JP3622621B2 - Thin film magnetic head and manufacturing method thereof - Google Patents

Thin film magnetic head and manufacturing method thereof Download PDF

Info

Publication number
JP3622621B2
JP3622621B2 JP2000043910A JP2000043910A JP3622621B2 JP 3622621 B2 JP3622621 B2 JP 3622621B2 JP 2000043910 A JP2000043910 A JP 2000043910A JP 2000043910 A JP2000043910 A JP 2000043910A JP 3622621 B2 JP3622621 B2 JP 3622621B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
head
magnetic core
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000043910A
Other languages
Japanese (ja)
Other versions
JP2001236607A (en
Inventor
康弘 岩野
雅祥 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000043910A priority Critical patent/JP3622621B2/en
Publication of JP2001236607A publication Critical patent/JP2001236607A/en
Application granted granted Critical
Publication of JP3622621B2 publication Critical patent/JP3622621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばハードディスクなどの磁気応用製品に搭載される薄膜磁気ヘッドにおいて、特に上部コア層および下部コア層に用いられる軟磁性膜の材質を改良し、高抵抗化並びに磁気特性を向上させた薄膜磁気ヘッドおよびその製造方法に関する。
【0002】
【従来の技術】
近年、磁気記録技術分野においては高密度記録再生特性に優れたGMRヘッドが広く使用されている。GMRヘッドの一般的な構成は図1に示されるように、基板1上に絶縁層2、下部磁気シールド層3を介して磁気抵抗効果素子層4とこの磁気抵抗効果素子層4に検出電流を与える主電極層5とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層11を介して形成され、記録ヘッドのリーディング側磁気コア機能と読み出しヘッドの上部シールド機能とを兼ねた下部磁気コア層6と、その上部に磁気ギャップ12を介して配される上部磁気コア層7と、両磁気コア層6,7に磁界を与えるコイル層8とで構成される記録ヘッドとを有する構成をとるものである。
【0003】
また、記録媒体との摺動面(ABS面)9には体摩耗特性に優れた炭素系保護膜10が形成される。磁気デバイスの高周波化に伴い上記構成よりなるGMRヘッドの記録ヘッド用磁気コアとして、100MHz以上の周波数で軟磁気特性に優れた磁性材料が求められている。磁気ヘッドのコア等に用いられる軟磁性材料に求められる特性は、高電気抵抗率、高飽和磁束密度、高透磁率、低保磁力等である。
【0004】
従来、1T程度以上の高飽和磁束密度を実現するために、磁性金属粒の表面に酸化物を形成し、それを焼結した複合材料が特開平4−21739号公報で提案されており、また、特開平11−238614号公報では、表面に酸化被膜を有するFeの磁性粉末を所望の形状に成形し、磁性粉末の隙間にFeより酸化し易いAlを高温で含浸させ、前記Fe表面の酸化被膜を還元して新たにAl2O3の酸化被膜をFe粒子表面に形成することで、飽和磁束密度が高く高周波特性の優れた軟磁性材料を提案している。
【0005】
さらに特開平9−153405号公報では数100MHzの高周波領域で軟磁性特性に優れた材料として、組成式AaMbDc(AはFe,Co,Niから選ばれた少なくとも1種の元素またはその化合物、MはHf,Zr,Nb.Mgその他から選ばれた元素またはそれらの混合物、DはO,C,Nから選ばれた元素またはそれらの混合物,a,b,cは組成比の原子%である)で表される軟磁性材料の提案がある。
【0006】
ここで提案されている組成比は、40≦a≦87、0≦b≦20、0≦c≦50である。特にMについては多くの元素があげられているが、個々の元素についての最適な組成比は示されていない。
【0007】
また、前記特開平9−153405号公報では、前記組成式で表される軟磁性材料を、材料Aにより平均結晶粒径が数nm〜数10nmのbcc構造の微結晶相をつくり、材料M,Dを多量に含む非晶質相で前記微結晶相が取り囲まれた構造とし、bcc構造のAが微結晶化されることで優れた軟磁性特性を、また、高抵抗の非晶質相により前記微結晶相を取り囲むことにより高周波領域での渦電流を抑え、良好な高周波特性を得る方法が提案されている。
【0008】
以上の従来方法はいずれも磁性粉体を所望の形に成形して使用するものであり、薄膜磁気ヘッドの磁気コアのように、スパッタ法や化学メッキ法等の薄膜プロセスにより磁気コアを成膜する場合にはこれらの磁性材料は使用できない。複合材料を使用し、微細粒子化することで軟磁気特性の向上と高飽和磁束密度を両立する材料として、スパッタリング法により成膜された、本発明とは異なる材料組成を持つFeMNO(M=Be,Mg,Al,Ca他)材料も特開平7−86035号公報で提案されている。
【0009】
【発明が解決しようとする課題】
従来提案されたFeMNO材料は、スパッタリング時に成膜したFeおよびM元素がそれぞれの元素の酸化あるいは窒化物生成自由エネルギーの差によってM元素が選択酸化あるいは選択窒化することにより、bcc結晶構造を持つFe微結晶とその粒界を形成するMOあるいはMN化合物に2相分離することで作製される。
【0010】
しかしながら、スパッタリング法は、ターゲット元素を原子あるいは分子レベルに分解して、基板上で合成を行う手法であり、またスパッタリング時のエネルギーのみで、それぞれの元素が完全な2相分離を行うことは実質的に困難である。このために成膜直後では、FeMNO材料のFe微結晶には必然的にOあるいはNまたはM元素が固溶される。このために、Feを主組成とする微結晶がbcc構造を保っていても、材料の磁歪常数が1×10−5程度以上に大きくなる、あるいはFeの結晶磁気異方性エネルギーが大きくなるなどのために軟磁気特性が劣化するという課題があった。
【0011】
従って工業応用上これらの材料を作製する場合、僅かな組成ずれなどの影響により、大面積で低磁歪、高軟磁気特性を制御することが困難である。これは発明者らによるFeSiO、FeMgOなどの独自検討の結果明らかになったことである。また2相分離を進行させるには、FeMNOの成膜時の基板温度を上げる、あるいは成膜後に熱処理を行う等をすることでほぼ達成できるが、これらの必要熱処理温度は一般に400℃以上となるために、結晶粒の粗大化による軟磁気特性の劣化や、それ以下の低温プロセスが必要なデバイスでは使用できないという課題があった。
【0012】
また一般に、磁気デバイスは、同一のデバイスでも、そのサイズ、使用周波数などによって要求される最適な飽和磁束密度と電気抵抗率の関係が異なることが知られている。しかしながら従来、最適な調整の方法が知られていない。
【0013】
【課題を解決するための手段】
前記の種々の課題を解決するために本発明は、図1で示されるような基板1上に絶縁層2、下部磁気シールド層3を介して磁気抵抗効果素子層4とこの磁気抵抗効果素子層4に検出電流を与える主電極層5とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層11を介して形成され、記録ヘッドのリーディング側磁気コア機能と読み出しヘッドの上部シールド機能とを兼ねた下部磁気コア層6と、その上部に磁気ギャップ12を介して対向する上部磁気コア層7と、両磁気コア層6,7に磁界を与えるコイル層8とで構成される記録ヘッドを有する磁気抵抗効果型薄膜磁気ヘッドにおいて、前記両磁気コア層6,7が、FeMgNb(但し、添え字のa、b、c、dは原子量%を示す)なる組成式で表され、かつ、前記組成は
a+b+c+d=100
45≦a≦85
5.5≦b≦28
0.5≦c≦3
8≦d≦35
の範囲であり、主として平均結晶粒径が15nm以下である金属磁性結晶粒と、前記金属磁性晶粒を略覆った粒界生成物よりなり、前記金属磁性結晶粒の主組成がFeで、また、前記金属磁性結晶粒を略覆う粒界生成物をMg,Nb,Oで形成し、飽和磁束密度が1T以上、電気抵抗率が80μΩcm以上の軟磁性材料で構成するものである。
【0014】
ここでMgおよびNbはFeに対して比較的難固溶性の材料である。また、Mg,Nbは両者とも酸化物生成自由エネルギーあるいは窒化物生成自由エネルギーがFeより低いという特徴を持つが、特にMg元素は酸化物生成自由エネルギーが大きく、またNb元素は窒化物生成自由エネルギーが大きい傾向がある。
【0015】
上記の組成範囲の膜を作製すると、金属磁性結晶粒子内に固溶するMgあるいはNbが少ないために、元素固溶による磁歪や結晶磁気異方性エネルギーの増大が比較的少ない磁性膜を形成できる。またMgあるいはNbは酸化あるいは窒化して主に磁性結晶粒子の粒成長を抑制するとともに、高抵抗の粒界を形成する。
【0016】
このとき本発明ではMgあるいはNbと酸素の組み合わせ比率を選択することで、粒界の幅あるいは、磁性結晶粒子の被覆率を制御できるために、軟磁気特性とともに広範な範囲での飽和磁束密度と電気抵抗率を任意に選択できる。またアルカリ土類金属であるMgは一般に反応性が非常に高いため、工業的に取り扱う場合には安定な化合物状態で使用することが望ましい。例えば、Mg単体で扱うよりもMgO、さらに望ましくは、MgとNbの酸化物であるMgNbOとして取り扱うほうが安全である。
【0017】
この材料を例えばFeとMgNbOをAr雰囲気下でスパッタリングにより合成した場合、発明者らの実験では磁性膜中には化学量論比よりも多くのOが含まれることが分かっている。この過剰なOは、Feに固溶することで磁歪を増大させるが、例えばNbを補うことで、Feへの過剰固溶を抑制でき、結果として磁歪等を低くすることができる。
【0018】
このように、異なる酸化物、窒化物生成自由エネルギーをもつMgおよびNbが、Fe中にとけ込む過剰なOと選択的に反応することで、磁性膜の磁歪を制御することが容易にできる。またFeの量の下限は、飽和磁束密度を1T以上にするために、45%以上であることが必要で、上限はFeを微細化するMg、Nb、Oの必要量から85%以下である。MgとNbの合計量は、Feを微細化するために少なくとも6%は必要で、飽和磁束密度を十分高く保つために28.5%以下であることが必要である。Mgの量は少なくとも5.5%以上が必要で、またNbの量は0.5%以上3%以下で顕著な効果が見られる。
【0019】
またMgとNbの比は1.8〜56の範囲であれば、軟磁気特性を有する範囲で様々な値の抵抗率を制御できる。これは、Mg−O酸化物を用いた磁性膜が比較的低抵抗から軟磁気特性を得られるのに対し、Nb−O酸化物を用いた磁性膜が、比較的高抵抗から軟磁性を生じる傾向があるためであると考察している。
【0020】
またOは抵抗率を80μΩcmとするために8%以上必要である。また、酸素が35%を超えると、結晶粒界が厚くなりすぎるために、磁性結晶粒子同士の交換相互作用が弱くなり、高抵抗化するものの軟磁気特性が劣化する。
【0021】
ここでMgはFeに対して比較的難固溶であるとともに、Feとの間に金属間化合物を生成しにくい。このためにFeへの固溶による磁歪や結晶磁気異方性エネルギーの増大が比較的少なく、かつ、FeとMg−Oの相分離ばかりでなく、Fe、Mgそのものが相分離するために、非磁性元素添加量の全体量が比較的少なくてもFe結晶を微細化できる。その結果として磁性膜の高飽和磁束密度化と軟磁性化が両立できる.。
【0022】
また、Mg、Nbは酸化して主に磁性結晶粒子の成長を抑制するとともに、高抵抗の粒界を形成する。特にMgとは異なる酸化物生成自由エネルギー、あるいはMgとは異なるα―Fe中での拡散速度をもつNbを本発明の組成範囲で組み合わせることで、Fe中に溶け込むOの量を制御でき、その結果、磁歪等を調整することもできる。また、Mgの量がNb以上であることで抵抗率の広範な範囲での制御が可能となる。
【0023】
また、本発明の構成において、Feの5%以下をRu、Rh、Ir、Pd、Pt、Ag、Auから選ばれた少なくとも1種と置換した磁性膜では、特に飽和磁束密度が1.4T以上の磁性膜において、耐食性を高めることができる。ここで置換量は好ましくは0.5%以上で、また置換による飽和磁束密度の低下を抑制するために5%以下が好ましい。
【0024】
また前記構成で、膜垂直方向に、少なくともMg元素が組成変調された磁性膜では、軟磁気特性と同時に高飽和磁束密度が実現しやすい。
【0025】
また前記構成は、組成変調の周期が10nm以下であることで、さらに軟磁気特性が高い磁性膜を実現できる。
【0026】
また前記構成の磁性膜は、Mg酸化物をスパッタすることにより供給する製造方法を用いることで、より少ないMgおよびOの添加量で磁性結晶粒を微細化できる。
【0027】
また前記構成の磁性膜は、金属および化合物を適度に配置した複合タ−ゲットを用いたスパッタリング法で、前記タ−ゲットに対し、少なくとも2方向に稼働している基板上に成膜を行うことで、比較的大面積においても均一な組成の膜を作製することができる。
【0028】
また前記構成の磁性膜は、同一電極上で金属および化合物を適度に配置した複合タ−ゲットを用いたスパッタリング法、あるいは少なくとも2つ以上の異なる電極上の金属タ−ゲットおよび化合物タ−ゲットを用いたスパッタリング法において、基板側にバイアスを印加しながら成膜を行うことで、磁性膜中の主に酸素量を本発明の好ましい範囲に制御することが容易にできる。
【0029】
また前記構成の磁性膜は、350℃以下の熱処理で、優れた軟磁気特性を示す。
【0030】
以上により、前記各構成の磁性膜は、下部コア層および上部コア層に必要な性質を満たすことのできる軟磁性材料であるため、これらのうちいずれかの軟磁性材料の組成比を適正に調節して下部コア層および上部コア層に使用すれば、高密度記録化および高周波数記録化に対応可能な薄膜磁気ヘッドを製造することができる。
【0031】
【発明の実施の形態】
本発明の構造、組成を持つ磁性薄膜は低ガス圧雰囲気で蒸着法により形成することが最良である。蒸着法の中では、高周波マグネトロンスパッタリング、直流スパッタリング、対向タ−ゲットスパッタリング、イオンビ−ムスパッタリング等に代表されるスパッタリング法や、基板付近に反応性ガス導入部を持つ、反応性スパッタリング法、あるいは基板付近に反応性ガス導入部を持ち、蒸着材料を溶解する溶解部をもった反応性蒸着法等が好ましい。
【0032】
スパッタリング法で本発明を実施する際に、特に、酸素あるいは窒素元素の供給源として酸化物あるいは窒化物を用いる場合、まず本発明の磁性膜のそれぞれ成膜後の組成を考慮して組成決定した金属または合金と、酸化物、窒化物、金属元素等の添加元素を同一電極上に適度に配置した複合タ−ゲットを用いたスパッタ法、あるいは複数の電極上に配置した金属、合金、酸化物または窒化物のタ−ゲットを同時放電し、基板上に元素供給を同時に行うコ・スパッタ法、あるいは複数の電極上に配置された金属、合金、酸化物または窒化物のタ−ゲット直上近に、基板を順次移動させ成膜を行うタンデム法等が好ましい。
【0033】
ここで複合タ−ゲットを使用する場合は、添加物ペレットの配置個所に対応する基板内の膜組成分布の影響を押さえるために、基板自身が、少なくとも2方向に移動することが好ましい。これはコ・スパッタ、タンデムスパッタを行う場合についてもそれぞれ組成均一化の効果がある。
【0034】
またタンデムスパッタを行う際に、それぞれのタ−ゲットからの成膜速度と、各タ−ゲット上での基板の滞在あるいは移動時間を調整することで本発明の磁性膜の好ましい組成変調構造を形成することができる。同様に、このような組成変調は、タ−ゲット上の入射角を周期的に変化させること、あるいは反応性ガスをスパッタリング時に周期的に導入することでも達成できる。また何れの成膜方法を用いる場合においても、基板に対して一方向に磁界をかけながら成膜を行うこと、あるいは一方向に磁界をかけながら、350℃以下程度で熱処理することで磁性膜に一軸異方性を形成することができる。
【0035】
【実施例】
以下の実施例中、磁性膜はRFマグネトロンスパッタリングを用いて作製した。以下で基板温度として、室温から100℃程度に幅があるのは、成膜時のエネルギ−による自然昇温であり、実際には300℃以下程度であれば本実施例の好ましい磁性薄膜を作製することが可能である。膜構造はX線回折(XRD)、透過型電子顕微鏡(TEM)を用いて観察した。また組成分析はEPMA、また抗磁力はBHル−プトレ−サ−、飽和磁束密度はVSMで評価した。
【0036】
以下実施例により詳細を示す。
(実施例1)
FeMgNb膜について検討した結果を示す。
【0037】
実験条件は次の通りである。
【0038】
基板:非磁性セラミックス基板、SiまたはC基板(Si基板とC基板は組成分析用)
基板温度:室温〜100℃
タ−ゲット:3インチのFe上に 5×5mmのSiO2あるいはMgOチップあるいはMg、Nbチップおよび、5×5mmの金属元素のチップを下記の組成になるように配置。
【0039】
タ−ゲットサイズ 3インチ
放電ガス圧 8mTorr
放電電力 200W
スパッタガス Ar
【0040】
【表1】

Figure 0003622621
【0041】
に、250℃の真空中で熱処理した後の磁性膜の磁気特性と組成を示す。磁性膜の厚みはすべて1μmとした。
【0042】
以上のように、FeMgO系材料に元素を添加したところ、Feと固溶性の高いSiやAlでは磁歪が低下せず、実施例af〜実施例aqに示したように、Feと難固溶性である元素についてわずか0.5%の添加から、磁歪の低下とともに、抵抗率の上昇が確認された。その他、同様に、Feに対して難固溶性であるランタン系希土類元素について添加効果を調べたところ、同様の効果が見られた。また特に磁歪低下の効果はZr、Nb、Hf、Taで顕著である。以上の実施例で示した磁性膜の飽和磁束密度は何れも1T以上で、X線回折で求めた磁性結晶粒子の平均結晶粒径は15nm以下であった。このうち、実施例amについてTEM観察したところ、α−Feの微結晶が、粒界生成物でほぼ覆われた形をした複合構造を持ち、粒界生成物は、結晶性の低い、非晶質と見なせる構造を持っていた。またこの粒界生成物の組成は、少なくとも、MgとNbの酸化物を含んでいることが分かった。
【0043】
また本実施例では、タ−ゲット上にMgOチップを配置した複合タ−ゲットを用いているが、例えばFeMgNb焼結タ−ゲットなどをAr+O2混合ガス中等でスパッタする、いわゆる反応性スパッタ法を用いても、同様の磁性膜が作製できることを確認している。また本実施例では基板はタ−ゲットに対して、固定した状態でスパッタリングを行ったが、複合タ−ゲットに対して、基板位置を回転させる、あるいはタ−ゲットに対して前後左右などに平行移動する等、少なくとも2方向に稼働している基板上に成膜を行うことで、組成の均一性が向上し、磁歪をはじめとする磁気特性がさらに本実施例に示した値より向上することを一部の組成で確認している。
【0044】
また、本実施例の様に、同一電極上で金属および化合物を適度に配置した複合タ−ゲットを用いたスパッタリング法、あるいは少なくとも2つ以上の異なる電極上の金属タ−ゲットおよび化合物タ−ゲットを用いたスパッタリング法において、基板側にバイアスを印加しながら成膜を行うことで、膜中の酸素量を制御することができ、その結果、磁性膜のO組成量を、本発明の範囲の好ましい範囲に制御でき、磁歪をはじめとする軟磁気特性を制御できることを確認している。
【0045】
【発明の効果】
以上のように本発明の組成および構造を持つ磁性膜およびその製造方法を用いることで、磁気抵抗効果素子層と、この磁気抵抗効果素子層に検出電流を与える主電極層とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層を介して形成され、記録ヘッドのリーディング側コア機能と、読み出しヘッドの上部シールド機能とを兼ねた下部コア層と、前記下部コア層と磁気ギャップを介して対向する上部コア層と、両コア層に磁界を与えるコイル層とで構成される記録ヘッドを有する薄膜磁気ヘッドにおいて、前記両コア層に、磁歪定数が低く、かつ高周波での軟磁気特性に優れ、高い飽和磁束密度および高比抵抗を有した磁性材料を提供できる。
【0046】
本発明の材料組成では、Feに対し難固溶性材料のMg、Nbを使うことで純粋なFeによる微結晶を作りやすく、高飽和磁束密度の磁性材料が得られる。
【0047】
本発明の材料組成によるMg、Nbは酸化物生成自由エネルギー、あるいは窒化物生成自由エネルギーがFeより低く、したがってFe中のO、Nの固溶が少なくなり、低磁歪で高飽和磁束密度の磁性材料が得られる。
【0048】
また、Mg、Nbは酸化あるいは窒化してFeの周囲に高抵抗の膜を作るとともに、磁性結晶粒子の粒成長を抑制し、これにより電気抵抗率が高く高周波特性の良好で、軟磁性特性の優れた磁性材料が得られる。
【0049】
本発明の材料組成によれば、Mg、Nbの比率を選択することでFeの周囲に形成される粒界の厚みあるいは被覆率を制御可能で、これにより電気抵抗率や飽和磁束密度を制御することが可能になる。
【0050】
Mgを使用するに際し、MgOの形で使用すれば安定性が増し、量産工程での安全性が得られる。
【0051】
本発明ではFeに対して難固溶性のMgを用いるため、Fe、Mgが相分離し易く、したがって少ない添加量でFeの微細化が可能になる
【図面の簡単な説明】
【図1】本発明の磁気抵抗効果型磁気ヘッドの構成を示す断面図
【符号の説明】
1 基板
2、11 絶縁層
3 下部磁気シールド
4 磁気抵抗硬化素子
5 主電極層
6 上部磁気シールドを兼ねた下部磁気コア
7 上部磁気コア
8 コイル層
9 ABS面
10ABS面保護層
12 記録ギャップ[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, in a thin film magnetic head mounted on a magnetic application product such as a hard disk, has improved the material of the soft magnetic film used for the upper core layer and the lower core layer, and improved the resistance and magnetic characteristics. The present invention relates to a thin film magnetic head and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, GMR heads excellent in high density recording / reproducing characteristics have been widely used in the magnetic recording technology field. As shown in FIG. 1, the general configuration of the GMR head is that a detection current is applied to the magnetoresistive element layer 4 and the magnetoresistive element layer 4 via an insulating layer 2 and a lower magnetic shield layer 3 on a substrate 1. A read head composed of a main electrode layer 5 to be applied, and a lower magnet formed on an upper portion of the read head via an insulating layer 11 and serving as a reading side magnetic core function of the recording head and an upper shield function of the read head A structure having a recording head composed of a core layer 6, an upper magnetic core layer 7 disposed thereon via a magnetic gap 12, and a coil layer 8 that applies a magnetic field to both magnetic core layers 6, 7. It is something to take.
[0003]
A carbon-based protective film 10 having excellent body wear characteristics is formed on the sliding surface (ABS surface) 9 with the recording medium. As a magnetic device has a higher frequency, a magnetic material excellent in soft magnetic characteristics at a frequency of 100 MHz or more is required as a magnetic core for a recording head of a GMR head having the above configuration. Characteristics required for a soft magnetic material used for a core or the like of a magnetic head are high electrical resistivity, high saturation magnetic flux density, high magnetic permeability, low coercive force, and the like.
[0004]
Conventionally, in order to realize a high saturation magnetic flux density of about 1T or more, a composite material obtained by forming an oxide on the surface of magnetic metal grains and sintering it has been proposed in Japanese Patent Laid-Open No. 4-21739, In Japanese Patent Laid-Open No. 11-238614, a magnetic powder of Fe having an oxide film on the surface is formed into a desired shape, and a gap between the magnetic powders is impregnated with Al which is more easily oxidized than Fe at a high temperature. A soft magnetic material having a high saturation magnetic flux density and excellent high-frequency characteristics has been proposed by reducing the coating and newly forming an Al2O3 oxide coating on the Fe particle surface.
[0005]
Furthermore, in Japanese Patent Laid-Open No. 9-153405, as a material excellent in soft magnetic properties in a high frequency region of several hundred MHz, a composition formula AaMbDc (A is at least one element selected from Fe, Co, Ni or a compound thereof, M is Hf, Zr, Nb, Mg or other elements selected from them, or a mixture thereof, D is an element selected from O, C, or N or a mixture thereof, and a, b, and c are atomic% of the composition ratio). There are proposals for soft magnetic materials represented.
[0006]
The composition ratio proposed here is 40 ≦ a ≦ 87, 0 ≦ b ≦ 20, and 0 ≦ c ≦ 50. Although many elements are mentioned especially about M, the optimal composition ratio about each element is not shown.
[0007]
In JP-A-9-153405, a soft magnetic material represented by the above composition formula is formed from a material A to form a microcrystalline phase having a bcc structure having an average crystal grain size of several nanometers to several tens of nanometers. A structure in which the microcrystalline phase is surrounded by an amorphous phase containing a large amount of D, and an excellent soft magnetic property is obtained by microcrystallization of A in the bcc structure. A method has been proposed in which the eddy current in the high frequency region is suppressed by surrounding the microcrystalline phase to obtain good high frequency characteristics.
[0008]
All of the above conventional methods use a magnetic powder formed into a desired shape, and like a magnetic core of a thin film magnetic head, a magnetic core is formed by a thin film process such as a sputtering method or a chemical plating method. In this case, these magnetic materials cannot be used. FeMNO (M = Be) having a material composition different from that of the present invention formed by sputtering as a material that achieves both improvement in soft magnetic properties and high saturation magnetic flux density by using a composite material to make fine particles. , Mg, Al, Ca, etc.) materials have also been proposed in JP-A-7-86035.
[0009]
[Problems to be solved by the invention]
In the conventionally proposed FeMNO material, the Fe and M elements formed during sputtering are selectively oxidized or nitrided by the difference in free energy of oxidation or nitridation of each element, so that the FeMNO material has a bcc crystal structure. It is prepared by two-phase separation into MO or MN compounds that form microcrystals and their grain boundaries.
[0010]
However, the sputtering method is a technique in which the target element is decomposed to the atomic or molecular level and synthesized on the substrate, and it is substantially impossible for each element to perform complete two-phase separation only by the energy at the time of sputtering. Is difficult. For this reason, immediately after the film formation, O, N, or M element is inevitably dissolved in the Fe microcrystal of the FeMNO material. For this reason, even if the microcrystal mainly composed of Fe maintains the bcc structure, the magnetostriction constant of the material increases to about 1 × 10 −5 or more, or the magnetocrystalline anisotropy energy of Fe increases. For this reason, there has been a problem that soft magnetic properties deteriorate.
[0011]
Therefore, when manufacturing these materials for industrial applications, it is difficult to control the low magnetostriction and high soft magnetic characteristics in a large area due to the influence of a slight composition shift or the like. This has been clarified as a result of independent studies on FeSiO, FeMgO and the like by the inventors. In order to advance the two-phase separation, it can be almost achieved by increasing the substrate temperature at the time of forming the FeMNO film, or by performing a heat treatment after the film formation, but the necessary heat treatment temperature is generally 400 ° C. or higher. Therefore, there has been a problem that soft magnetic characteristics are deteriorated due to the coarsening of crystal grains, and that it cannot be used in a device that requires a lower temperature process.
[0012]
In general, it is known that even in the same magnetic device, the relationship between the optimum saturation magnetic flux density and the electrical resistivity required depending on the size, operating frequency, etc. is different. However, conventionally, an optimal adjustment method is not known.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned various problems, the present invention provides a magnetoresistive element layer 4 and a magnetoresistive element layer on a substrate 1 as shown in FIG. 1 via an insulating layer 2 and a lower magnetic shield layer 3. A read head composed of a main electrode layer 5 for supplying a detection current to 4 and an insulating layer 11 formed on the read head via an insulating layer 11, and a reading-side magnetic core function of the recording head and an upper shield function of the read head; A recording head composed of a lower magnetic core layer 6 also serving as a magnetic field, an upper magnetic core layer 7 opposed to the upper magnetic core layer 12 via a magnetic gap 12, and a coil layer 8 that applies a magnetic field to both magnetic core layers 6 and 7. In the magnetoresistive thin film magnetic head, the two magnetic core layers 6 and 7 are composed of Fe a Mg b Nb c O d (where the subscripts a, b, c, and d indicate atomic weight%). Represented by And said composition is a + b + c + d = 100
45 ≦ a ≦ 85
5.5 ≦ b ≦ 28
0.5 ≦ c ≦ 3
8 ≦ d ≦ 35
A metal magnetic crystal grain having an average crystal grain size of 15 nm or less and a grain boundary product substantially covering the metal magnetic crystal grain, wherein the main composition of the metal magnetic crystal grain is Fe, The grain boundary product substantially covering the metal magnetic crystal grains is formed of Mg, Nb, O, and is made of a soft magnetic material having a saturation magnetic flux density of 1 T or more and an electric resistivity of 80 μΩcm or more.
[0014]
Here, Mg and Nb are materials that are relatively hardly soluble in Fe. Mg and Nb are both characterized in that the free energy for oxide formation or the free energy for nitride formation is lower than that of Fe. In particular, Mg element has a large free energy for oxide formation, and Nb element has free energy for nitride formation. Tend to be big.
[0015]
When a film having the above composition range is produced, since there is little Mg or Nb dissolved in the metal magnetic crystal particles, it is possible to form a magnetic film with relatively little increase in magnetostriction and crystal magnetic anisotropy energy due to element solid solution. . Mg or Nb is oxidized or nitrided to mainly suppress the grain growth of magnetic crystal grains and form a high-resistance grain boundary.
[0016]
At this time, in the present invention, by selecting the combination ratio of Mg or Nb and oxygen, the width of the grain boundary or the coverage of the magnetic crystal grains can be controlled. The electrical resistivity can be selected arbitrarily. In addition, since Mg, which is an alkaline earth metal, is generally very reactive, it is desirable to use it in a stable compound state when handled industrially. For example, it is safer to handle MgO than Mg alone, more preferably MgNbO x which is an oxide of Mg and Nb.
[0017]
When this material is synthesized, for example, by sputtering Fe and MgNbO x under an Ar atmosphere, the inventors' experiments have shown that the magnetic film contains more O than the stoichiometric ratio. This excessive O increases the magnetostriction by dissolving in Fe, but supplementing Nb, for example, can suppress the excessive solid solution in Fe, resulting in lower magnetostriction and the like.
[0018]
Thus, Mg and Nb having different oxides and nitride formation free energies selectively react with the excess O dissolved in Fe, so that the magnetostriction of the magnetic film can be easily controlled. Further, the lower limit of the amount of Fe is required to be 45% or more in order to make the saturation magnetic flux density 1T or more, and the upper limit is 85% or less from the necessary amount of Mg, Nb, and O for refining Fe. . The total amount of Mg and Nb is required to be at least 6% in order to refine Fe, and to be 28.5% or less in order to keep the saturation magnetic flux density sufficiently high. The amount of Mg needs to be at least 5.5% or more, and the amount of Nb is 0.5% or more and 3% or less.
[0019]
If the ratio of Mg and Nb is in the range of 1.8 to 56, various values of resistivity can be controlled within the range having soft magnetic characteristics. This is because a magnetic film using Mg—O oxide can obtain soft magnetic characteristics from a relatively low resistance, whereas a magnetic film using Nb—O oxide produces soft magnetism from a relatively high resistance. I think it is because there is a tendency.
[0020]
O needs to be 8% or more in order to make the resistivity 80 μΩcm. On the other hand, if the oxygen content exceeds 35%, the crystal grain boundary becomes too thick, so that the exchange interaction between the magnetic crystal grains becomes weak, and the soft magnetic characteristics deteriorate although the resistance increases.
[0021]
Here, Mg is relatively difficult to dissolve in Fe and hardly forms an intermetallic compound with Fe. For this reason, there is relatively little increase in magnetostriction and magnetocrystalline anisotropy energy due to solid solution in Fe, and not only the phase separation of Fe and Mg—O but also Fe and Mg themselves are phase separated. Fe crystals can be refined even if the total amount of magnetic element addition is relatively small. As a result, both high saturation magnetic flux density and soft magnetism of the magnetic film can be achieved. .
[0022]
Mg and Nb are oxidized to mainly suppress the growth of magnetic crystal grains and form a high-resistance grain boundary. In particular, the amount of O dissolved in Fe can be controlled by combining the free energy of oxide formation different from Mg or Nb having a diffusion rate in α-Fe different from Mg in the composition range of the present invention. As a result, magnetostriction and the like can be adjusted. Further, when the amount of Mg is Nb or more, it is possible to control the resistivity in a wide range.
[0023]
In the structure of the present invention, in the magnetic film in which 5% or less of Fe is replaced with at least one selected from Ru, Rh, Ir, Pd, Pt, Ag, and Au, the saturation magnetic flux density is particularly 1.4 T or more. In the magnetic film, the corrosion resistance can be improved. Here, the substitution amount is preferably 0.5% or more, and preferably 5% or less in order to suppress a decrease in saturation magnetic flux density due to substitution.
[0024]
In the magnetic film in which at least Mg element is compositionally modulated in the film vertical direction with the above configuration, high saturation magnetic flux density can be easily realized simultaneously with the soft magnetic characteristics.
[0025]
Moreover, the said structure can implement | achieve a magnetic film with a further soft magnetic characteristic because the period of a compositional modulation is 10 nm or less.
[0026]
Moreover, the magnetic film of the said structure can refine | miniaturize a magnetic crystal grain with the addition amount of smaller Mg and O by using the manufacturing method supplied by sputtering Mg oxide.
[0027]
Further, the magnetic film having the above structure is formed on a substrate operating in at least two directions with respect to the target by a sputtering method using a composite target in which a metal and a compound are appropriately arranged. Thus, a film having a uniform composition can be manufactured even in a relatively large area.
[0028]
In addition, the magnetic film having the above-described structure is formed by sputtering using a composite target in which metals and compounds are appropriately arranged on the same electrode, or at least two metal targets and compound targets on different electrodes. In the sputtering method used, by forming a film while applying a bias to the substrate side, the amount of oxygen in the magnetic film can be easily controlled within the preferred range of the present invention.
[0029]
In addition, the magnetic film having the above-described structure exhibits excellent soft magnetic properties when heat-treated at 350 ° C. or lower.
[0030]
As described above, since the magnetic films having the above-described configurations are soft magnetic materials that can satisfy the properties required for the lower core layer and the upper core layer, the composition ratio of any one of these soft magnetic materials is appropriately adjusted. If used for the lower core layer and the upper core layer, it is possible to manufacture a thin film magnetic head that can cope with high density recording and high frequency recording.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic thin film having the structure and composition of the present invention is best formed by vapor deposition in a low gas pressure atmosphere. Among vapor deposition methods, sputtering methods represented by high-frequency magnetron sputtering, direct current sputtering, counter target sputtering, ion beam sputtering, etc., reactive sputtering methods having a reactive gas introduction part near the substrate, or substrates A reactive vapor deposition method having a reactive gas introduction part in the vicinity and a dissolving part for dissolving the vapor deposition material is preferable.
[0032]
When carrying out the present invention by a sputtering method, particularly when an oxide or a nitride is used as a supply source of oxygen or nitrogen element, the composition was first determined in consideration of the composition after each of the magnetic films of the present invention. Sputtering using a composite target in which a metal or alloy and an additive element such as an oxide, nitride, or metal element are appropriately disposed on the same electrode, or a metal, alloy, or oxide disposed on a plurality of electrodes Alternatively, a co-sputtering method in which a nitride target is simultaneously discharged and elements are simultaneously supplied to the substrate, or a metal, alloy, oxide, or nitride target disposed on a plurality of electrodes is in the immediate vicinity. A tandem method in which a film is formed by sequentially moving the substrate is preferable.
[0033]
When the composite target is used here, it is preferable that the substrate itself moves in at least two directions in order to suppress the influence of the film composition distribution in the substrate corresponding to the location of the additive pellet. This also has the effect of making the composition uniform when co-sputtering and tandem sputtering are performed.
[0034]
Further, when performing tandem sputtering, a preferable composition modulation structure of the magnetic film of the present invention is formed by adjusting the film formation rate from each target and the stay or movement time of the substrate on each target. can do. Similarly, such compositional modulation can also be achieved by periodically changing the incident angle on the target or by periodically introducing a reactive gas during sputtering. In any case, the magnetic film is formed by applying a magnetic field in one direction to the substrate or by performing a heat treatment at about 350 ° C. or lower while applying a magnetic field in one direction. Uniaxial anisotropy can be formed.
[0035]
【Example】
In the following examples, the magnetic film was produced using RF magnetron sputtering. In the following, the substrate temperature has a range from room temperature to about 100 ° C. due to natural temperature rise due to energy during film formation. Is possible. The film structure was observed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The composition analysis was evaluated by EPMA, the coercive force was evaluated by BH loop tracer, and the saturation magnetic flux density was evaluated by VSM.
[0036]
Details will be described below by way of examples.
(Example 1)
Shows the results of investigation of Fe a Mg b Nb c O d film.
[0037]
The experimental conditions are as follows.
[0038]
Substrate: Non-magnetic ceramic substrate, Si or C substrate (Si substrate and C substrate are for composition analysis)
Substrate temperature: room temperature to 100 ° C
Target: 5 × 5 mm SiO 2 or MgO chip or Mg, Nb chip and 5 × 5 mm metal element chip are arranged on 3 inch Fe so as to have the following composition.
[0039]
Target size 3 inch discharge gas pressure 8mTorr
Discharge power 200W
Sputtering gas Ar
[0040]
[Table 1]
Figure 0003622621
[0041]
Shows the magnetic properties and composition of the magnetic film after heat treatment in vacuum at 250 ° C. The thickness of each magnetic film was 1 μm.
[0042]
As described above, when an element is added to the FeMgO-based material, the magnetostriction does not decrease with Si or Al having a high solid solubility with Fe, and as shown in Examples af to aq, it is difficult to dissolve with Fe. From the addition of only 0.5% for a certain element, an increase in resistivity was confirmed with a decrease in magnetostriction. In addition, when the effect of addition of a lanthanum rare earth element, which is hardly soluble in Fe, was examined, the same effect was found. In particular, the effect of lowering magnetostriction is significant with Zr, Nb, Hf, and Ta. The saturation magnetic flux densities of the magnetic films shown in the above examples were all 1 T or more, and the average crystal grain size of the magnetic crystal grains determined by X-ray diffraction was 15 nm or less. Among them, Example am was observed by TEM. As a result, α-Fe microcrystals had a composite structure almost covered with the grain boundary product, and the grain boundary product was amorphous. It had a structure that can be regarded as quality. Moreover, it turned out that the composition of this grain boundary product contains the oxide of Mg and Nb at least.
[0043]
In this embodiment, a composite target in which an MgO chip is arranged on a target is used. For example, a so-called reactive sputtering method is used in which an FeMgNb sintered target or the like is sputtered in an Ar + O2 mixed gas or the like. However, it has been confirmed that a similar magnetic film can be produced. Further, in this embodiment, the substrate was sputtered in a fixed state with respect to the target. However, the substrate position was rotated with respect to the composite target, or parallel to the front, rear, left and right with respect to the target. By performing film formation on a substrate operating in at least two directions, such as moving, the uniformity of the composition is improved, and the magnetic properties including magnetostriction are further improved from the values shown in this embodiment. Has been confirmed in some compositions.
[0044]
Further, as in this embodiment, a sputtering method using a composite target in which a metal and a compound are appropriately arranged on the same electrode, or a metal target and a compound target on at least two different electrodes. In the sputtering method using a film, the amount of oxygen in the film can be controlled by performing film formation while applying a bias to the substrate side. As a result, the O composition amount of the magnetic film is within the range of the present invention. It has been confirmed that it can be controlled within a preferable range, and soft magnetic characteristics such as magnetostriction can be controlled.
[0045]
【The invention's effect】
As described above, by using the magnetic film having the composition and structure of the present invention and the method of manufacturing the same, a read composed of a magnetoresistive element layer and a main electrode layer that supplies a detection current to the magnetoresistive element layer A head, a lower core layer that is formed above the read head via an insulating layer and serves both as a reading-side core function of the recording head and an upper shield function of the read head, and via the lower core layer and a magnetic gap In a thin film magnetic head having a recording head composed of an upper core layer facing each other and a coil layer that applies a magnetic field to both core layers, the both core layers have a low magnetostriction constant and soft magnetic characteristics at high frequencies. An excellent magnetic material having high saturation magnetic flux density and high specific resistance can be provided.
[0046]
In the material composition of the present invention, by using Mg and Nb which are hardly soluble materials with respect to Fe, it is easy to form fine crystals of pure Fe, and a magnetic material having a high saturation magnetic flux density can be obtained.
[0047]
Mg and Nb according to the material composition of the present invention have lower free energy for oxide formation or lower free energy for nitride formation than Fe. Therefore, the solid solution of O and N in Fe is reduced, and the magnetic properties of low magnetostriction and high saturation magnetic flux density are low. A material is obtained.
[0048]
Mg and Nb are oxidized or nitrided to form a high-resistance film around Fe and suppress grain growth of magnetic crystal grains, thereby having high electrical resistivity and good high-frequency characteristics, and soft magnetic characteristics. An excellent magnetic material can be obtained.
[0049]
According to the material composition of the present invention, it is possible to control the thickness or coverage of the grain boundary formed around Fe by selecting the ratio of Mg and Nb, thereby controlling the electrical resistivity and saturation magnetic flux density. It becomes possible.
[0050]
When using Mg, if it is used in the form of MgO, the stability is increased and the safety in the mass production process can be obtained.
[0051]
In the present invention, Mg, which is sparingly soluble in Fe, is used, so that Fe and Mg are easily phase-separated. Therefore, Fe can be refined with a small addition amount.
FIG. 1 is a cross-sectional view showing the configuration of a magnetoresistive head of the present invention.
DESCRIPTION OF SYMBOLS 1 Board | substrates 2 and 11 Insulating layer 3 Lower magnetic shield 4 Magnetoresistive element 5 Main electrode layer 6 Lower magnetic core 7 also serving as an upper magnetic shield Upper magnetic core 8 Coil layer 9 ABS surface 10 ABS surface protective layer 12 Recording gap

Claims (3)

磁気抵抗効果素子層とこの磁気抵抗効果素子層に検出電流を与える主電極層とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層を介して形成され、記録ヘッドのリーディング側コア機能と読み出しヘッドの上部シールド機能とを兼ねた下部磁気コア層と、前記下部磁気コア層と磁気ギャップを介して対向する上部磁気コア層と、両磁気コア層に磁界を与えるコイル層とで形成される記録ヘッドを有する薄膜磁気ヘッドにおいて、前記両磁気コア層が、FeMgNb(但し、添え字のa、b、c、dは原子量%を示す)なる組成式で表され、かつ、前記組成は
a+b+c+d=100
45≦a≦85
5.5≦b≦28
0.5≦c≦3
8≦d≦35
の範囲である軟磁性材料で構成されることを特徴とする薄膜磁気ヘッド。
A read head composed of a magnetoresistive effect element layer and a main electrode layer that supplies a detection current to the magnetoresistive effect element layer, and a read side core function of the recording head formed above the read head via an insulating layer And a lower magnetic core layer also serving as an upper shield function of the read head, an upper magnetic core layer facing the lower magnetic core layer via a magnetic gap, and a coil layer that applies a magnetic field to both magnetic core layers. In the thin film magnetic head having the recording head, the two magnetic core layers are represented by a composition formula of Fe a Mg b Nb c O d (where the subscripts a, b, c, and d indicate atomic weight%). And the composition is a + b + c + d = 100
45 ≦ a ≦ 85
5.5 ≦ b ≦ 28
0.5 ≦ c ≦ 3
8 ≦ d ≦ 35
A thin film magnetic head comprising a soft magnetic material in a range of
磁気抵抗効果素子層とこの磁気抵抗効果素子層に検出電流を与える主電極層とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層を介して形成され、記録ヘッドのリーディング側コア機能と読み出しヘッドの上部シールド機能とを兼ねた下部磁気コア層と、前記下部磁気コア層と磁気ギャップを介して対向する上部磁気コア層と、両磁気コア層に磁界を与えるコイル層とで形成される記録ヘッドを有する薄膜磁気ヘッドにおいて、前記両磁気コア層が、FeMgNb(但し、添え字のa、b、c、dは原子量%を示す)なる組成式で表され、かつ、前記組成は
a+b+c+d=100
45≦a≦85
5.5≦b≦28
0.5≦c≦3
8≦d≦35
の範囲であり、主としてFeで平均結晶粒径が15nm以下である金属磁性結晶粒を形成し、Mg,Nb,Oで前記金属磁性結晶粒を略覆う粒界生成物を形成した軟磁性材料で構成されることを特徴とする薄膜磁気ヘッド。
A read head composed of a magnetoresistive effect element layer and a main electrode layer that supplies a detection current to the magnetoresistive effect element layer, and a read side core function of the recording head formed above the read head via an insulating layer And a lower magnetic core layer also serving as an upper shield function of the read head, an upper magnetic core layer facing the lower magnetic core layer via a magnetic gap, and a coil layer that applies a magnetic field to both magnetic core layers. In the thin film magnetic head having the recording head, the two magnetic core layers are represented by a composition formula of Fe a Mg b Nb c O d (where the subscripts a, b, c, and d indicate atomic weight%). And the composition is a + b + c + d = 100
45 ≦ a ≦ 85
5.5 ≦ b ≦ 28
0.5 ≦ c ≦ 3
8 ≦ d ≦ 35
A soft magnetic material in which metal magnetic crystal grains having an average crystal grain size of 15 nm or less are mainly formed of Fe, and a grain boundary product that substantially covers the metal magnetic crystal grains is formed of Mg, Nb, and O. A thin film magnetic head characterized by comprising.
磁気抵抗効果素子層とこの磁気抵抗効果素子層に検出電流を与える主電極層とで構成される読み出しヘッドと、前記読み出しヘッドの上部に絶縁層を介して形成され、記録ヘッドのリーディング側コア機能と読み出しヘッドの上部シールド機能とを兼ねた下部磁気コア層と、前記下部磁気コア層と磁気ギャップを介して対向する上部磁気コア層と、両磁気コア層に磁界を与えるコイル層とで構成される記録ヘッドを有する薄膜磁気ヘッドにおいて、前記両磁気コア層が、FeMgNb(但し、添え字のa、b、c、dは原子量%を示す)なる組成式で表され、かつ、前記組成は
a+b+c+d=100
45≦a≦85
5.5≦b≦28
0.5≦c≦3
8≦d≦35
の範囲であり、主としてFeで平均結晶粒径が15nm以下である金属磁性結晶粒を形成し、Mg,Nb,Oで前記金属磁性結晶粒を略覆う粒界生成物を形成し、飽和磁束密度が1T以上、電気抵抗率が80μΩcm以上の軟磁性材料で構成されることを特徴とする薄膜磁気ヘッド。
A read head composed of a magnetoresistive effect element layer and a main electrode layer that supplies a detection current to the magnetoresistive effect element layer, and a read side core function of the recording head formed above the read head via an insulating layer And a lower magnetic core layer serving as an upper shield function of the read head, an upper magnetic core layer facing the lower magnetic core layer through a magnetic gap, and a coil layer that applies a magnetic field to both magnetic core layers. In the thin film magnetic head having the recording head, the two magnetic core layers are represented by a composition formula of Fe a Mg b Nb c O d (where the subscripts a, b, c, and d indicate atomic weight%). And the composition is a + b + c + d = 100
45 ≦ a ≦ 85
5.5 ≦ b ≦ 28
0.5 ≦ c ≦ 3
8 ≦ d ≦ 35
In this range, mainly metal magnetic crystal grains having an average crystal grain size of 15 nm or less are formed of Fe, and a grain boundary product substantially covering the metal magnetic crystal grains is formed of Mg, Nb, and O, and a saturation magnetic flux density is formed. A thin film magnetic head comprising: a soft magnetic material having a resistivity of 1 T or more and an electrical resistivity of 80 μΩcm or more.
JP2000043910A 2000-02-22 2000-02-22 Thin film magnetic head and manufacturing method thereof Expired - Fee Related JP3622621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043910A JP3622621B2 (en) 2000-02-22 2000-02-22 Thin film magnetic head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043910A JP3622621B2 (en) 2000-02-22 2000-02-22 Thin film magnetic head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001236607A JP2001236607A (en) 2001-08-31
JP3622621B2 true JP3622621B2 (en) 2005-02-23

Family

ID=18566750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043910A Expired - Fee Related JP3622621B2 (en) 2000-02-22 2000-02-22 Thin film magnetic head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3622621B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006006420A1 (en) 2004-07-12 2008-04-24 日本電気株式会社 Magnetoresistive element, magnetic random access memory, magnetic head, and magnetic storage device

Also Published As

Publication number Publication date
JP2001236607A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4975647B2 (en) Non-magnetic particle dispersed ferromagnetic sputtering target
US6210544B1 (en) Magnetic film forming method
CN103210115B (en) Magnetic recording film sputtering target and manufacture method thereof
US20080083616A1 (en) Co-Fe-Zr BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
US20060068196A1 (en) High-frequency magnetic material, producing method for the same and high-frequency magnetic device
JP3973857B2 (en) Manufacturing method of manganese alloy sputtering target
US20030228238A1 (en) High-PTF sputtering targets and method of manufacturing
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
JP2007128630A (en) Magnetic recording medium, manufacturing method of magnetic recording medium, and sputtering target
EP3511959B1 (en) Soft magnetic alloy and magnetic device
WO2010074171A1 (en) Sputtering target and method of film formation
JP2019123930A (en) Soft magnetic alloy and magnetic component
CN114503225A (en) Soft magnetic alloy and magnetic component
TWI608113B (en) Sputtering target
JP3622621B2 (en) Thin film magnetic head and manufacturing method thereof
US6379810B1 (en) High resistance magnetic film
JP6213342B2 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP6734399B2 (en) Magnetic material sputtering target and manufacturing method thereof
JP2016160530A (en) Magnetic alloy sputtering target and recording layer for magnetic recording media
US6036825A (en) Magnetic film forming method
JP2950917B2 (en) Soft magnetic thin film
JP3410057B2 (en) High resistance magnetic film
JP5505844B2 (en) Alloy sputtering target based on CoCrPt with cobalt oxide and non-magnetic oxide and method for producing the same
JPH10308320A (en) Production of magnetoresistive membrane
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R151 Written notification of patent or utility model registration

Ref document number: 3622621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141203

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees