、画像10にて反射された平行光で回折格子3を経た0次回折光以外の光も拡散光となり、迷光となって読み取り精度に悪影響を与えるおそれがある。
【0017】
これに対し、図3に示した構成であれば、画像読取光学系1の周囲には光吸収壁15が設けられているので、前記拡散光は上記光吸収壁15により吸収されることになる。また、画像読取光学系1に設けてある光源2は、反射平行光の光軸中央から外れるように配置されているので、反射平行光に生じる光源2による影の影響が生じない。更に、光源2を前記光吸収壁15上に形成しており、光吸収壁15が光源2の配置座となっているので、別に配置座を形成する必要がなくなり、画像読取光学装置11の製造を簡略化することができる。
【0018】
なお、この実施の形態では、回折格子3として透過型のものを用いたが、反射型の回折格子を用いて画像読取光学系を構成することもできる。この場合には、例えば図4に示すように、回折格子31は入射光の略半分を透過し半分を反射するように構成され、光軸に対し略45°傾けて配置される。この角度は略45°に限らず、回折格子の設計により自由に定めることができる。そして、光源2は画像10と回折格子31との間に配置され、回折格子31側に向けて光を照射する。回折格子31は、高次回折光(例えば、1次回折光)が平行光となるように回折パターンが形成されて成るものであり、この平行光が画像10に対して垂直に入射される。画像10にて反射された平行光は回折格子31を透過し、その0次回折光(平行光)が画像10に対して対面する位置に設けられた図示しない受光部に向けて出力されることになる。又は、図5に示すように、回折格子32は入射光の全てを反射するように構成され、光軸に対し略45°傾けて配置される。そして、光源2は画像10と回折格子32との間に配置され、回折格子32側に向けて光を照射する。回折格子32は、高次回折光(例えば、1次回折光)が平行光となるように回折パターンが形成されて成るものであり、この平行光が画像10に対して垂直に入射される。画像10にて反射された平行光は回折格子32にて反射され、その0次回折光(平行光)が画像10の側方に設けられた図示しない受光部に向けて出力されることになる。
【0019】
また、光源2としては半導体レーザーに限らず、小型の固体レーザー等でもよく、また、コヒーレントである必要がない場合であればナトリウムランプや発光ダイオードなどの単色光源を用いることができる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、画像読取光学系を小型に構成することができ、また張り出し部分を生じないため、取り回しも容易である。また、画像読取光学系の間に光吸収壁を設けた場合には、不要な拡散光を上記光吸収壁により吸収させることができる。また、前記光源を前記光吸収壁上に配置した場合には、光吸収壁が光源の配置座となるので、別に配置座を形成する必要がなくなり、画像読取光学装置の製造を簡略化できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の画像読取光学系を示す模式図である。
【図2】本発明の画像読取光学系に用いられる回折格子の断面図である。
【図3】本発明の画像読取光学系の他の例を示す模式図である。
【図4】本発明の画像読取光学系の他の例を示す模式図である。
【図5】本発明の画像読取光学系の他の例を示す模式図である。
【図6】従来の画像読取光学系を示す模式図である。
【符号の説明】
1 画像読取光学系
2 光源
3 回折格子
10 画像
15 光吸収壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image reading optical system and an image reading optical device that can be used in an input unit of an optical information processing device such as an optical computer or an optical character reader (OCR).
[0002]
[Prior art]
When the light emitted from the light source is converted into parallel light by a lens and irradiated to the object, and the parallel light reflected by the object is obtained, the image of the object is read. If the lens is present on the optical path for reading (extracting reflected light), the reflected parallel light is condensed by the lens and returned to the light source, so that an output cannot be obtained due to the shadow of the light source. For this reason, as shown in FIG. 6, the light source 51 and the lens 52 are provided at positions off the reflected light path, the light from the light source 51 is reflected by the beam splitter 53 and guided to the object 54, and the object 54 There is known an image reading optical system that transmits and outputs reflected light. Such an optical system can also be seen in a metal microscope or the like.
[0003]
[Problems to be solved by the invention]
However, in the structure shown in FIG. 6, the light source and the optical system associated with the light source protrude greatly in the direction perpendicular to the optical axis. This is not only an obstacle to miniaturization, but also inconvenient to handle.
[0004]
In view of the above circumstances, an object of the present invention is to provide an image reading optical system and an image reading optical device that have a small-sized illumination device that does not protrude from the main body.
[0005]
[Means for Solving the Problems]
In the image reading optical system of the present invention, in an image reading optical system that irradiates light toward an object and reads an image of the object with light reflected by the object, a light source that irradiates the light A diffraction grating that irradiates an object with high-order diffracted light obtained by collimating the wavefront of light from the light source and outputs zero-order diffracted light as image readout detection light related to the high-order diffracted light reflected by the object comprising the and. Further, 0 may be diffracted light or diffracted light Yukimitsu Taira as the image reading detection light. The light source may be disposed on an optical path through which light reflected by the object passes.
[0006]
With the above configuration , parallel light can be generated in the first-order diffracted light of the diffraction grating, and this diffraction grating is zero- order of the order different from the irradiation light of the parallel light reflected by the object. Since it outputs folded light, there is no problem in obtaining parallel light with a lens as in the prior art, the diffraction grating can be arranged on the optical axis through which the light reflected by the object passes, and the light source Since it can arrange | position on the optical axis through which the light reflected by the said object passes, or the vicinity of an optical axis, size reduction is possible.
[0007]
The image reading optical apparatus of the present invention is characterized in that a light absorbing wall is provided around the image reading optical system having the above-described configuration.
[0008]
In the image reading optical system comprising the above-mentioned diffraction grating, light not light sac Chitaira Gyohikarika from the light source would proceed in a direction deviating from the object surface of interest becomes diffused light . Further, the light other than the next example 0 through the diffraction grating in a flat row light reflected diffracted light by the target surface also becomes diffused light, which is likely to adversely affect the reading accuracy as stray light. In the case of the image reading optical apparatus having the above configuration, since the light absorbing wall is provided around the image reading optical system, the diffused light is absorbed by the light absorbing wall.
[0009]
The light source may be disposed on the light absorbing wall. With this configuration, the light absorption wall serves as the light source placement seat, so that it is not necessary to form a separate placement seat, and the manufacturing of the image reading optical device can be simplified.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a schematic diagram showing an image reading optical system 1 of the present invention in which parallel light is irradiated toward an image 10 and an image is read with reflected parallel light. In the image reading optical system 1, a light source 2 is disposed on an optical path through which light reflected by the image 10 passes. As the light source 2, an infrared semiconductor laser having a wavelength of 780 nm was used. Moreover, although the light source 2 is arrange | positioned in the optical axis center of the reflected parallel light, the shadow by the light source 2 which arises in reflected light is a comparatively small thing.
[0012]
A transmissive diffraction grating 3 is arranged between the light source 2 and the image 10. The light from the light source 2 is diffracted by the diffraction grating 3. The diffraction grating 3 is formed with a diffraction pattern so that high-order diffracted light (first-order diffracted light in this embodiment) becomes parallel light. The parallel light is incident on the image 10 perpendicularly. The parallel light reflected by the image 10 (hereinafter abbreviated as reflected parallel light) is also diffracted when passing through the diffraction grating 3, and the diffraction pattern causes the higher-order diffracted light of the reflected parallel light to become diffused light. The 0th-order diffracted light of the reflected parallel light remains as parallel light, and this parallel light is output toward a light receiving unit (not shown). That is, the optical system is configured such that the first pass diffracted light is used for the forward path and the zeroth diffracted light is used for the return path.
[0013]
FIG. 2 is an enlarged cross-sectional view of the diffraction grating 3. The diffraction grating 3 is made of, for example, a quartz plate having a thickness of 1 mm. The grating pattern of the diffraction grating 3 is set so that the ratio of the first-order diffracted light and the zero-order diffracted light is approximately 1: 1. The lattice pattern in this case is a rectangular groove, and the groove depth is 0.5 μm. Of course, the lattice pattern is not limited to the rectangular groove.
[0014]
As described above, the image reading optical system 1 generates parallel light in the first-order diffracted light of the diffraction grating 3, and the diffraction grating 3 outputs 0-order diffracted light of the parallel light reflected by the image 10. Therefore, there is no problem in obtaining parallel light with a lens. And since the light source 2 and the diffraction grating 3 can be arrange | positioned on a reflected light path, an overhang | projection part does not arise.
[0015]
FIG. 3 is a schematic diagram illustrating another configuration example of the image reading optical device 11. The image reading optical device 11 is configured by shifting the position of the semiconductor laser located in the center of the optical axis in the image reading optical system 1 and arranging it near the optical axis, and by providing a light absorbing wall 15. The light absorption wall 15 is formed by applying a paint that absorbs light, for example.
[0016]
In the structure shown in FIG. 1, the shadow of the semiconductor laser is generated. Further, the light from the light source 2 that has not been collimated becomes diffused light and travels away from the target image 10. Similarly, light other than the 0th-order diffracted light that has passed through the diffraction grating 3 due to the parallel light reflected by the image 10 also becomes diffused light, which may be stray light and adversely affect reading accuracy.
[0017]
On the other hand, in the configuration shown in FIG. 3, since the light absorbing wall 15 is provided around the image reading optical system 1, the diffused light is absorbed by the light absorbing wall 15. . Further, since the light source 2 provided in the image reading optical system 1 is arranged so as to deviate from the center of the optical axis of the reflected parallel light, the influence of the shadow caused by the light source 2 generated in the reflected parallel light does not occur. Further, since the light source 2 is formed on the light absorption wall 15 and the light absorption wall 15 is an arrangement seat for the light source 2, it is not necessary to form another arrangement seat, and the image reading optical device 11 is manufactured. Can be simplified.
[0018]
In this embodiment, a transmission type is used as the diffraction grating 3, but an image reading optical system can also be configured using a reflection type diffraction grating. In this case, for example, as shown in FIG. 4, the diffraction grating 31 is configured to transmit approximately half of incident light and reflect half, and is disposed at an angle of approximately 45 ° with respect to the optical axis. This angle is not limited to approximately 45 ° and can be freely determined by the design of the diffraction grating. The light source 2 is disposed between the image 10 and the diffraction grating 31 and irradiates light toward the diffraction grating 31 side. The diffraction grating 31 is formed by forming a diffraction pattern so that higher-order diffracted light (for example, first-order diffracted light) becomes parallel light, and the parallel light is incident on the image 10 perpendicularly. The parallel light reflected by the image 10 passes through the diffraction grating 31, and the 0th-order diffracted light (parallel light) is output toward a light receiving unit (not shown) provided at a position facing the image 10. Become. Alternatively, as shown in FIG. 5, the diffraction grating 32 is configured to reflect all of the incident light, and is disposed at an angle of approximately 45 ° with respect to the optical axis. The light source 2 is disposed between the image 10 and the diffraction grating 32, and irradiates light toward the diffraction grating 32 side. The diffraction grating 32 is formed by forming a diffraction pattern so that high-order diffracted light (for example, first-order diffracted light) becomes parallel light, and the parallel light is incident on the image 10 perpendicularly. The parallel light reflected by the image 10 is reflected by the diffraction grating 32, and the 0th-order diffracted light (parallel light) is output toward a light receiving unit (not shown) provided on the side of the image 10.
[0019]
The light source 2 is not limited to a semiconductor laser but may be a small solid laser or the like, and a monochromatic light source such as a sodium lamp or a light emitting diode can be used if it is not necessary to be coherent.
[0020]
【The invention's effect】
As described above, according to the present invention, the image reading optical system can be configured in a small size, and since no overhanging portion is generated, handling is easy. Further, when a light absorption wall is provided between the image reading optical systems, unnecessary diffused light can be absorbed by the light absorption wall. Further, when the light source is disposed on the light absorbing wall, the light absorbing wall serves as a light source mounting seat, so that it is not necessary to form a separate mounting seat, and the manufacturing of the image reading optical device can be simplified. There is an effect.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an image reading optical system of the present invention.
FIG. 2 is a sectional view of a diffraction grating used in the image reading optical system of the present invention.
FIG. 3 is a schematic diagram showing another example of the image reading optical system of the present invention.
FIG. 4 is a schematic diagram showing another example of the image reading optical system of the present invention.
FIG. 5 is a schematic diagram showing another example of the image reading optical system of the present invention.
FIG. 6 is a schematic diagram showing a conventional image reading optical system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Image reading optical system 2 Light source 3 Diffraction grating 10 Image 15 Light absorption wall

Claims (5)

対象物に向けて光を照射し、対象物にて反射された光にて対象物の画像を読み取るようにした画像読取光学系において、前記光を照射する光源と、前記光源からの光の波面を平行光化した高次回折光を対象物に照射するとともに対象物にて反射された前記高次回折光に係る画像読み出し検出光としての0次回折光を出力する回折格子とを備えたことを特徴とする画像読取光学系。In an image reading optical system that irradiates light toward an object and reads an image of the object with light reflected by the object, a light source that irradiates the light, and a wavefront of light from the light source And a diffraction grating that irradiates the object with high-order diffracted light that is converted into parallel light and outputs zero-order diffracted light as image readout detection light related to the high-order diffracted light reflected by the object. An image reading optical system. 前記の画像読み出し検出光としての0次回折光が平行光であることを特徴とする請求項1に記載の画像読取光学系。 The image reading optical system according to claim 1, wherein the zero-order diffracted light as the image reading detection light is parallel light . 前記光源を対象物にて反射された光が通る光路上に配置したことを特徴とする請求項1又は2に記載の画像読取光学系 The image reading optical system according to claim 1, wherein the light source is disposed on an optical path through which light reflected by an object passes . 請求項1又は2に記載の画像読取光学系の周囲に光吸収壁を設けたことを特徴とする画像読取光学装置。An image reading optical apparatus comprising a light absorbing wall provided around the image reading optical system according to claim 1 . 光源を前記光吸収壁上に配置したことを特徴とする請求項4に記載の画像読取光学装置。The image reading optical apparatus according to claim 4, wherein a light source is disposed on the light absorbing wall.
JP04984096A 1996-03-07 1996-03-07 Image reading optical system and image reading optical apparatus Expired - Lifetime JP3622777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04984096A JP3622777B2 (en) 1996-03-07 1996-03-07 Image reading optical system and image reading optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04984096A JP3622777B2 (en) 1996-03-07 1996-03-07 Image reading optical system and image reading optical apparatus

Publications (2)

Publication Number Publication Date
JPH09247367A JPH09247367A (en) 1997-09-19
JP3622777B2 true JP3622777B2 (en) 2005-02-23

Family

ID=12842285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04984096A Expired - Lifetime JP3622777B2 (en) 1996-03-07 1996-03-07 Image reading optical system and image reading optical apparatus

Country Status (1)

Country Link
JP (1) JP3622777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201102A (en) * 2019-06-10 2020-12-17 コニカミノルタ株式会社 Image inspection device and image forming apparatus

Also Published As

Publication number Publication date
JPH09247367A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
US5268985A (en) Light-guiding device having a hologram layer
US4624526A (en) Optical pickup device
JPH06258437A (en) Optical equipment and speed information detecting equipment
JP2004184309A (en) Interferometer
US5859439A (en) Apparatus for aligning semiconductor wafer using mixed light with different wavelengths
JP3622777B2 (en) Image reading optical system and image reading optical apparatus
JPH02165684A (en) Semiconductor laser device
JP5481475B2 (en) Projection exposure system and lateral imaging stability monitoring method for microlithography
EP0797121A3 (en) Exposure apparatus
CN111505914A (en) Optical alignment device and photoetching system
JP3530157B2 (en) Exposure recording device
JP3109877B2 (en) Optical information reproducing device
JP2000168136A (en) Exposing-recording apparatus
JPH0520711A (en) Optical pickup
JP2005513704A (en) Optical device for scanning an optical record carrier
JP3098687B2 (en) Document size sensor
JPS63191328A (en) Optical head device
JPH0675300B2 (en) Optical head device
JP2838930B2 (en) Optical head device
JPS6344816Y2 (en)
JPH10141912A (en) Interferometer
JP2542153B2 (en) Optical head device
KR100238314B1 (en) Optical pickup device
JPH03122853A (en) Optical head device
JPH05314533A (en) Optical head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term