JP3621831B2 - High speed rotating body protection device and centrifuge having rotating body protection device - Google Patents

High speed rotating body protection device and centrifuge having rotating body protection device Download PDF

Info

Publication number
JP3621831B2
JP3621831B2 JP16960898A JP16960898A JP3621831B2 JP 3621831 B2 JP3621831 B2 JP 3621831B2 JP 16960898 A JP16960898 A JP 16960898A JP 16960898 A JP16960898 A JP 16960898A JP 3621831 B2 JP3621831 B2 JP 3621831B2
Authority
JP
Japan
Prior art keywords
rotating body
speed
ceramic
cylinder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16960898A
Other languages
Japanese (ja)
Other versions
JP2000000492A (en
Inventor
茂 真下
正春 相沢
佳能 二井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP16960898A priority Critical patent/JP3621831B2/en
Publication of JP2000000492A publication Critical patent/JP2000000492A/en
Application granted granted Critical
Publication of JP3621831B2 publication Critical patent/JP3621831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、回転体を高速回転させて使用する、例えば医学、化学、薬学、材料工学等の分野で用いられている遠心分離機或いは高速回転試験機等において、回転体が破壊したときに生ずる装置全体の破壊、衝撃、高速移動を防止すると共に、防御装置を軽量化すること及び遠心機全体の軽量化、低コスト化に関するものである。
【0002】
【従来の技術】
従来の回転体防御装置は、鉄鋼等の金属製の厚くて重い円筒状で、破壊した回転体の高速の飛翔破片を塑性変形を許容して金属の大きなモーメンタムで受けてその外側の装置の破損を防いでいた。この種の回転体防御装置は、例えば特公昭53−9865号公報や実公昭53−3499号公報に示されている。これらの従来例を図6及び図7に示す。図において、回転体1は、回転軸2を介して電動機等からなる駆動部3により高速回転される。医学の研究分野で用いられている超遠心分離機の回転体1は比強度が高いアルミ合金やチタン合金など比較的硬い材料で構成されているのが普通であり、最高回転数が10万から15万回転/分,遠心加速度が80万〜90万Gに達し、この時の周速は700m/s程度に達するものがある。回転体1を可回転に支持する回転室4は、上板5、側円筒6、底板7から成る。これらの構成部材は、回転体の温度上昇を防止するために真空を保つ構造とされる場合もある。ドア8は、上板5の回転体挿入口を開閉する部品であって、Oリング9によって上板5との密封がなされる。防御円筒10は、回転体1を取り囲み鉛直方向に延びており、鋼等の硬質金属で構成されたり或いは鉛等の軟質金属から成る内筒11および鋼等の硬質金属から成る外筒12より構成されている。前記の医学の研究分野で用いられている超遠心分離機の場合、防御円筒10は鋼製で厚さは約50mmのものが用いられており、その質量は約120kg程度である。このような構成において、回転体1が破壊すると、その破片が遠心力により前記防御円筒10に高速で衝突する。前記の破片が当たるか突き刺さるかの変形を生じさせる。この変形するエネルギ分だけ破片のエネルギが吸収されるというものであった。
【0003】
【発明が解決しようとする課題】
高速回転装置で回転体が破壊したとき、破片が高速で飛翔するが、防御壁との衝突による衝撃応力が弾性限界以上であれば、防御壁に突き刺さったり、反射するにしても塑性変形を伴うので防御筒に衝突方向に一方向に大きな力を受けることになる。この時の衝突による応力と粒子の速度を決める方法を図4に示す。現在使用されている鋼ではユゴニオ弾性限界(HEL応力)24の応力は高々1GPa、粒子速度は40m/sであるので、衝突速度で80m/s以上のほとんどの高速回転体の場合、図4に示すごとく、衝突による衝撃応力は鋼のユゴニオ弾性限界を越え、上記のように衝突方向に大きな力が加わり、装置の高速移動、振動が激しく、安全性に問題があった。また、高速衝突による塑性域の変形は大きいので、大きなモーメンタムによって装置全体の破壊を防ぐことと使用者の安全を確保すべく防御壁は厚くしたり、遠心機や試験機を重くしなければならなかった。
【0004】
本発明の目的は、上記した問題を解決し、軽量かつ安全性が高い高速回転体防御装置を提供することである。
【0005】
【課題を解決するための手段】
上記目的は、防御筒をセラミックスと金属との多重構造にすることにより達成される。
【0006】
更に、図5に本発明の高速回転体防御装置を説明する飛翔破片の経路の概略図を示す。防御筒をセラミックスと金属の2重円筒構造にすることにより、セラミックスの高いユゴニオ弾性限界を利用して衝突による装置の衝撃、移動を著しく低下させ、また防御壁の厚さと重さを軽減するように動作する。よく焼結されたアルミナ、窒化硅素などのセラミックスはユゴニオ弾性限界は10GPa以上、ユゴニオ弾性限界の粒子速度が200m/s以上であるので、回転体の材料にもよるが壁に対して直角方向の衝突速度が400m/s以上(壁に対して直角方向の衝突速度は回転体の半径×角速度×cosθ以下である)では衝突による応力は、図4に示すごとくユゴニオ弾性限界以下となり、衝突による衝撃は弾性域に納まり、破片は突き刺さらず弾性的に反射する。しかも、飛翔破片31の衝突は回転方向のベクトルを持っているので、衝突角θはSin ̄=r1/r2で表され、r1/r2を0.707以上にすればθを45度以上にすることができるので、衝撃応力を小さくできるばかりでなく、飛翔破片は図5のように防御壁で反射衝突を何回も繰り返し、ゆっくり止まることになる。この場合、衝突による衝撃力はセラミックスで受け、衝撃後の準静的な応力を支えるためとセラミックスの準静的な脆性破壊を防ぐために、その外側に密着した金属製の筒で囲む。従って、破片の衝突による衝撃は分散され、装置の衝撃、移動は最小限に抑えられるので、安全性が格段に高まる。また、この場合、セラミックスは塑性変形せず、破片を跳ね返すので、セラミックスと金属の厚みは金属のみの場合に比べて格段に薄くでき、更に、ほとんどのセラミックスの密度が鋼に比べて半分以下で小さいのでその部分の質量を半分以下に低減することができる。
【0007】
参考データとして、図8に金属と金属及びセラミックスとのインピーダンスマッチング法(衝突速度400m/s)を示す。なお、インピーダンスマッチング法に関する衝突面の反射を利用して衝撃状態を決定する説明は、日刊工業新聞社発行の「衝撃工学(1988年10月発行,第8章(超高速衝撃))」に開示されている。
【0008】
【発明の実施の形態】
図1は本発明になる実施例の高速回転体防御装置の縦断面図である。図において、回転体1は、回転軸2を介して電動機等からなる駆動部3により高速回転される。回転体1を可回転に支持する回転室4は、上板5、側円筒6、底板7から成る。これらの構成部材は、回転体の温度上昇を防止するために真空を保つ構造とされている。ドア8は、上板5の回転体挿入口を開閉する部品であって、Oリング9によって上板5との密封がなされるている。防御円筒10は、回転体1を取り囲み鉛直方向に延びておりセラミックス内筒11および鋼等の硬質金属から成る外筒12より構成されている。このような構成において、回転体1が破壊すると、その破片が遠心力により前記防御円筒10の内筒11に高速で衝突する。内筒11は前記の如くセラミックスで形成されているから、前記の破片が当たると破片は跳ね返り徐々にエネルギを失ってやがて停止する。具体的には、前記した医学の研究分野で用いられている超遠心分離機の場合は、セラミックスの薄い内筒11の厚さは3〜5mm程度,防御円筒10は厚さ20mm以下の鋼製円筒で十分と推定する。この場合の防御円筒全体の質量は約60kg程度で、前記した従来の防御円筒の質量約120kgに対し半分以下に軽量化される。衝突による衝撃力はセラミックスの薄い内筒11で受け、衝撃後の準静的な応力を支えるためとセラミックスの準静的な脆性破壊を防ぐために、その外側に密着した外筒12で囲んでいる。前記の通り,セラミックスは塑性変形せず、破片を跳ね返すので、破片の衝突による衝撃は分散され、装置の衝撃、移動は最小限に抑えられる。また、防御円筒の回りの構成部材はに与える負荷も小さくなり、これらの構造も簡素化、軽量化できる効果を合わせ持つことになる。
【0009】
図2は本発明における他の実施態様の高速回転体防御装置の一部を示す上面断面図である。図において、11aはセラミックス製板状ブロックであり、外側の外筒12に密着するように配置されており、更にその内側には押さえ板13が設けられセラミックス製板状ブロック11aを固定する役目をなしている。このような構成においても、回転体の破片の防御は前記したように動作する。このような構成は、製作上有利であり、セラミックスの成形製作や防御装置の組立の面で大きな効果を有することになる。なお、セラミックス製板状ブロック11aの外筒12への固定は接着剤等を用いても良い結果が得られると判断される。
【0010】
図3は本発明になる他の実施態様の高速回転体防御装置の縦断面図である。図において、11はセラミックス内筒であり、その鉛直方向長さを短くして回転体が破壊したときにその破片が衝突する部分だけの長さとし、かつ外筒12に前記内筒の上方への移動を阻止するように段差14を設けてある。このような構成においても、回転体の破片の防御は前記したよに動作する。このような構成は、セラミックスの製作コストを安価にすることができる。
【0011】
【発明の効果】
本発明によれば、高速回転体を可回転に支持する回転室内に、回転体を囲むごとく鉛直方向に延びたセラミックスとその外側に密着した金属とで多重構造にした回転体防御装置を設けたので、回転体の破片は防御壁で反射衝突を何回も繰り返し、ゆっくり止まることになり、塑性変形したり突き刺さったりして止まる金属に比較して、安全性が格段に高まる。また、この場合、セラミックスは塑性変形せず、破片を跳ね返すので、セラミックスと金属の厚みは金属のみの場合に比べて格段に薄くでき、また、ほとんどのセラミックスの密度が鋼に比べて半分以下で小さいので防御円筒全体の質量を半分程度に低減することができる。更に防御円筒の回りの構成部材についても構造の簡素化、軽量化が可能であるため低コスト化も図ることができる。
【0012】
また、セラミックスの内筒を複数個の板状ブロックに分け、外側の金属円筒に密着するように構成したことによって、セラミックスが割れにくくなり、セラミックス製ブロックを容易に製作することができ、かつ組立性も向上する。更にセラミックス製ブロックの内側に押さえ板を配置することによって、更に組立性が向上することができる。
【0013】
また、セラミックス製内筒の鉛直方向長さを短くして回転体が破壊したときにその破片が衝突する部分だけの長さとし、かつ外筒に前記内筒の上方への移動を阻止するように段差を設けることは、防御装置のコストを下げることができ、安価な防御装置を提供することができる。
【図面の簡単な説明】
【図1】本発明になる高速回転体防御装置を示す縦断面図である。
【図2】本発明になる他の高速回転体防御装置を示す上面断面図である。
【図3】本発明になる他の高速回転体防御装置を示す縦断面図である。
【図4】本発明における衝突による衝撃波の応力と粒子速度を決めるための応力一粒子速度を示すユゴニオ図である。
【図5】本発明になる飛翔破片の経路を示す図である。
【図6】従来における高速回転体防御装置を示す縦断面図である。
【図7】従来における高速回転体防御装置を示す縦断面図である。
【図8】金属と金属及びセラミックスとのインピーダンスマッチング法を示すグラフである。
【符号の説明】
1は回転体、2は回転軸、3は駆動部、4は回転室、5は上板、6は側円筒、7は底板、8はドア、9はOリング、10は防護円筒、11はセラミックス製内筒、11aはセラミックス製板状ブロック、12は金属製外筒、13は押さえ板、14は段差、21はセラミックスのユゴニオ、22はセラミックスのユゴニオ弾性限界、23は金属のユゴニオ、24は金属のユゴニオ弾性限界、25は飛翔体のユゴニオ、26は飛翔体のユゴニオ弾性限界、27は衝突速度、28は予想される破片の飛翔経路、29は回転体の半径r1、30はセラミックスの防御筒の半径r2、31は衝突角度θである。
[0001]
BACKGROUND OF THE INVENTION
The present invention occurs when a rotating body is broken in a centrifuge or a high-speed rotating tester used in the fields of medicine, chemistry, pharmacy, material engineering, etc. The present invention relates to preventing damage to the entire device, impact, and high-speed movement, reducing the weight of the protective device, and reducing the weight and cost of the entire centrifuge.
[0002]
[Prior art]
Conventional rotating body protection devices are thick and heavy cylinders made of metal such as steel, allowing high-speed flying debris of broken rotors to be plastically deformed and received by a large momentum of metal to damage the outer device Was preventing. This type of rotating body defense device is disclosed in, for example, Japanese Patent Publication No. 53-9865 and Japanese Utility Model Publication No. 53-3499. These conventional examples are shown in FIGS. In the figure, a rotating body 1 is rotated at a high speed by a drive unit 3 composed of an electric motor or the like via a rotating shaft 2. The rotating body 1 of the ultracentrifuge used in the medical research field is usually composed of a relatively hard material such as an aluminum alloy or a titanium alloy having a high specific strength, and the maximum rotational speed is from 100,000. 150,000 revolutions / minute, centrifugal acceleration reaches 800,000 to 900,000 G, and the peripheral speed at this time reaches about 700 m / s. A rotating chamber 4 that rotatably supports the rotating body 1 includes an upper plate 5, a side cylinder 6, and a bottom plate 7. These components may be structured to maintain a vacuum in order to prevent the temperature of the rotating body from rising. The door 8 is a component that opens and closes the rotating body insertion port of the upper plate 5, and is sealed with the upper plate 5 by an O-ring 9. The defense cylinder 10 surrounds the rotating body 1 and extends in the vertical direction, and is composed of an inner cylinder 11 made of a hard metal such as steel or an outer cylinder 12 made of a soft metal such as lead and a hard metal such as steel. Has been. In the case of the ultracentrifuge used in the medical research field, the protective cylinder 10 is made of steel and has a thickness of about 50 mm, and its mass is about 120 kg. In such a configuration, when the rotating body 1 breaks, the fragments collide with the defense cylinder 10 at a high speed by centrifugal force. The deformation is caused by hitting or piercing the debris. The energy of the debris is absorbed by this deforming energy.
[0003]
[Problems to be solved by the invention]
When a rotating body breaks with a high-speed rotating device, the fragments fly at high speed, but if the impact stress due to the collision with the defensive wall exceeds the elastic limit, even if it pierces the defensive wall or reflects it, it is accompanied by plastic deformation Therefore, the defense cylinder receives a large force in one direction in the collision direction. FIG. 4 shows a method of determining the stress and particle velocity due to the collision at this time. Currently used steel has a Yugonio elastic limit (HEL stress) 24 stress of at most 1 GPa and a particle velocity of 40 m / s. For most high-speed rotating bodies with impact velocity of 80 m / s or more, FIG. As shown, the impact stress due to the collision exceeded the Yugonio elastic limit of the steel, and as described above, a large force was applied in the collision direction, resulting in high-speed movement and vibration of the device, and there was a problem in safety. In addition, since the deformation of the plastic area due to high-speed collision is large, the protective wall must be thickened, the centrifuge and the test machine must be heavy to prevent the entire device from being destroyed by a large momentum and to ensure the safety of the user. There wasn't.
[0004]
An object of the present invention is to solve the above-described problems and provide a high-speed rotating body defense device that is lightweight and highly safe.
[0005]
[Means for Solving the Problems]
The above object is achieved by making the defense cylinder a multi-layer structure of ceramics and metal.
[0006]
Furthermore, the schematic of the path | route of the flying fragment | piece explaining the high-speed rotary body defense apparatus of this invention in FIG. 5 is shown. By using a double cylinder structure of ceramic and metal for the defense cylinder, the impact and movement of the device due to collision will be significantly reduced by utilizing the high Yugonio elastic limit of ceramics, and the thickness and weight of the defense wall will be reduced. To work. Well-sintered ceramics such as alumina and silicon nitride have a Yugonio elastic limit of 10 GPa or more and a particle speed of the Yugonio elastic limit of 200 m / s or more. When the collision speed is 400 m / s or more (the collision speed in the direction perpendicular to the wall is less than the radius of the rotating body × angular speed × cos θ), the stress due to the collision is less than the Yugonio elastic limit as shown in FIG. Fits in the elastic zone, and the debris reflects elastically without sticking. Moreover, since the collision of the flying fragments 31 has a vector in the rotational direction, the collision angle θ is expressed by SinS 1 = r1 / r2, and if r1 / r2 is 0.707 or more, θ is 45 degrees or more. Therefore, not only can the impact stress be reduced, but the flying debris repeats the reflection collision with the defense wall many times as shown in FIG. 5 and stops slowly. In this case, the impact force due to the impact is received by the ceramics, and is surrounded by a metal tube closely attached to the outside in order to support the quasistatic stress after the impact and to prevent quasistatic brittle fracture of the ceramics. Therefore, the impact caused by the collision of the fragments is distributed and the impact and movement of the apparatus are minimized, so that safety is remarkably enhanced. In this case, the ceramic does not plastically deform and bounces off the fragments. Therefore, the thickness of the ceramic and metal can be significantly reduced compared to the case of only metal, and the density of most ceramics is less than half that of steel. Since it is small, the mass of the part can be reduced to half or less.
[0007]
As reference data, FIG. 8 shows an impedance matching method (collision speed 400 m / s) between metal and metal and ceramics. In addition, the explanation of determining the impact state using the reflection of the collision surface regarding the impedance matching method is disclosed in “Impact Engineering (October 1988, Chapter 8 (Ultra High Speed Impact))” published by Nikkan Kogyo Shimbun. Has been.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view of a high-speed rotating body defense device according to an embodiment of the present invention. In the figure, a rotating body 1 is rotated at a high speed by a drive unit 3 composed of an electric motor or the like via a rotating shaft 2. A rotating chamber 4 that rotatably supports the rotating body 1 includes an upper plate 5, a side cylinder 6, and a bottom plate 7. These components are structured to maintain a vacuum in order to prevent the temperature of the rotating body from rising. The door 8 is a component that opens and closes the rotating body insertion port of the upper plate 5, and is sealed with the upper plate 5 by an O-ring 9. The defense cylinder 10 surrounds the rotating body 1 and extends in the vertical direction, and includes a ceramic inner cylinder 11 and an outer cylinder 12 made of hard metal such as steel. In such a configuration, when the rotating body 1 is broken, the fragments collide with the inner cylinder 11 of the defense cylinder 10 at a high speed by centrifugal force. Since the inner cylinder 11 is formed of ceramics as described above, when the debris hits, the debris bounces back and gradually loses energy and stops. Specifically, in the case of the ultracentrifuge used in the above-mentioned medical research field, the thickness of the thin ceramic inner cylinder 11 is about 3 to 5 mm, and the protective cylinder 10 is made of steel with a thickness of 20 mm or less. It is estimated that a cylinder is sufficient. In this case, the mass of the entire defense cylinder is about 60 kg, and the weight is reduced to half or less than the mass of the conventional defense cylinder of about 120 kg. The impact force due to the impact is received by the thin ceramic inner cylinder 11 and is surrounded by the outer cylinder 12 closely attached to the outside in order to support the quasi-static stress after the impact and to prevent the quasi-static brittle fracture of the ceramic. . As described above, ceramics are not plastically deformed and repel the debris. Therefore, the impact caused by the collision of the debris is dispersed, and the impact and movement of the apparatus are minimized. Further, the load applied to the components around the protective cylinder is reduced, and these structures also have the effect of simplifying and reducing the weight.
[0009]
FIG. 2 is a top sectional view showing a part of a high-speed rotating body defense device according to another embodiment of the present invention. In the figure, reference numeral 11a denotes a ceramic plate-like block, which is arranged so as to be in close contact with the outer outer cylinder 12. Further, a presser plate 13 is provided on the inner side to fix the ceramic plate-like block 11a. There is no. Even in such a configuration, the protection against the fragments of the rotating body operates as described above. Such a configuration is advantageous in manufacturing, and has a great effect in terms of molding and manufacturing ceramics and assembling a defense device. Note that it is determined that a good result can be obtained by using an adhesive or the like for fixing the ceramic plate-like block 11a to the outer cylinder 12.
[0010]
FIG. 3 is a longitudinal sectional view of a high-speed rotating body defense device according to another embodiment of the present invention. In the figure, reference numeral 11 denotes a ceramic inner cylinder, the length of which is shortened in the vertical direction so as to be the length of only the portion where the fragments collide when the rotating body breaks, and the outer cylinder 12 is moved upwardly from the inner cylinder. A step 14 is provided to prevent the movement. Even in such a configuration, the protection against the fragments of the rotating body operates as described above. Such a configuration can reduce the manufacturing cost of ceramics.
[0011]
【The invention's effect】
According to the present invention, a rotating body defense device is provided in a rotating chamber that supports a high-speed rotating body in a rotatable manner. Therefore, the broken piece of the rotating body repeats a reflection collision many times on the defense wall and stops slowly, and the safety is remarkably improved compared to the metal that stops by plastic deformation or piercing. In this case, since the ceramic does not plastically deform and bounces off the fragments, the thickness of the ceramic and the metal can be much thinner than that of the metal alone, and the density of most ceramics is less than half that of steel. Since it is small, the mass of the entire defense cylinder can be reduced to about half. Further, the structural members around the protective cylinder can be simplified in structure and reduced in weight, so that the cost can be reduced.
[0012]
In addition, the ceramic inner cylinder is divided into a plurality of plate-shaped blocks, and is made to adhere to the outer metal cylinder, so that the ceramic is less likely to break, and the ceramic block can be easily manufactured and assembled. Also improves. Furthermore, the assemblability can be further improved by arranging a pressing plate inside the ceramic block.
[0013]
In addition, the vertical length of the ceramic inner cylinder is shortened so that it is only the length of the part where the fragments collide when the rotating body breaks, and the outer cylinder is prevented from moving upwards of the inner cylinder. Providing the step can reduce the cost of the defense device and can provide an inexpensive defense device.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a high-speed rotating body defense device according to the present invention.
FIG. 2 is a top cross-sectional view showing another high-speed rotating body defense device according to the present invention.
FIG. 3 is a longitudinal sectional view showing another high-speed rotating body defense device according to the present invention.
FIG. 4 is a Yugonio diagram showing stress-particle velocity for determining stress and particle velocity of shock wave due to collision in the present invention.
FIG. 5 is a diagram showing a route of a flying fragment according to the present invention.
FIG. 6 is a longitudinal sectional view showing a conventional high-speed rotating body defense device.
FIG. 7 is a longitudinal sectional view showing a conventional high-speed rotating body defense device.
FIG. 8 is a graph showing an impedance matching method between a metal and a metal and ceramics.
[Explanation of symbols]
1 is a rotating body, 2 is a rotating shaft, 3 is a drive unit, 4 is a rotation chamber, 5 is a top plate, 6 is a side cylinder, 7 is a bottom plate, 8 is a door, 9 is an O-ring, 10 is a protective cylinder, 11 is Ceramic inner cylinder, 11a is a ceramic plate block, 12 is a metal outer cylinder, 13 is a pressing plate, 14 is a step, 21 is a ceramic yugonio, 22 is a ceramic yugonio elastic limit, 23 is a metal yugonio, 24 Is the Yugonio elastic limit of the metal, 25 is the Yugonio of the flying object, 26 is the Yugonio elastic limit of the flying object, 27 is the impact velocity, 28 is the expected flight path of the fragments, 29 is the radius r1 of the rotating body, 30 is the ceramic radius The defense cylinder radii r2 and 31 are the collision angle θ.

Claims (6)

高速回転体を可回転に支持する回転室内に、回転体を囲むごとく鉛直方向に延びたユゴニオ弾性限界応力が9GPa以上有するセラミックスとその外側に密着した金属とで多重構造にしたことを特徴とする高速回転体防御装置。A rotating chamber that supports a high-speed rotating body in a rotatable manner is characterized in that a multilayer structure is formed by ceramics having a Yugonio elastic limit stress of 9 GPa or more extending in the vertical direction so as to surround the rotating body and a metal closely adhered to the outside. High-speed rotating body protection device. 回転体を囲むごとく鉛直方向に延びたセラミックスを複数個のブロックに分け、外側の金属円筒に密着するように構成したことを特徴とする請求項1記載の高速回転体防御装置。2. The high-speed rotating body defense apparatus according to claim 1, wherein ceramics extending in a vertical direction so as to surround the rotating body are divided into a plurality of blocks and are in close contact with an outer metal cylinder. 複数個のセラミックス製ブロックの内側に押さえ板を配置したことを特徴とする請求項2記載の高速回転体防御装置。3. The high-speed rotating body defense device according to claim 2, wherein a pressing plate is disposed inside the plurality of ceramic blocks. 高速回転体を可回転に支持する回転室内に、回転体を囲むごとく鉛直方向に延びたセラミックスとその外側に密着した金属との多重構造の高速回転体防御装置において、前記セラミックスの鉛直方向長さを回転体が破壊したときにその破片が衝突する部分だけの長さとし、かつ外筒に前記内筒の上方への移動を阻止するように段差を設けたことを特徴とする高速回転体防御装置。The high speed rotation body in the rotation chamber to be supported on rotatable in high speed rotation body defense system of a multiple structure extending in the vertical direction as to surround the rotating ceramic and metal in close contact with the outside, the vertical length of the ceramic The high-speed rotating body defense device is characterized in that the length of the outer cylinder is set to the length of the part where the fragments collide when the rotating body is broken, and the outer cylinder is provided with a step so as to prevent the upward movement of the inner cylinder. . 回転体を可回転に支持する回転室内に、回転体を囲むごとく鉛直方向に延びたユゴニオ弾性限界応力が9GPaからなるセラミックスとその外側に密着した金属とで多重構造にしたことを特徴とする回転体防御装置を有する遠心機。Rotation characterized by having a multi-structure of ceramics with a Yugonio elastic limit stress of 9 GPa extending in the vertical direction surrounding the rotating body and a metal closely attached to the outside in a rotating chamber that rotatably supports the rotating body Centrifuge with body defense device. 前記セラミックスの鉛直方向長さを回転体が破壊したときにその破片が衝突する部分だけの長さとしたことを特徴とする請求項5記載の回転体防御装置を有する遠心機。6. The centrifuge having a rotating body protection device according to claim 5, wherein the vertical length of the ceramic is set to the length of a portion where a broken piece collides when the rotating body is broken.
JP16960898A 1998-06-17 1998-06-17 High speed rotating body protection device and centrifuge having rotating body protection device Expired - Fee Related JP3621831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16960898A JP3621831B2 (en) 1998-06-17 1998-06-17 High speed rotating body protection device and centrifuge having rotating body protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16960898A JP3621831B2 (en) 1998-06-17 1998-06-17 High speed rotating body protection device and centrifuge having rotating body protection device

Publications (2)

Publication Number Publication Date
JP2000000492A JP2000000492A (en) 2000-01-07
JP3621831B2 true JP3621831B2 (en) 2005-02-16

Family

ID=15889662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16960898A Expired - Fee Related JP3621831B2 (en) 1998-06-17 1998-06-17 High speed rotating body protection device and centrifuge having rotating body protection device

Country Status (1)

Country Link
JP (1) JP3621831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402245B1 (en) 2001-09-18 2003-10-17 주식회사 하이닉스반도체 Memory device
JP4697651B2 (en) * 2004-04-16 2011-06-08 日立工機株式会社 centrifuge
JP4586426B2 (en) * 2004-06-08 2010-11-24 日立工機株式会社 Centrifuge
JP5007433B2 (en) * 2004-10-19 2012-08-22 株式会社ニッカトー Impact bumper made of ceramic sintered body containing mullite crystal phase
CN111504768A (en) * 2020-05-08 2020-08-07 浙江斯威登检测科技有限公司 Universal material testing machine protection device

Also Published As

Publication number Publication date
JP2000000492A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US5567050A (en) Apparatus and method for rapidly oscillating specimen vessels
JP3621831B2 (en) High speed rotating body protection device and centrifuge having rotating body protection device
US20120024138A1 (en) Armor panels having strip-shaped protection elements
GB2133147A (en) A vibration absorber in a gyroscope
EP0612269B1 (en) Centrifuge rotor having a predetermined region of failure
US4201066A (en) Flexible shaft construction for a high inertia centrifuge
JP4949746B2 (en) Molecular pump and flange
JP5137365B2 (en) Vacuum pump and flange
JP4467742B2 (en) Home appliance and air conditioner cutting device, and home appliance and air conditioner disassembly method
JPH09175495A (en) Tail rotor for hilicopter
JP4941881B2 (en) Centrifuge rotor and centrifuge
JP5224151B2 (en) Centrifuge rotor and centrifuge
JP4553988B2 (en) Centrifuge training
JP4609082B2 (en) Flange and turbomolecular pump with this flange
JP6260699B2 (en) Centrifuge
JP3550841B2 (en) Centrifuge rotor and centrifuge
SU1665274A1 (en) Device for tensile tests of body-of-revolution type parts
JP2003144977A (en) Centrifuge
Sawicki et al. Dynamic behavior of cracked flexible rotor subjected to constant driving torque
JP2575026Y2 (en) Spin test equipment
JP3245365B2 (en) Door stop structure
JP4228728B2 (en) Centrifuge and swing rotor for centrifuge
JP2718164B2 (en) Rotating head device
JPS6140973Y2 (en)
JP3482758B2 (en) Angle rotor for centrifuge

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees