JP3622554B2 - Sensor testing equipment - Google Patents

Sensor testing equipment Download PDF

Info

Publication number
JP3622554B2
JP3622554B2 JP04267899A JP4267899A JP3622554B2 JP 3622554 B2 JP3622554 B2 JP 3622554B2 JP 04267899 A JP04267899 A JP 04267899A JP 4267899 A JP4267899 A JP 4267899A JP 3622554 B2 JP3622554 B2 JP 3622554B2
Authority
JP
Japan
Prior art keywords
sensor
time
transmission
signal
time zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04267899A
Other languages
Japanese (ja)
Other versions
JP2000242868A (en
Inventor
茂浩 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP04267899A priority Critical patent/JP3622554B2/en
Publication of JP2000242868A publication Critical patent/JP2000242868A/en
Application granted granted Critical
Publication of JP3622554B2 publication Critical patent/JP3622554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Alarm Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器の試験装置に関する。
【0002】
【従来の技術】
従来から、複数の感知器を試験槽に一度に入れることによって、複数の感知器を同時に所定の感知対象事象の雰囲気に曝させ、予め定められた規格時間内で発報信号を出力する良品なのか否かを試験する、感知器の試験装置は存在していた。なお、所定の感知対象事象としては、温度感知器にあっては所定温度雰囲気、煙感知器にあっては所定煙濃度雰囲気、ガス漏れ感知器にあっては所定ガス濃度雰囲気などがある。
【0003】
しかしながら、従来の感知器の試験装置にあっては、従来の感知器が、受信機の伝送部からの伝送線にバス接続されていても、受信機側から感知器アドレス毎にアクセスされて、その返信信号として感知対象事象を感知したか否かの情報を出力するものであったため、各感知器が同時に同じ感知対象事象雰囲気に曝されて略同時に発報信号を出力できる状態に達したにしても、受信機側が各感知器毎に対して返信信号送出時間帯を割り当てていることになり、各感知器からの返信信号が衝突して伝送エラーを生じるような不都合を生じることがなく、各感知器の被曝開始から発報信号を送出するまでの発報所要時間確認、すなわち、予め定められた規格時間内で発報信号を出力する良品か否かの試験が可能であった。
【0004】
しかしながら、近時、新しい感知器が開発された。それは、従来のように受信機側からアクセスされた感知器のみが返信信号を返信するような受動的なものではなく、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線を介して受信機へ送出するようにされている。
【0005】
【発明が解決しようとする課題】
従って、新規に開発された感知器にあっては、従来の感知器の場合のように、各感知器が同時に同じ感知対象事象雰囲気に曝されて略同時に発報信号を出力できる状態に達してしまうと、各感知器からの発報信号が衝突してしまい、伝送線を介して各感知器に接続して各感知器の発報信号を受信する伝送部にて伝送エラーが発生し、感知器の試験装置が旨く動作できないという問題点があった。
【0006】
本発明は上記の問題点を解決するためになされたもので、その目的とするところは、電源を投入するとバラツキ時間範囲内で動作を開始し、動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を所定動作周期にて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に略同時に被曝開始せしめても、各感知器からの発報信号の衝突による伝送エラーを生ずることがなく、各感知器の被曝開始から発報信号を送出するまでの発報所要時間の確認を可能とする、優れる感知器の試験装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明にあっては、電源を投入するとバラツキ時間範囲内で定常動作を開始し、定常動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を所定動作周期にて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に略同時に被曝開始せしめ、各感知器の被曝開始から発報信号を送出するまでの発報所要時間を確認するようにした感知器の試験装置であって、纏めて試験される各感知器へ電源投入する際に、纏めて試験される各感知器が定常動作になったときの各感知器の発報信号送信時間帯が前記バラツキ時間範囲を含めても重なり合うことのないよう、各感知器に順次電源投入するようにしたことを特徴とするものである。
【0008】
請求項2記載の発明にあっては、電源を投入するとバラツキ時間範囲±α内で定常動作を開始し、定常動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を動作周期Tにて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に略同時に被曝開始せしめ、各感知器の被曝開始から発報信号を送出するまでの発報所要時間を確認するために、感知器毎の電源投入部と、前記被曝開始を検出して被曝開始信号を出力する被曝開始検出部と、被曝開始信号をトリガにして計時するタイマ部と、伝送線を介して各感知器に接続して各感知器の発報信号を受信する伝送部とを備えるようにした感知器の試験装置であって、前記発報信号送信時間帯の時間幅がTa3であるとき、値n={T/(2α+Ta3)}を求め、値nの小数点以下を切り捨てた整数値Nmax を纏めて試験できる最大感知器数とするとともに、実際に纏めて確認を行う感知器数がNである場合、Mを零を含む任意正整数とし、値Tを(T/N)≧T≧(2α+Ta3)の範囲とするとき、感知器毎の電源投入部の投入時間間隔TをT=(T+MT)と成すことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明に係る感知器の試験装置の一実施の形態を図1乃至図4に基づいて詳細に説明する。図1は感知器の試験装置を示す概略図である。図2は試験に供される感知器の動作を示す説明図であり、図2(a)は電源電圧を示し、図2(b)は時間軸を示している。図3は感知器の試験装置の動作を示すタイミングチャート、図4は感知器の試験装置の要部を説明するタイミングチャートである。
【0010】
図1に示すように、感知器の試験装置は、パーソナルコンピュータ1と、電源投入部2と、伝送部3と、試験槽4と、被曝開始検出部に相当する押圧スイッチ5とを含んで構成される。電源投入部2は、入出力部20と、リレーRy1,…Ry5とを備える。入出力部20はパーソナルコンピュータ1に接続されて動作するものであり、出力部には各リレーRy1,…Ry5の励磁部の一端がそれぞれ接続され、入力部には押圧スイッチ5の一端が接続される。各リレーRy1,…Ry5の励磁部の他端は、電源VDDにそれぞれ接続する。リレーRy1は常開接点ry1を、リレーRy2は常開接点ry2を、リレーRy3は常開接点ry3を、リレーRy4は常開接点ry4を、リレーRy5は常開接点ry5をそれぞれ備える。また、押圧スイッチ5の他端はアースされる。
【0011】
伝送部3はパーソナルコンピュータ1に接続されて動作するものであり、二本の電線La,からなる伝送線Lが引き出されている。試験槽4は、例えば恒温槽であり、内部の雰囲気温度を例えば50°Cに設定してある。試験槽4の扉内面側には、供試品である感知器を取り付けるためのベースB1,…Bが取着されている。また、試験槽4の扉は、開状態では押圧スイッチ5をオフし、閉状態では押圧スイッチ5をオンする。
【0012】
ベースBの一端からは回線Lが引き出され、回線Lは常開接点ry1を介して伝送線Lの一方の電線Lに接続する。ベースBの一端からは回線Lが引き出され、回線Lは常開接点ry2を介して伝送線Lの一方の電線Lに接続する。ベースBの一端からは回線Lが引き出され、回線Lは常開接点ry3を介して伝送線Lの一方の電線Lに接続する。ベースBの一端からは回線Lが引き出され、回線Lは常開接点ry4を介して伝送線Lの一方の電線Lに接続する。ベースBの一端からは回線Lが引き出され、回線Lは常開接点ry5を介して伝送線Lの一方の電線Lに接続する。ベースB1,…Bの他端はそれぞれ伝送線Lの他方の電線Lに接続する。
【0013】
なお、パーソナルコンピュータ1は、入出力部20を介して被曝開始信号に相当する押圧スイッチ5のオン信号を取り込むとともに、このオン信号をトリガにして計時するタイマ部(図示せず)を内蔵している。また、パーソナルコンピュータ1には、伝送部3との間でデータの授受を行って、伝送部3の受信データを読み込むためのソフトウェア、入出力部20を監視制御するためのソフトウェアなど、各種ソフトウェアがインストールされている。
【0014】
ところで、供試品である感知器は、例えば感知対象事象を周囲温度とする熱感知器であり、例えば雰囲気温度が50°Cに達すると発報信号を送出するものである。そして、この感知器は、図2に示すように動作するようにされている。すなわち、感知器は、電源が時刻tに投入されると、電源電圧は図2(a)に示すように飽和曲線を描いて上昇し、直ぐに一定電圧を維持するようになる。その間に、感知器はイニシャライズ動作を完了し、時刻tから定常動作を開始する。
【0015】
定常動作を開始した感知器は、時刻tから時刻tの事象感知時間帯Ta1に雰囲気温度測定を行い、時刻tから時刻tの発報判断時間帯Ta2に時刻tから時刻tの事象感知時間帯Ta1に測定した雰囲気温度が50°Cに達しているか否かの判断を行い、雰囲気温度が50°Cに達していると判断した場合に限って、時刻tから時刻tの発報信号送信時間帯Ta3に発報信号を送出するよう動作する。なお、時刻tから時刻tの発報判断時間帯Ta2において、雰囲気温度が50°Cに達していないと判断された場合には、時刻tから時刻tの発報信号送信時間帯Ta3には、何らの信号も送出されないように動作する。
【0016】
その後、感知器は、時刻tから時刻tの事象感知時間帯Ta1に再び雰囲気温度測定を行い、時刻tから時刻tの発報判断時間帯Ta2に時刻tから時刻tの事象感知時間帯Ta1に測定した雰囲気温度が50°Cに達しているか否かの判断を行い、というように、定常動作を順次繰り返す。つまり、感知器は、時刻tから時刻tにかけての一連の動作を動作周期Tとして、この動作周期Tを順次繰り返す。しかも、この一連の事象感知時間帯Ta1と発報判断時間帯Ta2と発報信号送信時間帯Ta3とを含む動作周期Tは、感知器の内部クロック信号に基づいて誤差なく精確に実行される。
【0017】
なお、この感知器にあっては、時刻tから時刻tまでのイニシャライズ動作に±α秒のバラツキを生じることが判っている。また、この感知器にあっては、製造直後あるいは出荷時のアドレス値を「0」にすることに取り決められている。更に、この感知器にあっては、電源供給を伝送線Lを介して伝送部3から受けるようにされている。
【0018】
そこで、図1に示すような感知器の試験装置を用いて、図3に示すような手順で試験が行われる。すなわち、雰囲気温度50°Cに設定した試験槽4の扉を開き、扉内面側に設けられているベースB1,…Bに供試品としての感知器をそれぞれ取着する。そして、パーソナルコンピュータ1を実行する。
【0019】
すると、パーソナルコンピュータ1は、入出力部20に指示してリレーRy1の励磁部を励磁することによって常開接点ry1をオン(図3時刻ta1)して回線Lに電源供給するとともに、感知器に対してアドレス「1」を登録するような伝送信号を伝送線Lに送出するように伝送部3に指示する。そして、パーソナルコンピュータ1は、ベースBに取着された感知器のフラッシュメモリなどにアドレス「1」が書き込まれると、入出力部20に指示してリレーRy1の励磁部の励磁を遮断することで常開接点ry1をオフ(図3時刻ta2)する。
【0020】
次に、パーソナルコンピュータ1は、入出力部20に指示してリレーRy2の励磁部を励磁することによって常開接点ry2をオン(図3時刻ta3)して回線Lに電源供給するとともに、感知器に対してアドレス「2」を登録するような伝送信号を伝送線Lに送出するように伝送部3に指示する。そして、パーソナルコンピュータ1は、ベースBに取着された感知器のフラッシュメモリなどにアドレス「2」が書き込まれると、入出力部20に指示してリレーRy2の励磁部の励磁を遮断することで常開接点ry2をオフ(図3時刻ta4)する。同様のことを図3における時刻ta5から時刻ta6にかけて繰り返し実行して、パーソナルコンピュータ1は、ベースBに取着された感知器にはアドレス「3」を、ベースBに取着された感知器にはアドレス「4」を、ベースBに取着された感知器にはアドレス「5」をそれぞれ書き込む。
【0021】
その後、パーソナルコンピュータ1は、入出力部20に指示して、図3における時刻ta7から時刻ta8にかけて常開接点ry1,…ry5を時間間隔Tで順次オンさせ、ベースB1,…Bに取着された5台の感知器のそれぞれに電源供給を行なう。そして、ここが本発明の重要な点であるが、この時間間隔Tは、次のように設定される。
【0022】
すなわち、この感知器にあっては、時刻tから時刻tまでのイニシャライズ動作に±α秒のバラツキを生じることが判っている。また、定常動作を開始した感知器は、動作周期Tにて、事象感知時間帯Ta1と発報判断時間帯Ta2と発報信号送信時間帯Ta3とを精確に順次繰り返すことが判っている。
【0023】
そこで、先ず、値n={T/(2α+Ta3)}を求め、値nの小数点以下を切り捨てた整数値Nmax を纏めて試験できる最大感知器数とするとともに、実際に纏めて確認を行う感知器数がN(この実施の形態ではN=5とされている)である場合、Mを零を含む任意正整数とし、値Tを(T/N)≧T≧(2α+Ta3)の範囲とするとき、感知器毎の電源投入部2の投入時間間隔TをT=(T+MT)と成すのである。
【0024】
すると、それぞれの感知器が、能動的に任意の時間に発報信号を送出したにしても、発報信号同士が衝突して伝送エラーを生じることはなく、複数の感知器を纏めて所定の感知対象事象(例えば50°Cの雰囲気)に同時に被曝開始せしめても、各感知器の被曝開始から発報信号を送出するまでの精確な発報所要時間の確認を可能にできるのである。
【0025】
さて、パーソナルコンピュータ1からの指示で、常開接点ry1,…ry5が前記時間間隔Tで順次オンされ、各感知器には時間間隔Tで順次電源が投入される。そこで、試験作業者は、試験槽4の扉を閉める。すると、押圧スイッチ5がオンし、このオン信号が入出力部20を介してパーソナルコンピュータ1に伝達され、パーソナルコンピュータ1は各感知器の発報所要時間を測定するための計時を自己の内部時計を用いて開始する。
【0026】
そして、各感知器の品質が安定していて各感知器間の発報所要時間にバラツキがなければ、前述の投入時間間隔Tの最小値Tと等しい間隔で発報信号を順次送出することになり、伝送部3は、伝送エラーを生じることなく各発報信号をそれぞれ受信することができて、この各発報信号に含まれているアドレスデータと感知対象事象を感知した旨のデータとを、パーソナルコンピュータ1へ伝達できる。
【0027】
パーソナルコンピュータ1は、アドレス「1」から「5」までの発報信号データを受信すると、入出力部20を介して常開接点ry1,…ry5を一斉にオフ(図3時刻ta9)するとともに、それぞれの感知器の発報所要時間を演算により割り出し、それぞれの感知器の発報所要時間をリストにするとともに、合否の判定を行う。
【0028】
その後、パーソナルコンピュータ1は、入出力部20に指示して常開接点ry1をオン(図3時刻ta10 )して回線Lに電源供給するとともに、感知器に対してアドレス「0」を登録するような伝送信号を伝送線Lに送出するように伝送部3に指示する。そして、パーソナルコンピュータ1は、ベースBに取着された感知器のフラッシュメモリなどにアドレス「0」が書き込まれると、入出力部20に指示して常開接点ry1をオフ(図3時刻ta11 )する。
【0029】
次に、パーソナルコンピュータ1は、入出力部20に指示して常開接点ry2をオン(図3時刻ta12 )して回線Lに電源供給するとともに、感知器に対してアドレス「0」を登録するような伝送信号を伝送線Lに送出するように伝送部3に指示する。そして、パーソナルコンピュータ1は、ベースBに取着された感知器のフラッシュメモリなどにアドレス「0」が書き込まれると、入出力部20に指示して常開接点ry2をオフ(図3時刻ta13 )する。また、パーソナルコンピュータ1は、図3における時刻ta14 から時刻ta15 にかけて同様のことを繰り返し実行して、ベースB3,4,に取着された感知器にもアドレス「0」をそれぞれ書き込む。
【0030】
以上のようにして一回の纏まった感知器の試験が終了すると、試験槽4の扉を開き、扉内面側に設けられているベースB1,…Bから供試品としての感知器をそれぞれ取り外す。そして、再び、新たな供試品としての感知器をベースB1,…Bに取着する。そして、試験作業員は、再びパーソナルコンピュータ1を実行し、前述と同様の作業を繰り返すことになる。
【0031】
次に、この感知器において、時刻tから時刻tまでのイニシャライズ動作に±α秒のバラツキを生じることが判っていて、且つ、定常動作を開始した感知器は、動作周期Tにて、事象感知時間帯Ta1と発報判断時間帯Ta2と発報信号送信時間帯Ta3とを順次精確に繰り返すことが判っている場合、値n={T/(2α+Ta3)}を求め、値nの小数点以下を切り捨てた整数値Nmax を纏めて試験できる最大感知器数とするとともに、実際に纏めて確認を行う感知器数がN(この実施の形態ではN=5とされている)である場合、Mを零を含む任意正整数とし、値Tを(T/N)≧T≧(2α+Ta3)の範囲とするとき、感知器毎の電源投入部2の投入時間間隔TをT=(T+MT)と成すと、何故、それぞれの感知器が能動的に発報信号を送出するものであるにもかかわらず、複数の感知器を纏めて所定の感知対象事象(例えば50°Cの雰囲気)に同時に被曝開始せしめても、発報信号同士が衝突して伝送エラーを生じることがなく、各感知器の被曝開始から発報信号を送出するまでの精確な発報所要時間の確認を可能にできるのか、その理由を図4を用いて説明する。
【0032】
すなわち、この感知器にあっては、図2における時刻tから時刻tまでのイニシャライズ動作に±α秒のバラツキを生じることが判っている。また、定常動作を開始した感知器は、動作周期Tにて、事象感知時間帯Ta1と発報判断時間帯Ta2と発報信号送信時間帯Ta3とを順次精確に繰り返すことが判っている。そして、このような条件の下で、値n={T/(2α+Ta3)}を求め、値nの小数点以下を切り捨てた整数値Nmax を纏めて試験できる最大感知器数にするという意味は、感知器台数がNmax 台迄であれば、感知器電源投入時のイニシャライズ動作におけるバラツキ±α秒と発報信号送信時間帯Ta3とを考慮しても、図4に示すように旨くタイミングをとれば、それぞれの感知器から送出される発報信号を決して衝突しないようにできるという意味である。なお、図4にあっては最大感知器数Nmax がNmax =5台である場合を示している。
【0033】
しかも、それぞれの感知器から能動的に送出される発報信号を決して衝突しないようにするためには、纏めて試験される全ての感知器が電源投入されて定常動作になった時点で、各感知器の発報信号送信時間帯Ta3が重ならないようなタイミングで各感知器が動作していれば良いのであり、感知器毎の電源投入部2の投入時間間隔Tが動作周期Tの整数倍で遅れても、何らの支障にもならないことは明らかである。
【0034】
従って、実際に纏めて確認を行う感知器数がN台(但しN≦Nmax )である場合、Mを零を含む任意正整数とし、値Tを(T/N)≧T≧(2α+Ta3)の範囲とするとき、感知器毎の電源投入部2の投入時間間隔TをT=(T+MT)と成すと、感知器電源投入時のイニシャライズ動作に±α秒のバラツキがあったにしても、纏めて試験される各感知器の発報信号送信時間帯Ta3は決して重なることはないのである。
【0035】
なお、通常、発報信号送信時間帯Ta3は、感知器から送出される発報信号の信号長(パケット長)と略等しくされる場合が多い。従って、発報信号送信時間帯Ta3を、発報信号の信号長(パケット長)と見做して計算するようにしても良い。
【0036】
また、上記の実施の形態にあっては、試験に供される感知器の動作周期Tとして、事象感知時間帯Ta1と発報判断時間帯Ta2と発報信号送信時間帯Ta3とがサイクリックに実行されているものとして説明したが、その他の休止時間帯などを含んでサイクリックに実行される場合であっても何ら支障のないことは言うまでもなく、本発明はこれらを含むものである。
【0037】
【発明の効果】
請求項1または2記載の発明によれば、電源を投入すると所定バラツキ時間範囲内で動作を開始し、動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を所定周期にて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に同時に被曝開始せしめても、発報信号が衝突して伝送エラーを生ずることがなく、各感知器の被曝開始から発報信号を送出するまでの発報所要時間の確認を効率良く可能とする、優れる感知器の試験装置を提供できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態の感知器の試験装置を示す概略図である。
【図2】試験に供される感知器の動作を示す説明図である。
【図3】上記感知器の試験装置の動作を示すタイミングチャートである。
【図4】上記感知器の試験装置の要部を説明するタイミングチャートである。
【符号の説明】
2 電源投入部
3 伝送部
5 被曝開始検出部
L 伝送線
動作周期
a1 事象感知時間帯
a2 発報判断時間帯
a3 発報信号送信時間帯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor test apparatus that actively sends an alarm signal including a self-address to a transmission line when an event to be sensed is sensed.
[0002]
[Prior art]
Conventionally, by placing multiple sensors in the test chamber at the same time, the multiple sensors are exposed to the atmosphere of a predetermined event to be detected at the same time, and the alarm signal is output within a predetermined standard time. There has been a sensor testing device that tests whether or not. The predetermined detection target event includes a predetermined temperature atmosphere for a temperature sensor, a predetermined smoke concentration atmosphere for a smoke sensor, and a predetermined gas concentration atmosphere for a gas leak sensor.
[0003]
However, in the conventional sensor test apparatus, even if the conventional sensor is bus-connected to the transmission line from the transmission unit of the receiver, it is accessed from the receiver side for each sensor address, Since the information indicating whether or not the detection target event was detected was output as the response signal, each sensor was exposed to the same detection target event atmosphere at the same time, and reached a state where a notification signal could be output almost simultaneously. However, the receiver side assigns a reply signal transmission time zone for each sensor, and there is no inconvenience that a reply signal from each sensor collides to cause a transmission error. It was possible to confirm the time required for reporting from the start of exposure of each sensor to the transmission of the alarm signal, that is, to test whether or not it was a non-defective product that outputs the alarm signal within a predetermined standard time.
[0004]
Recently, however, new sensors have been developed. This is not a passive type in which only a sensor accessed from the receiver side returns a reply signal as in the prior art, but when an event to be detected is detected, an alarm signal including a self address is actively transmitted. To be sent to the receiver.
[0005]
[Problems to be solved by the invention]
Therefore, in the newly developed sensor, as in the case of the conventional sensor, each sensor is exposed to the same sensing event atmosphere at the same time and reaches the state where it can output the alarm signal almost simultaneously. If this happens, the alarm signals from each sensor will collide, and a transmission error will occur in the transmission unit that connects to each sensor via the transmission line and receives the alarm signal from each sensor. There was a problem that the test equipment of the vessel could not work well.
[0006]
The present invention has been made to solve the above-described problems, and the object of the present invention is to start an operation within a variation time range when the power is turned on, and to determine an event detection time zone and an alarm after the operation starts. The sensor operation including the time zone and the alarm signal transmission time zone is repeatedly executed at a predetermined operation cycle, and when the detection target event is detected, the alarm signal including the self address is actively transmitted to the transmission line. Even if a plurality of such sensors are collectively started to start exposure to a predetermined detection target event at the same time, a transmission error due to a collision of alarm signals from each sensor does not occur, and from the start of exposure of each sensor. An object of the present invention is to provide an excellent sensor test apparatus that enables confirmation of the time required for reporting until a notification signal is transmitted.
[0007]
[Means for Solving the Problems]
In the first aspect of the invention, when the power is turned on, the steady operation is started within the variation time range, and after the steady operation is started, the event sensing time zone, the alert judgment time zone, and the alert signal transmission time zone are set. A plurality of detectors that collectively execute a detection signal including its own address to a transmission line when a detection target event is detected are repeatedly executed. This is a sensor test device that starts exposure at almost the same time as the detection target event and confirms the time required for reporting from the start of exposure of each sensor to the transmission of the reporting signal. When powering on each sensor, the alarm signal transmission time zone of each sensor when the sensors to be collectively tested are in steady operation does not overlap even if the variation time range is included. , Power on each sensor sequentially It is characterized in that so.
[0008]
According to the second aspect of the present invention, when the power is turned on, the steady operation is started within the variation time range ± α, and after the steady operation is started, the event detection time zone, the alert judgment time zone, and the alert signal transmission time zone A plurality of detectors that repeatedly execute a detector operation including a self-address when an event to be detected is detected, and that actively transmit a notification signal including a self-address to a transmission line. In order to start exposure at the same time for a predetermined sensing target event at the same time, and to check the time required for reporting from the start of exposure of each sensor to the sending of a reporting signal, a power-on unit for each sensor, An exposure start detection unit that detects the start and outputs an exposure start signal, a timer unit that uses the exposure start signal as a trigger, and a timer unit that counts the trigger signal from the exposure start signal. And a transmission unit for receiving the sensor. A test apparatus, when the time width of the calling report signal transmission time period is T a3, the value n = {T a / (2α + T a3)} sought, integer value N max, which rounded down value n with the maximum sensor number can be tested together, when in fact summarized sensors that make their check is N, the M an arbitrary positive integer including zero, the value T a (T a / N) ≧ When T A ≧ (2α + T a3 ), the turn-on time interval T 0 of the power-on unit for each sensor is T 0 = (T A + MT a ).
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a sensor testing apparatus according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic view showing a sensor test apparatus. 2A and 2B are explanatory diagrams showing the operation of the sensor used for the test. FIG. 2A shows the power supply voltage and FIG. 2B shows the time axis. FIG. 3 is a timing chart showing the operation of the sensor testing apparatus, and FIG. 4 is a timing chart explaining the main part of the sensor testing apparatus.
[0010]
As shown in FIG. 1, the sensor test apparatus includes a personal computer 1, a power-on unit 2, a transmission unit 3, a test tank 4, and a press switch 5 corresponding to an exposure start detection unit. Is done. The power-on unit 2 includes an input / output unit 20 and relays R y1 ,... R y5 . The input / output unit 20 is connected to the personal computer 1 and operates. The output unit is connected to one end of each relay R y1 ,... R y5 and the input unit is connected to one end of the push switch 5. Connected. The other ends of the excitation parts of the relays R y1 ,... R y5 are connected to the power supply V DD respectively. Relay R y1 is normally open contact r y1 , relay R y2 is normally open contact r y2 , relay R y3 is normally open contact r y3 , relay R y4 is normally open contact r y4 , and relay R y5 is normally open. A contact point r y5 is provided. The other end of the push switch 5 is grounded.
[0011]
Transmission unit 3 is intended to operate is connected to the personal computer 1, the two wires L a, the transmission line L is drawn consisting of L b. The test tank 4 is a constant temperature tank, for example, and the internal atmospheric temperature is set to 50 ° C., for example. A base B 1, ... B 5 for attaching a sensor as a test sample is attached to the inner surface of the door of the test tank 4. Further, the door of the test chamber 4 turns off the push switch 5 in the open state and turns on the push switch 5 in the closed state.
[0012]
From one end of the base B 1 line L 1 is drawn, the line L 1 is connected to one of the wires L a transmission line L via the normally open contact r y1. From one end of the base B 2 the line L 2 is pulled out, the line L 2 is connected to one of the wires L a transmission line L via the normally open contact r y2. From one end of the base B 3 a line L 3 is pulled out, the line L 3 is connected to one of the wires L a transmission line L via the normally open contact r y3. From one end of the base B 4 line L 4 is pulled out, the line L 4 are connected to one of the wires L a transmission line L via the normally open contact r y4. From one end of the base B 5 line which L 5 is pulled out, the line L 5 represents connected to one of the wires L a transmission line L via the normally open contact r y5. The other ends of the bases B 1, ... B 5 are connected to the other electric wire L b of the transmission line L, respectively.
[0013]
The personal computer 1 incorporates an on signal of the push switch 5 corresponding to the exposure start signal via the input / output unit 20 and has a built-in timer unit (not shown) that uses this on signal as a trigger. Yes. The personal computer 1 includes various software such as software for transferring data to and from the transmission unit 3 and reading received data of the transmission unit 3, and software for monitoring and controlling the input / output unit 20. Installed.
[0014]
By the way, the sensor which is a specimen is a heat sensor having an event to be detected as an ambient temperature, for example, and sends an alarm signal when the ambient temperature reaches 50 ° C., for example. The sensor is operated as shown in FIG. That is, sensor, when the power supply is turned at time t 0, power supply voltage rises drawing a saturation curve as shown in FIG. 2 (a), so that immediately maintain a constant voltage. Meanwhile, the sensing unit completes the initializing operation, starts the steady operation from the time t 1.
[0015]
Detector that initiated the steady operation is carried out ambient temperature measurement to the event detection time period T a1 at time t 2 from time t 1, from the time t 1 from time t 2 to alarm determination time period T a2 at time t 3 ambient temperature measured in the event detection time period T a1 at time t 2 performs a determination of whether or not reached 50 ° C, only when it is determined that the ambient temperature has reached 50 ° C, time t 3 operates to delivering alarm signals to the alarm signal transmission time period T a3 at time t 4 from. Note that in the alarm determination time period T a2 at time t 3 from the time t 2, the if the ambient temperature is not reached the 50 ° C, the alarm signal transmission time at time t 4 from time t 3 The band T a3 operates so that no signal is transmitted.
[0016]
Thereafter, the sensing instrument, the time t 4 again performs the ambient temperature measurement to the event detection time period T a1 at time t 5 from the time t 5 the time to alarm determination time period T a2 at time t 6 from time t 4 to t It is determined whether or not the ambient temperature measured in the event sensing time zone T a1 of 5 has reached 50 ° C., and so on. That is, the sensing instrument, a series of operations from the time t 1 to time t 4 as operation period T a, sequentially repeating this operation cycle T a. In addition, the operation period T a including the series of event detection time period T a1 , notification determination time period T a2, and notification signal transmission time period T a3 is accurately determined without error based on the internal clock signal of the sensor. Executed.
[0017]
In this sensor, it has been found that the initialization operation from time t 0 to time t 1 has a variation of ± α seconds. In addition, in this sensor, it is decided to set the address value immediately after manufacture or at the time of shipment to “0”. Further, in this sensor, power supply is received from the transmission unit 3 via the transmission line L.
[0018]
Therefore, a test is performed according to the procedure shown in FIG. 3 using a sensor testing apparatus as shown in FIG. That is, the door of the test tank 4 set to an ambient temperature of 50 ° C. is opened, and sensors as test pieces are attached to the bases B 1, ... B 5 provided on the inner surface side of the door. Then, the personal computer 1 is executed.
[0019]
Then, the personal computer 1, as well as power supply normally open contact r y1 by instructs the output unit 20 energizes the excitation portion of the relay R y1 ON (Fig. 3 time t a1) and the line L 1 and The transmission unit 3 is instructed to send a transmission signal for registering the address “1” to the sensor to the transmission line L. When the address “1” is written in the flash memory of the sensor attached to the base B 1 , the personal computer 1 instructs the input / output unit 20 to cut off the excitation of the excitation unit of the relay R y1. Thus, the normally open contact point r y1 is turned off (time t a2 in FIG. 3).
[0020]
Next, the personal computer 1, the power supply to the line L 2 and the normally open contact r y2 on (FIG. 3 time t a3) by instructs the output unit 20 energizes the excitation portion of the relay R y2 At the same time, the transmission unit 3 is instructed to send a transmission signal for registering the address “2” to the sensor to the transmission line L. When the address “2” is written in the flash memory or the like of the sensor attached to the base B 2 , the personal computer 1 instructs the input / output unit 20 to cut off the excitation of the excitation unit of the relay R y2. Thus, the normally open contact r y2 is turned off (time t a4 in FIG. 3). The same is repeated from time t a5 to time t a6 in FIG. 3, and the personal computer 1 attaches address “3” to the sensor attached to the base B 3 and attaches it to the base B 4. The address “4” is written in the sensor, and the address “5” is written in the sensor attached to the base B 5 .
[0021]
Thereafter, the personal computer 1 instructs the input unit 20, the normally open contacts r y1 to time t a8 from time t a7 in FIG. 3, ... are sequentially turned on at time intervals T 0 a r y5, base B 1, ... to supply power to each of the five sensors which are attached to B 5. This is an important point of the present invention, and this time interval T 0 is set as follows.
[0022]
That is, in this sensor, it has been found that the initialization operation from time t 0 to time t 1 causes a variation of ± α seconds. Further, sensors that initiated the steady operation, the operation in the period T a, precisely found that repeated sequentially and event detection time period T a1 and alarm determination time period T a2 and alarm signal transmission time period T a3 ing.
[0023]
Therefore, first, the value n = {T a / (2α + T a3 )} is obtained, and the integer value N max obtained by rounding down the decimal point of the value n is set as the maximum number of sensors that can be tested together. When the number of sensors to be performed is N (N = 5 in this embodiment), M is an arbitrary positive integer including zero, and the value T A is (T a / N) ≧ T A ≧ (2α + T In the range of a3 ), the turn-on time interval T 0 of the power-on unit 2 for each sensor is T 0 = (T A + MT a ).
[0024]
Then, even if each sensor actively sends an alarm signal at an arbitrary time, the alarm signals do not collide with each other to cause a transmission error. Even if exposure is started at the same time as an event to be sensed (for example, an atmosphere at 50 ° C.), it is possible to accurately check the time required for reporting from the start of exposure of each sensor to the sending of a reporting signal.
[0025]
Now, in response to an instruction from the personal computer 1, the normally open contacts r y1 ,... Ry 5 are sequentially turned on at the time interval T 0 , and the sensors are sequentially turned on at the time interval T 0 . Therefore, the test operator closes the door of the test tank 4. Then, the push switch 5 is turned on, and this on signal is transmitted to the personal computer 1 via the input / output unit 20, and the personal computer 1 keeps its own internal clock to measure the time required to issue the alarm of each sensor. Start with.
[0026]
Then, if there are variations in the alarm time required between each sensor of the quality stably have each sensor sequentially sends the alarm signal at intervals equal to the minimum value T A of the on time interval T 0 of the above Therefore, the transmission unit 3 can receive each notification signal without causing a transmission error, and the address data included in each notification signal and the data indicating that the detection target event has been detected. Can be transmitted to the personal computer 1.
[0027]
When the personal computer 1 receives the alarm signal data from the addresses “1” to “5”, the normally open contacts r y1 ,... R y5 are simultaneously turned off via the input / output unit 20 (time ta 9 in FIG. 3). At the same time, the time required for reporting for each sensor is determined by calculation, and the time required for reporting for each sensor is listed, and pass / fail is determined.
[0028]
Thereafter, the personal computer 1 instructs the input / output unit 20 to turn on the normally open contact r y1 (time t a10 in FIG. 3) to supply power to the line L 1 and to set the address “0” to the sensor. The transmission unit 3 is instructed to send a transmission signal to be registered to the transmission line L. When the address “0” is written in the flash memory or the like of the sensor attached to the base B 1 , the personal computer 1 instructs the input / output unit 20 to turn off the normally open contact r y1 (FIG. 3 time). t a11 ).
[0029]
Next, the personal computer 1 instructs the input / output unit 20 to turn on the normally open contact r y2 (time t a12 in FIG. 3) to supply power to the line L 2 and to address “0” to the sensor. Is transmitted to the transmission line L to the transmission unit 3. When the address “0” is written in the flash memory or the like of the sensor attached to the base B 2 , the personal computer 1 instructs the input / output unit 20 to turn off the normally open contact ry 2 (time in FIG. 3). t a13 ). The personal computer 1 executes repeatedly that from time t a14 in FIG. 3 similar to time t a15, base B 3, B 4, B 5 to attached to the sensor in the address "0" Write each.
[0030]
When the test of a single sensor is completed as described above, the door of the test tank 4 is opened, and a sensor as a specimen is installed from the bases B 1, ... B 5 provided on the inner surface side of the door. Remove each one. Then, again, a sensor as a new specimen is attached to the bases B 1, ... B 5 . Then, the test worker executes the personal computer 1 again and repeats the same work as described above.
[0031]
Next, in this sensor, it is known that the initialization operation from time t 0 to time t 1 has a variation of ± α seconds, and the sensor that has started the steady operation has an operation period Ta . , If it is known that the event detection time zone T a1 , the alert determination time zone Ta 2 and the alert signal transmission time zone Ta 3 are sequentially repeated accurately, the value n = {T a / (2α + T a3 )} The integer value N max obtained by rounding down the decimal point of the value n is set as the maximum number of sensors that can be tested collectively, and the number of sensors that are actually checked together is N (in this embodiment, N = 5). If it is to have), the M an arbitrary positive integer including zero, when the range of the value T a (T a / N) ≧ T a ≧ (2α + T a3), sensor every power-on part 2 of forming the on time interval T 0 T 0 = a (T a + MT a) Why, even though each sensor actively sends out an alarm signal, a plurality of sensors are put together to start exposure to a predetermined sensing target event (for example, an atmosphere at 50 ° C.) at the same time. However, it is possible to confirm the time required for accurate notification from the start of exposure of each sensor to the transmission of the notification signal without causing collision errors between the notification signals. Will be described with reference to FIG.
[0032]
That is, In this sensor has been found to cause variations in the ± alpha sec initializing operation from the time t 0 in FIG. 2 to time t 1. Further, sensors that initiated the steady operation, at the operation cycle T a, found that sequentially accurately repeated and event detection time period T a1 and alarm determination time period T a2 and alarm signal transmission time period T a3 ing. Then, under such conditions, the value n = {T a / (2α + T a3 )} is obtained, and the integer value N max obtained by rounding down the decimal point of the value n is collectively set to the maximum number of sensors that can be tested. If the number of sensors is up to N max , the variation in initialization operation when the sensor power is turned on, ± α seconds, and the alarm signal transmission time period Ta3 are taken into consideration, as shown in FIG. If timing is taken, it means that the alarm signals sent from the respective sensors can never collide. FIG. 4 shows a case where the maximum number of sensors N max is N max = 5.
[0033]
Moreover, in order to ensure that the alarm signals actively sent from the respective sensors do not collide, when all the sensors to be collectively tested are turned on and are in steady operation, It is only necessary that the detectors operate at timings such that the alarm signal transmission time periods T a3 of the detectors do not overlap, and the turn-on time interval T 0 of the power-on unit 2 for each detector is the operation cycle T a. Obviously, even if it is delayed by an integral multiple of, there will be no problem.
[0034]
Therefore, when the number of sensors that are actually checked together is N (where N ≦ N max ), M is an arbitrary positive integer including zero, and the value T A is (T a / N) ≧ T A ≧ In the range of (2α + T a3 ), if the power-on time interval T 0 of the power-on unit 2 for each sensor is T 0 = (T A + MT a ), the initialization operation upon power-on of the sensor is ± α seconds. Even if there is a variation, the alarm signal transmission time periods T a3 of the sensors to be tested together never overlap.
[0035]
Usually, the alert signal transmission time zone Ta3 is often made substantially equal to the signal length (packet length) of the alert signal sent from the sensor. Therefore, the alert signal transmission time zone Ta3 may be calculated considering the signal length (packet length) of the alert signal.
[0036]
Further, in the above embodiment, as the operation cycle T a of the sensor to be used for the test, the event detection time zone T a1 , the alert determination time zone Ta 2, and the alert signal transmission time zone Ta 3 However, it is needless to say that the present invention includes these, even if it is executed cyclically including other rest periods. .
[0037]
【The invention's effect】
According to the first or second aspect of the present invention, when the power is turned on, the operation is started within a predetermined variation time range, and after the operation is started, the event detection time zone, the alarm judgment time zone, and the alarm signal transmission time zone are set. A plurality of detectors that are configured to repeatedly transmit a notification signal including a self-address to a transmission line when a detection target event is detected are repeatedly executed. Even if you start exposure at the same time as an event to be detected, the alarm signal will not collide and a transmission error will not occur, and it will be possible to efficiently check the time required for reporting from the start of exposure to the alarm signal. It is possible to provide an excellent sensor testing device that can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a sensor test apparatus according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an operation of a sensor used for a test.
FIG. 3 is a timing chart showing the operation of the sensor testing apparatus.
FIG. 4 is a timing chart for explaining a main part of the sensor testing apparatus.
[Explanation of symbols]
2 Power-on unit 3 Transmission unit 5 Exposure start detection unit L Transmission line T a Operation cycle T a1 Event detection time zone Ta a2 reporting judgment time zone Ta3 reporting signal transmission time zone

Claims (2)

電源を投入するとバラツキ時間範囲内で定常動作を開始し、定常動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を所定動作周期にて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に略同時に被曝開始せしめ、各感知器の被曝開始から発報信号を送出するまでの発報所要時間を確認するようにした感知器の試験装置であって、纏めて試験される各感知器へ電源投入する際に、纏めて試験される各感知器が定常動作になったときの各感知器の発報信号送信時間帯が前記バラツキ時間範囲を含めても重なり合うことのないよう、各感知器に順次電源投入するようにしたことを特徴とする感知器の試験装置。When the power is turned on, steady operation is started within the variation time range, and after the steady operation starts, the sensor operation including the event detection time zone, the alarm judgment time zone, and the alarm signal transmission time zone is performed at a predetermined operating cycle. A plurality of sensors that are repeatedly executed and that are configured to actively send a notification signal including a self-address to a transmission line when a detection target event is detected, start exposure to a predetermined detection target event almost simultaneously, This is a sensor testing device that checks the time required for reporting from the start of exposure of each sensor to the transmission of a reporting signal. Each sensor is sequentially powered on so that the alarm signal transmission time zone of each sensor when it is in steady operation does not overlap even if the variation time range is included. A feeling characterized by Vessels of the test device. 電源を投入するとバラツキ時間範囲±α内で定常動作を開始し、定常動作開始後は事象感知時間帯と発報判断時間帯と発報信号送信時間帯とを含んだ感知器動作を動作周期Tにて繰り返し実行していて、感知対象事象を感知すると自己アドレスを含む発報信号を能動的に伝送線へ送出するようにした感知器を、複数纏めて所定の感知対象事象に略同時に被曝開始せしめ、各感知器の被曝開始から発報信号を送出するまでの発報所要時間を確認するために、感知器毎の電源投入部と、前記被曝開始を検出して被曝開始信号を出力する被曝開始検出部と、被曝開始信号をトリガにして計時するタイマ部と、伝送線を介して各感知器に接続して各感知器の発報信号を受信する伝送部とを備えるようにした感知器の試験装置であって、
前記発報信号送信時間帯の時間幅がTa3であるとき、値n={T/(2α+Ta3)}を求め、値nの小数点以下を切り捨てた整数値Nmax を纏めて試験できる最大感知器数とするとともに、実際に纏めて確認を行う感知器数がNである場合、Mを零を含む任意正整数とし、値Tを(T/N)≧T≧(2α+Ta3)の範囲とするとき、感知器毎の電源投入部の投入時間間隔TをT=(T+MT)と成すことを特徴とする感知器の試験装置。
When the power is turned on, steady operation is started within the variation time range ± α, and after the steady operation is started, the sensor operation including the event detection time zone, the alarm judgment time zone, and the alarm signal transmission time zone is performed as the operation cycle T. When a target event is detected repeatedly, a plurality of sensors that actively send out an alarm signal including a self-address to the transmission line when a target event is detected are exposed to a predetermined target event substantially simultaneously. In order to start and confirm the time required for reporting from the start of exposure of each sensor to the transmission of the report signal, a power-on unit for each sensor and the start of exposure are detected and an exposure start signal is output. Sensing provided with an exposure start detection unit, a timer unit for timing using an exposure start signal as a trigger, and a transmission unit connected to each sensor via a transmission line to receive a notification signal of each sensor A testing device for a vessel,
When the time width of the notification signal transmission time zone is T a3 , the value n = {T a / (2α + T a3 )} is obtained, and the maximum value that can be tested collectively with the integer value N max rounded down after the decimal point of the value n with the sensor number, if it is indeed summarized sensors that make their check is N, the M an arbitrary positive integer including zero, the value T a (T a / N) ≧ T a ≧ (2α + T a3 ), The sensor turning-on time interval T 0 for each sensor is defined as T 0 = (T A + MT a ).
JP04267899A 1999-02-22 1999-02-22 Sensor testing equipment Expired - Fee Related JP3622554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04267899A JP3622554B2 (en) 1999-02-22 1999-02-22 Sensor testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04267899A JP3622554B2 (en) 1999-02-22 1999-02-22 Sensor testing equipment

Publications (2)

Publication Number Publication Date
JP2000242868A JP2000242868A (en) 2000-09-08
JP3622554B2 true JP3622554B2 (en) 2005-02-23

Family

ID=12642699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04267899A Expired - Fee Related JP3622554B2 (en) 1999-02-22 1999-02-22 Sensor testing equipment

Country Status (1)

Country Link
JP (1) JP3622554B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141901A (en) * 2011-04-18 2011-07-21 Yazaki Corp Alarm
CN110122929B (en) * 2019-05-17 2021-07-30 南京大学 Smoking event monitoring system and monitoring method based on inertial sensor
CN114265353B (en) * 2021-12-27 2023-11-24 恒为科技(上海)股份有限公司 Automatic touch system

Also Published As

Publication number Publication date
JP2000242868A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US20080136651A1 (en) Data Fusion Alarm System And Method For Line Type Fire Detector
JP3622554B2 (en) Sensor testing equipment
US6803853B2 (en) Testing device for operation testing of a temperature sensor of an alarm or an alarm and a method of operation testing of an alarm
KR20180047713A (en) Sensor device, and system including same
JP2807034B2 (en) Fire detection system
JP4225492B2 (en) Fire sensor and fire tester
JP3563254B2 (en) Fire alarm and detector
JPH03292596A (en) Radio alarm system
JPH11185180A (en) Fire sensor, tester and testing method for sensor type
JP2018067192A (en) Test device
JP2018067031A (en) Testing device
JPH08124056A (en) Tester for disaster prevention sensor
JP3343689B2 (en) fire alarm
JP7029496B2 (en) Test equipment
EP4283286A1 (en) Method, apparatus and system for monitoring sensor health and gas response for catalytic pellistor poisoning
JP7174535B2 (en) fire receiver
JP3155902B2 (en) Disaster prevention monitoring device
JP3179863B2 (en) Self-fire alarm system
JP2022085788A (en) Communication device, communication system, and communication method
JP3495023B2 (en) fire alarm
JP4349700B2 (en) Inspection mechanism and timing unit for gas alarm device
JPH01176958A (en) Detector for wire disconnection position
JP2022085789A (en) Communication device, communication system, and communication method
JP5518543B2 (en) Confirmation device
JPH056492A (en) Method and device for disaster prevention monitor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees