JP3621210B2 - Water-stopping chemical solution and water-stop method using the same - Google Patents

Water-stopping chemical solution and water-stop method using the same Download PDF

Info

Publication number
JP3621210B2
JP3621210B2 JP28584396A JP28584396A JP3621210B2 JP 3621210 B2 JP3621210 B2 JP 3621210B2 JP 28584396 A JP28584396 A JP 28584396A JP 28584396 A JP28584396 A JP 28584396A JP 3621210 B2 JP3621210 B2 JP 3621210B2
Authority
JP
Japan
Prior art keywords
component
water
liquid
solution
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28584396A
Other languages
Japanese (ja)
Other versions
JPH10110159A (en
Inventor
勝彦 栗原
俊明 土井
健司 澤田
民一郎 面
利三 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP28584396A priority Critical patent/JP3621210B2/en
Publication of JPH10110159A publication Critical patent/JPH10110159A/en
Application granted granted Critical
Publication of JP3621210B2 publication Critical patent/JP3621210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は短時間で水に不要な弾性ゲルに硬化しうる重合性物質を用いた止水用薬液及び止水工法に関するものであり、詳しくは、地盤の安定化、湧水、漏水の防止等の一般の土木工事用の他、特に下水道管路施設等コンクリート構造物における浸入水又は漏水の防止に好適に用いられる止水用薬液及びそれを用いた止水工法に関する。
【0002】
【従来の技術】
下水道管路施設等コンクリート構造物における漏水を止水するために種々の高分子系止水用薬液を漏水部に注入して硬化させる止水工法が知られている。
この中でもアニオン性電解質モノマーとカチオン性電解質モノマーとポリエチレングリコールジ(メタ)アクリレートとの混合物を重合触媒で硬化させて用いる止水用薬液は、得られる硬化体の離漿性がないこと、非透水性で強度が大きく、水中に浸漬したときに膨潤し難いこと、セメント系物質との接着性がよいことなどから、下水道管路施設等コンクリート構造物における浸入水又は漏水の防止に好適であることが知られている。
【0003】
特開昭62−22882号公報にはA成分としてポリエチレングリコール部分の重合度2〜50のポリエチレングリコールジ(メタ)アクリレート又はこのようなポリエチレングリコールジ(メタ)アクリレート同士の混合物、B成分としてアニオン性電解質モノマー、C成分としてカチオン性電解質モノマーを用い、三成分の比がA/(B+C)が重量比で80/20〜20/80であり、比B/Cがモル比で20/80〜80/20である薬液に重合触媒を添加してなる止水用薬液が開示されている。
【0004】
そしてB成分としてはアクリル酸、メタクリル酸及び2−アクリルアミド −2−メチルプロパンスルホン酸及びそれらの塩から選ばれるアニオン性電解質モノマー1種以上、C成分として、(R)(R)N−(CH−YCOC(R)=CH(式中、R及びRは共にメチル基又はエチル基を示し、R5は水素原子又はメチル基を示し、nは2又は3を示し、Yは酸素原子又はNH基を示す。)で示される化合物並びにそれらの塩及び4級化物からなる群から選ばれた1種又は2種以上であり、止水用薬液として使用するにあたってはこれら3成分の混合物を通常3〜60重量%の濃度にして用いることが好ましく、この際用いられるレドックス系触媒の酸化剤成分としては過硫酸アンモニウム、過硫酸カリウムが好ましく、還元剤成分としては、チオ硫酸アトリウム、ロンガリット、亜硫酸ナトリウム、トリエタノールアミン、ヘキサメチレンテトラミン、硫酸第一鉄、酒石酸、クエン酸等が好ましいものであることが記載されている。
【0005】
【発明が解決しようとする課題】
しかし、前記特開昭62−22882号公報に記載されている止水用薬液を硬化して得られるゲル体は、得られる硬化体の離漿性がないこと、非透水性で強度が大きく、水中に浸漬したときに膨潤し難いこと、セメント系物質との接着性がよいこと等の優れた特徴を有しているが、例えば寒冷地における下水道管路施設等のコンクリート構造物の漏水部にこのような止水用薬液を注入、硬化させて止水工事を行った場合、冬・夏の季節変化により、硬化体が凍結・融解の作用を受けることになるため、より長期にわたって凍結・融解の作用を受けても従来より高い耐久性を有し、脆弱化によって、再び漏水してしまうようなことのない止水用薬液が要請されている。
【0006】
本発明の目的は、上記要請に応え、アニオン性電解質モノマーとカチオン性電解質モノマーと、ポリエチレングリコールジ(メタ)アクリレートとの混合物を重合触媒で硬化させて用いる止水用薬液とそれを用いた止水工法における問題点を改善し、形成された硬化体が凍結・融解の繰り返しに対する耐久性を有する止水用薬液及びそれを用いた止水工法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題点を解決すべく鋭意検討した結果、各々1種以上のアニオン性電解質モノマーとカチオン性電解質モノマーと、ポリエチレングリコールジ(メタ)アクリレートとレドックス系触媒の還元剤成分の水溶液を含むA液として各々特定の成分を特定の配合量で用い、これとレドックス系触媒の酸化剤成分を含む水溶液をB液として用いてこれを混合して用いる際に、アニオン性電解質モノマーとカチオン性電解質モノマーと、ポリエチレングリコールジ(メタ)アクリレートとの合計が特定の濃度となるように混合することにより、形成された硬化体が凍結・融解の繰り返しに対する従来より優れた耐久性を有することを見出し、本発明に到達した。
【0008】
即ち、本発明は、(イ)式(1)で示される化合物1種以上、
(ロ)アクリル酸、メタクリル酸及び2−アクリルアミド −2−メチルプロパンスルホン酸及びそれらの塩から選ばれるアニオン性電解質モノマー1種以上、
(ハ)式(2)で示される化合物並びにそれらの塩及びそれらの4級化物から選ばれるカチオン性電解質モノマー1種以上、及び
(ニ)N,N,N’,N’−テトラメチルエチレンジアミン、N,N−ジメチルヒドロキシエトキシエチルアミン及びN−メチルジプロパノールアミンから選ばれるレドックス系触媒の還元剤成分1種以上
を含んでなる水溶液(以下A液という)と、レドックス系触媒の酸化剤成分を含んでなる水溶液(以下B液という)との組合せからなる止水用薬液であって、A液中の(イ)成分と(ロ)成分の重量比が(イ):(ロ)=85:15〜70:30であり、(ハ)成分が(ロ)成分1モルに対し0.2〜1.5モルの量比である2液性止水用薬液に関し、更に、該2液性止水用薬液を用いる止水工法であって、A液とB液の合計100リットルに対して(イ)成分と(ロ)成分と(ハ)成分の合計が5kg以上となるようにA液とB液を調製、混合して漏水部に注入する止水工法に関する。
【0009】
式(1):CH=C(R)CO−O−(CHCHO)−COC(R)=CH
式(1)中、R、Rは各々独立に水素原子又はメチル基を示し、nは2〜50の整数を示す。
式(2):(R)(R)N−(CH−NHCOC(R)=CH
式(2)中、R及びRは共にメチル基又はエチル基を示し、R5は水素原子又はメチル基を示し、nは2又は3を示す。
【0010】
(イ)成分の式(1)で示される化合物はポリエチレングリコールジ(メタ)アクリレートであり、ポリエチレングリコール部分の重合度(式(1)におけるn)が2〜50の範囲であれば単独の化合物であってもポリエチレングリコール部分の重合度のことなるものの混合物であってもよい。
ポリエチレングリコール部分の重合度(式(1)におけるn)が2未満の場合は水溶性が低いため薬液の調製に不都合であり、硬化体強度も低いため好ましくない。又50を越える場合は2個の重合性二重結合間の間隔が長くなりすぎてゲル強度が低くなり、又、水中で膨潤し易くなるので好ましくない。
【0011】
(ロ)成分におけるアクリル酸、メタクリル酸及び2−アクリルアミド −2−メチルプロパンスルホン酸の塩としては、ナトリウム、カリウムなどのアルカリ金属塩、アンモニウム塩を挙げることができる。
【0012】
(ハ)成分は式(2)で示される分子内にアミド基を有する構造の化合物であって、その例としては、ジメチルアミノプロピル(メタ)アクリルアミド及びそれらの4級化物、ジエチルアミノエチルアクリルアミド及びその4級化物を例示でき、これらの混合物を用いることもできる。
塩としては塩酸、硫酸等の無機酸の塩を用いることができる。
4級化物としては、メチルクロライド、ジメチル硫酸等による4級化物あるいはそれらの複合塩を挙げることができる。
【0013】
(ニ)成分はN,N,N’,N’−テトラメチルエチレンジアミン、N,N−ジメチルヒドロキシエトキシエチルアミン及びN−メチルジプロパノールアミンから選ばれるレドックス系触媒の還元剤成分1種以上からなるものである。
【0014】
本発明で用いられるレドックス系触媒の酸化剤成分としては、特に限定されるものではないが、過硫酸アンモニウム、過硫酸カリウム等を好ましく用いることができる。
この酸化剤成分はA液とB液を混合した場合に(イ)、(ロ)、(ハ)3成分の合計重量に対し1〜50重量%となるように加えるのが好ましく、5〜30重量%となるように加えるのがより好ましい。
【0015】
A液中の(イ)、(ロ)、(ハ)成分の成分比としては、(イ)成分と(ロ)成分の重量比が(イ):(ロ)=85:15〜70:30であり、(ハ)成分が(ロ)成分1モルに対し0.2〜1.5モルの量比である必要がある。
A液中における(ニ)成分の量比は特に限定されるものではないが、(イ)、(ロ)、(ハ)成分の合計に対し、0.1〜100重量%の範囲であることが好ましい。この範囲内で(ニ)成分の重量比を多くすれば薬液の硬化時間を短くでき、少なくすれば硬化時間を長く調整できる。
【0016】
A液を調製する際の(イ)、(ロ)、(ハ)、(ニ)各成分の水への溶解順序には特に制約はない。
例えばこれらの各成分を別々に施工現場に持ち込んで、現場で所定の量比で配合して水に溶解してもよく、(イ)、(ロ)、(ハ)の3成分を所定の量比で予め配合したものと(ニ)成分とを別個に施工現場に搬入し、これを現場で水に溶解してもよい。混合場所と施工現場が近ければ上記4成分を施工現場と別の場所で混合し、これを施工現場に持ち込むことも可能である。
これらの中では(イ)、(ロ)、(ハ)の3成分を所定の量比で予め配合したものと(ニ)成分とを別個に施工現場に搬入し、これを現場で水に溶解する方法が、A液保存中のA液単独での不測の硬化を防止でき、且つ、施工現場での作業を簡略化できることから好ましい。
【0017】
次に止水工法について説明する。
本発明においては上記のA液とB液を混合して使用する。
A液とB液とはA液とB液との混合液(以下、A+B混合液という)100リットルに対し(イ)、(ロ)、(ハ)3成分の合計が5kg以上、好ましくは5〜40kgの範囲となる量比で混合して使用する。上記3成分の合計が5kg未満であると得られる硬化体の圧縮強度が低く、止水用薬液として優れた性能を示すとは言い難くなり、硬化体の凍結・融解の繰り返しに対する耐久性も不充分となる。
上記3成分の合計がA+B混合液100リットルに対して50kgを超える量用いてもそれ以上の効果の向上は見られず、不経済である。
【0018】
本発明の薬液を用いる止水工法においては、A液とB液とを上記の各成分を上記で規定した量比になるような比率で混合し、漏水部に注入、硬化させて止水を行う。
このような量比の規定を満たすようにA液とB液とを混合する方法としては、例えば、A液100リットル中における(イ)、(ロ)、(ハ)3成分の合計が10〜80重量部となるように配合し、これに(ニ)成分を加えてなるA液と、B液とを各々単位時間当たりの送液量が等しいポンプを用いて個別にY字管、注入管内に設けられた混合室(管内混合器、管路混合器)等に圧送して合流させ混合する方法を挙げることができる。
【0019】
本発明の止水工法においては、A液とB液との混合液を、単管式、多重管式、多管式等の各種注入管を用いて漏水部に注入し、そこで硬化させることにより止水を行う。
【0020】
本発明の薬液は、必要に応じ、普通・早強・超早強・中庸熱・低熱・硫酸塩・高酸化鉄型・白色等の各種ポルトランドセメント類、高炉セメント・シリカセメント・フライアッシュセメント・メーソンリーセメント・膨張セメント等の混合セメント類、ジェットセメント(超速硬セメント)・アルミナセメント・コロイドセメント・スーパーコロイドセメント・高硫酸塩スラグセメント等の特殊セメント類、フライアッシュ、シリカヒューム、高炉水砕スラグ、石膏、下水処理汚泥焼却残灰等の1種以上を添加して用いることができる。
これらの成分は、薬液調製後早期に使用するのであればA液、B液のどちらに添加してもよいが、調製から使用までに時間がかかる場合は、B液に投入するのが好ましい。
【0021】
【実施例】
以下に実施例、比較例を用いて本発明を更に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1〜14、比較例1〜9
A液:(イ)、(ロ)、(ハ)、(ニ)の各成分として、表1に記載したものを表1に記載した量配合した後に水を加えて溶解し、、溶解後の容量が200リットルになるように水量を調整したものをA液とした。
B液:レドックス系触媒の酸化剤成分として過硫酸アンモニウム12kgに水を加えて溶解し、溶解後の容量が200リットルとなるように水量を調整したものをB液とした。
【0022】
表1にA液中における(イ)、(ロ)両成分の重量比、(ハ)、(ロ)両成分のモル比、及びA+B混合液100リットル中における(イ)、(ロ)、(ハ)3成分の合計重量(kg)も示した。
このようにして調製したA液とB液を等容量混合した薬液を用いて下記の試験を行った。
【0023】
【表1】

Figure 0003621210
【0024】
表1において、各符号は下記の意味を表す。
PEGDME:ポリエチレングリコールジメタクリレート
n :PEGDMEにおけるポリエチレングリコール部分の重合度
AA:アクリル酸
AANa:アクリル酸ナトリウム
MAA :メタクリル酸
MAANa :メタクリル酸ナトリウム
AMPSNa:2−アクリルアミド −2−メチルプロパンスルホン酸ナトリウム
DMAPMA:ジメチルアミノプロピルメタクリルアミド
DMAPAA:ジメチルアミノプロピルアクリルアミド
DEAEAA:ジエチルアミノエチルアクリルアミド
DMAEA :ジメチルアミノエチルアクリレート
TMED:N,N,N’,N’−テトラメチルエチレンジアミン
MDPA:N−メチルジプロパノールアミン
MHEA:N,N−ジメチルヒドロキシエトキシエチルアミン
TEA :トリエタノールアミン
* 実施例14においては、PEGDMEの代わりにポリエチレングリコールジアクリレート(ポリエチレングリコール部分の重合度:28)を用いた。
【0025】
凍結融解耐久性は、底面中心部に直径1cmの穴を有する内径30cm、高さ60cm、肉厚5cmのモルタル製の円筒型容器の底面の穴に薬液を注入充填して硬化させた後、この容器に水を入れ、−10℃12時間と40℃12時間を1サイクルとする凍結融解を20サイクル行った。20サイクル終了後、容器を20℃に放置し、底面中心部の穴からの漏水の有無を観察することにより行った。
その結果を表2に示す。表2において、○は漏水がなかったこと(凍結融解耐久性あり)、×は漏水が見られたこと(凍結融解耐久性なし)を示す。
【0026】
更に、硬化挙動としての薬液の硬化時間、硬化体の圧縮強度値、硬化体の破壊歪み値も測定し、その結果を表2に示した。
なお、硬化時間は、20℃において薬液中を注入してから、薬液が硬化するまでの時間を測定した。
【0027】
圧縮強度および破壊歪みは、薬液を円筒型容器内で硬化させて作成した直径5cm、高さ5cmの供試体を一軸圧縮して測定し、下記の式により求めた。
圧縮強度(kgf/cm2)=P/A
P:破壊直前に供試体に加えられた荷重(kgf )
A:圧縮前の供試体の断面積(cm2 )
破壊歪み(%)=△L・L0 ×100
L0 :圧縮前の供試体高さ(mm)
△L:破壊直前の圧縮量(mm)
【0028】
【表2】
Figure 0003621210
【0029】
実施例1〜3、比較例1、2は、(ロ)成分、(ハ)成分、(ニ)成分の影響を示しており、(ニ)成分が本発明の規定を満たさない場合(比較例1)や、(ハ)成分が本発明の規定を満たさない場合(比較例2)は、本発明が目的とする硬化体の凍結・融解の繰り返しに対する耐久性が得られないことがわかる。
又、実施例4、5、比較例3、4はA(イ)成分の種類(ポリエチレングリコール部分の重合度)の影響を示す。この結果から(イ)成分のポリエチレングリコール部分の重合度が本発明で規定する範囲よりも小さくても(比較例3)大きくても(比較例4)本発明が目的とする硬化体の凍結・融解の繰り返しに対する耐久性が得られないことがわかる。
【0030】
実施例6、7、比較例5、6はA液中での(イ)成分:(ロ)成分の重量比の影響を示しており、(イ)成分:(ロ)成分が本発明の規定を満たさない68:32(比較例5)や88:12(比較例6)の場合は、本発明が目的とする硬化体の凍結・融解の繰り返しに対する耐久性が得られないことがわかる。
又、実施例8、9、比較例7、8はA液中での(ロ)成分に対する(ハ)成分のモル比の影響を示しており、モル比が本発明で規定する範囲よりも小さくても(比較例7)大きくても(比較例8)本発明が目的とする硬化体の凍結・融解の繰り返しに対する耐久性が得られないことがわかる。
【0031】
実施例10〜13、比較例9はA+B混合液100リットル中での(イ)、(ロ)、(ハ)3成分の合計重量(kg)の影響を示しており、本発明の規定より少ない重量の場合(比較例9)は、得られた硬化体の圧縮強度が低く、止水用薬液として強度的にも充分の性能を示さないし、硬化体の凍結・融解の繰り返しに対する耐久性が得られないことがわかる。
これに対して、本発明の要件を満たした薬液は強度性能も優れており、硬化体の凍結・融解の繰り返しにも優れた耐性を示すことがわかる。
【0032】
実施例14は(イ)成分としてポリエチレングリコールジアクリレートを用いた例であるが、ポリエチレングリコールジメタクリレートを用いた場合と同様、優れた効果を示すことがわかる。
【0033】
【発明の効果】
本発明の止水用薬液及び止水工法を用いると、形成された硬化体は充分の強度を有し、更に凍結・融解の繰り返しにも優れた耐久性を示すため、例えば寒冷地における下水道管路施設等のコンクリート構造物の漏水を確実に止水できるという優れた効果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-stopping chemical solution and a water-stop method using a polymerizable substance that can be cured into an elastic gel that is unnecessary for water in a short time, and more specifically, stabilization of ground, prevention of water leakage, water leakage, etc. In addition to the general civil engineering works, in particular, the present invention relates to a water-stopping chemical solution suitably used for preventing intrusion water or water leakage in concrete structures such as sewer pipe facilities and a water-stop method using the same.
[0002]
[Prior art]
In order to stop water leakage in concrete structures such as sewer pipe facilities, there are known water-stopping methods in which various polymer-based water-stopping chemicals are injected into the water leakage portion and cured.
Among these, a water-stopping chemical solution obtained by curing a mixture of an anionic electrolyte monomer, a cationic electrolyte monomer, and polyethylene glycol di (meth) acrylate with a polymerization catalyst has no separation property of the resulting cured product, It is suitable for prevention of intrusion water or water leakage in concrete structures such as sewerage pipe facilities because it has high strength and strength, is difficult to swell when immersed in water, and has good adhesion to cementitious materials. It has been known.
[0003]
Japanese Patent Application Laid-Open No. 62-22882 discloses polyethylene glycol di (meth) acrylate having a polymerization degree of 2 to 50 as a component A or a mixture of such polyethylene glycol di (meth) acrylates, and an anionic property as component B. A cationic electrolyte monomer is used as the electrolyte monomer and the C component, and the ratio of the three components is 80/20 to 20/80 by weight ratio A / (B + C), and the ratio B / C is 20/80 to 80 by mole ratio. A water-stopping chemical solution obtained by adding a polymerization catalyst to a chemical solution of / 20 is disclosed.
[0004]
And as the B component acrylic acid, methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid and an anionic electrolyte one or more monomers selected from the salts thereof, as component C, (R 3) (R 4 ) N- (CH 2 ) n —YCOC (R 5 ) ═CH 2 (wherein R 3 and R 4 both represent a methyl group or an ethyl group, R 5 represents a hydrogen atom or a methyl group, and n represents 2 or 3) , Y represents an oxygen atom or an NH group.) And one or more selected from the group consisting of compounds thereof and salts and quaternized compounds thereof. It is preferable to use a mixture of three components at a concentration of usually 3 to 60% by weight. As the oxidizing agent component of the redox catalyst used in this case, ammonium persulfate and potassium persulfate are used. Preferred, as the reducing agent component, thiosulfate atrium, rongalite, sodium sulfite, triethanolamine, hexamethylenetetramine, it has been described that is intended ferrous sulfate, tartaric, and citric acid are preferred.
[0005]
[Problems to be solved by the invention]
However, the gel body obtained by curing the water-stopping chemical solution described in the above-mentioned Japanese Patent Application Laid-Open No. 62-22882 has no separation property of the obtained cured body, is non-permeable and has high strength, It has excellent characteristics such as being difficult to swell when immersed in water and good adhesion to cementitious materials.For example, in the leaking part of concrete structures such as sewer pipe facilities in cold districts. When water-stopping work is performed by injecting and curing such a chemical solution for water-stopping, the hardened body will be subject to freezing and thawing due to seasonal changes in winter and summer, so it will freeze and thaw for a longer period of time. Therefore, there is a demand for a water-stopping chemical solution that has higher durability than conventional ones and does not leak again due to weakening.
[0006]
The object of the present invention is to meet the above-mentioned demands, and to provide a water-stopping chemical solution obtained by curing a mixture of an anionic electrolyte monomer, a cationic electrolyte monomer, and polyethylene glycol di (meth) acrylate with a polymerization catalyst, and a stop solution using the same. An object of the present invention is to provide a water-stopping chemical solution that uses a water-stopping chemical solution that improves the problems in the water-working method, and that the formed cured body has durability against repeated freezing and thawing.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that each of one or more anionic electrolyte monomers, a cationic electrolyte monomer, polyethylene glycol di (meth) acrylate, and a reducing agent component of a redox catalyst. When a specific component is used in a specific blending amount as a liquid A containing an aqueous solution, and this is mixed with an aqueous solution containing an oxidizing agent component of a redox catalyst as a liquid B, an anionic electrolyte monomer and By mixing the cationic electrolyte monomer and the polyethylene glycol di (meth) acrylate so as to have a specific concentration, the formed cured body has superior durability against repeated freezing and thawing. And reached the present invention.
[0008]
That is, the present invention comprises (a) one or more compounds represented by formula (1),
(B) one or more anionic electrolyte monomers selected from acrylic acid, methacrylic acid, and 2-acrylamide-2-methylpropanesulfonic acid and salts thereof;
(C) one or more cationic electrolyte monomers selected from the compounds represented by formula (2) and salts thereof and quaternized compounds thereof; and (d) N, N, N ′, N′-tetramethylethylenediamine, An aqueous solution comprising one or more reducing agent components of a redox catalyst selected from N, N-dimethylhydroxyethoxyethylamine and N-methyldipropanolamine (hereinafter referred to as A solution), and an oxidizing agent component of a redox catalyst. A water-stopping chemical solution comprising a combination with an aqueous solution (hereinafter referred to as “B solution”), wherein the weight ratio of the (A) component to the (B) component in the A solution is (A) :( B) = 85: 15 To 70:30, and the component (c) is a two-component water-stopping chemical solution having a component ratio of 0.2 to 1.5 mol with respect to 1 mol of the component (b). A water-stopping method using a chemical solution, Prepare liquid A and liquid B so that the total of component (a), component (b) and component (c) is 5 kg or more for a total of 100 liters of liquid B and liquid B It relates to the water method.
[0009]
Equation (1): CH 2 = C (R 1) CO-O- (CH 2 CH 2 O) n -COC (R 2) = CH 2
Wherein (1), R 1, R 2 each independently represents a hydrogen atom or a methyl radical, n is an integer of 2 to 50.
Equation (2) :( R 3) ( R 4) N- (CH 2) n -NHCOC (R 5) = CH 2
In formula (2), R 3 and R 4 both represent a methyl group or an ethyl group, R 5 represents a hydrogen atom or a methyl group, and n represents 2 or 3.
[0010]
(A) The compound represented by the formula (1) of the component is polyethylene glycol di (meth) acrylate, and a single compound if the polymerization degree of the polyethylene glycol moiety (n in the formula (1)) is in the range of 2-50. Even a mixture of different degrees of polymerization of the polyethylene glycol moiety may be used.
When the degree of polymerization of the polyethylene glycol moiety (n in the formula (1)) is less than 2, it is unfavorable for the preparation of a chemical because the water solubility is low, and the strength of the cured product is also low. On the other hand, if it exceeds 50, the distance between the two polymerizable double bonds becomes too long, the gel strength becomes low, and it becomes easy to swell in water.
[0011]
Examples of the salt of acrylic acid, methacrylic acid and 2-acrylamido-2-methylpropanesulfonic acid in the component (b) include alkali metal salts such as sodium and potassium, and ammonium salts.
[0012]
The component (c) is a compound having a structure having an amide group in the molecule represented by the formula (2), and examples thereof include dimethylaminopropyl (meth) acrylamide and quaternized products thereof, diethylaminoethylacrylamide and its A quaternized product can be exemplified, and a mixture thereof can also be used.
As the salt, salts of inorganic acids such as hydrochloric acid and sulfuric acid can be used.
Examples of the quaternized product include quaternized products such as methyl chloride and dimethyl sulfate, and complex salts thereof.
[0013]
The component (d) comprises at least one reducing agent component of a redox catalyst selected from N, N, N ′, N′-tetramethylethylenediamine, N, N-dimethylhydroxyethoxyethylamine and N-methyldipropanolamine. It is.
[0014]
Although it does not specifically limit as an oxidizing agent component of the redox-type catalyst used by this invention, Ammonium persulfate, potassium persulfate, etc. can be used preferably.
This oxidant component is preferably added in an amount of 1 to 50% by weight based on the total weight of the three components (A), (B), and (C) when the A and B liquids are mixed. It is more preferable to add so that it may become weight%.
[0015]
As the component ratio of the components (A), (B), and (C) in the liquid A, the weight ratio of the component (A) to the component (B) is (I) :( B) = 85: 15 to 70:30. It is necessary that the component (c) is in an amount ratio of 0.2 to 1.5 mol with respect to 1 mol of the component (b).
The amount ratio of the component (d) in the liquid A is not particularly limited, but is in the range of 0.1 to 100% by weight with respect to the sum of the components (a), (b), and (c). Is preferred. If the weight ratio of the component (d) is increased within this range, the curing time of the chemical solution can be shortened, and if it is decreased, the curing time can be adjusted longer.
[0016]
There are no particular restrictions on the order of dissolution of each component in water (a), (b), (c), and (d) when preparing the liquid A.
For example, each of these components may be brought separately to the construction site, mixed at a predetermined amount ratio at the site, and dissolved in water. (A), (B), (C) What was previously blended by the ratio and the component (d) may be carried separately to the construction site and dissolved in water on site. If the mixing place is close to the construction site, the above four components can be mixed at a different location from the construction site and brought into the construction site.
Among these, (b), (b), and (c) are blended in advance at a predetermined quantitative ratio, and (d) are separately transported to the construction site and dissolved in water on site. This method is preferable because it is possible to prevent unexpected hardening of the liquid A alone during storage of the liquid A and to simplify the work at the construction site.
[0017]
Next, the water stop method will be described.
In the present invention, the above-mentioned A liquid and B liquid are mixed and used.
Liquid A and liquid B are a mixture of liquid A and liquid B (hereinafter referred to as an A + B liquid mixture) of 100 liters, and the total of the three components (a), (b), and (c) is 5 kg or more, preferably 5 Used by mixing in an amount ratio of ˜40 kg. If the total of the above three components is less than 5 kg, the resulting cured product has low compressive strength, and it is difficult to say that it exhibits excellent performance as a water-stopping chemical, and the durability of the cured product against repeated freezing and thawing is also low. It will be enough.
Even if the total of the above three components is used in an amount exceeding 50 kg with respect to 100 liters of the A + B mixed solution, no further improvement in the effect is observed, which is uneconomical.
[0018]
In the water stop method using the chemical solution of the present invention, the liquid A and the liquid B are mixed at a ratio such that the above-mentioned components are in the quantitative ratios defined above, poured into the water leakage portion, and cured to stop the water stop. Do.
As a method of mixing the liquid A and the liquid B so as to satisfy the regulation of such a quantity ratio, for example, the total of the three components (a), (b), (c) in 100 liters of the liquid A is 10 to 10. Mixing so that it becomes 80 parts by weight, and adding liquid (D) to this, liquid A and liquid B are individually fed into the Y-tube and injection pipe using pumps with the same amount of liquid per unit time. And a mixing chamber (in-pipe mixer, pipe-line mixer) or the like provided in the above, and mixed and mixed.
[0019]
In the water stop construction method of the present invention, the liquid mixture of the liquid A and the liquid B is injected into the water leakage part using various injection pipes such as a single pipe type, a multi-pipe type, and a multi-pipe type, and is cured there. Stop water.
[0020]
The chemical solution of the present invention can be used for various ordinary Portland cements such as normal, early strength, super early strength, moderate heat, low heat, sulfate, high iron oxide type, white, blast furnace cement, silica cement, fly ash cement, Mixed cements such as masonry cement and expanded cement, special cements such as jet cement (ultrafast cement), alumina cement, colloid cement, super colloid cement, and high sulfate slag cement, fly ash, silica fume, blast furnace granulation One or more of slag, gypsum, sewage treatment sludge incineration residual ash and the like can be added and used.
These components may be added to either solution A or solution B if used early after preparation of the chemical solution. However, if it takes time from preparation to use, it is preferable to add the solution to solution B.
[0021]
【Example】
Examples The present invention will be further described below using examples and comparative examples, but the present invention is not limited to these examples.
Examples 1-14, Comparative Examples 1-9
Liquid A: (b), (b), (c), (d), the components listed in Table 1 were mixed in the amounts shown in Table 1, and then added with water to dissolve. Liquid A was prepared by adjusting the amount of water so that the volume was 200 liters.
Liquid B: Liquid B was prepared by adding water to 12 kg of ammonium persulfate as an oxidant component of the redox catalyst and dissolving it, and adjusting the amount of water so that the volume after dissolution was 200 liters.
[0022]
Table 1 shows (A), (B) the weight ratio of both components, (C), (B) the molar ratio of both components, and (A), (B), ( C) The total weight (kg) of the three components is also shown.
The following test was conducted using the chemical solution prepared by mixing equal volumes of the A solution and the B solution thus prepared.
[0023]
[Table 1]
Figure 0003621210
[0024]
In Table 1, each symbol represents the following meaning.
PEGDME: Polyethylene glycol dimethacrylate n: Degree of polymerization of polyethylene glycol moiety in PEGDME AA: Acrylic acid AANA: Sodium acrylate MAA: Methacrylic acid MAANA: Sodium methacrylate AMPSNa: 2-acrylamido-2-methylpropanesulfonic acid sodium DMAPMA: Dimethyl Aminopropyl methacrylamide DMAPAA: Dimethylaminopropylacrylamide DEEAAA: Diethylaminoethylacrylamide DMAEA: Dimethylaminoethyl acrylate TMED: N, N, N ′, N′-tetramethylethylenediamine MDPA: N-methyldipropanolamine MHEA: N, N— Dimethylhydroxyethoxyethylamine TEA: Triethanolamine * In 14, (polymerization degree of the polyethylene glycol moiety: 28) of polyethylene glycol diacrylate instead of PEGDME was used.
[0025]
The freeze-thaw durability is obtained by injecting and filling a chemical solution into the bottom hole of a cylindrical container made of mortar having an inner diameter of 30 cm, a height of 60 cm, and a thickness of 5 cm having a hole with a diameter of 1 cm at the center of the bottom, Water was put into the container, and freeze-thaw was performed 20 cycles with -10 ° C 12 hours and 40 ° C 12 hours as one cycle. After completion of 20 cycles, the container was left at 20 ° C., and the presence or absence of water leakage from the hole at the center of the bottom surface was observed.
The results are shown in Table 2. In Table 2, ◯ indicates that there was no water leakage (with freezing and thawing durability), and x indicates that water leakage was observed (without freezing and thawing durability).
[0026]
Furthermore, the curing time of the chemical solution as the curing behavior, the compressive strength value of the cured product, and the fracture strain value of the cured product were also measured, and the results are shown in Table 2.
In addition, hardening time measured time after inject | pouring in a chemical | medical solution in 20 degreeC until a chemical | medical solution hardens | cures.
[0027]
The compressive strength and fracture strain were measured by uniaxially compressing a specimen having a diameter of 5 cm and a height of 5 cm, which was prepared by curing a chemical in a cylindrical container, and was determined by the following formula.
Compressive strength (kgf / cm2) = P / A
P: Load applied to the specimen immediately before breaking (kgf)
A: Cross-sectional area of the specimen before compression (cm2)
Fracture strain (%) = △ L ・ L0 × 100
L0: Specimen height before compression (mm)
ΔL: Amount of compression immediately before fracture (mm)
[0028]
[Table 2]
Figure 0003621210
[0029]
Examples 1 to 3 and Comparative Examples 1 and 2 show the influence of the component (b), component (c), component (d), and component (d) where the component does not satisfy the provisions of the present invention (comparative example) It can be seen that the durability against repeated freezing and thawing of the cured product intended by the present invention cannot be obtained when the component 1) or (c) does not satisfy the provisions of the present invention (Comparative Example 2).
In addition, Examples 4 and 5 and Comparative Examples 3 and 4 show the influence of the type of the component (A) (polymerization degree of the polyethylene glycol moiety). From this result, whether the degree of polymerization of the polyethylene glycol portion of component (a) is smaller than the range specified in the present invention (Comparative Example 3) or larger (Comparative Example 4), It can be seen that durability against repeated melting cannot be obtained.
[0030]
Examples 6 and 7 and Comparative Examples 5 and 6 show the influence of the weight ratio of (A) component: (B) component in the liquid A, and (B) component: (B) component is defined in the present invention. In the case of 68:32 (Comparative Example 5) and 88:12 (Comparative Example 6) that do not satisfy the above, it can be seen that the durability to repeated freezing and thawing of the cured product targeted by the present invention cannot be obtained.
Examples 8 and 9 and Comparative Examples 7 and 8 show the influence of the molar ratio of the component (c) to the component (b) in the liquid A, and the molar ratio is smaller than the range specified in the present invention. However (Comparative Example 7) Even if it is large (Comparative Example 8), it can be seen that the durability against repeated freezing and thawing of the cured product targeted by the present invention cannot be obtained.
[0031]
Examples 10 to 13 and Comparative Example 9 show the influence of the total weight (kg) of the three components (a), (b), and (c) in 100 liters of the A + B mixed solution, which is less than the provisions of the present invention. In the case of weight (Comparative Example 9), the obtained cured product has low compressive strength, does not exhibit sufficient performance as a water-stopping chemical solution, and has durability against repeated freezing and thawing of the cured product. I can't understand.
On the other hand, it can be seen that the chemical solution satisfying the requirements of the present invention has excellent strength performance and exhibits excellent resistance to repeated freezing and thawing of the cured product.
[0032]
Example 14 is an example using polyethylene glycol diacrylate as the component (a), but it can be seen that, as in the case of using polyethylene glycol dimethacrylate, excellent effects are exhibited.
[0033]
【The invention's effect】
When the water-stopping chemical solution and water-stopping method of the present invention are used, the formed cured body has sufficient strength, and also exhibits excellent durability in repeated freezing and thawing. For example, a sewer pipe in a cold district Excellent effect that water leakage from concrete structures such as road facilities can be reliably stopped.

Claims (2)

(イ)式(1)で示される化合物1種以上、
(ロ)アクリル酸、メタクリル酸及び2−アクリルアミド −2−メチルプロパンスルホン酸及びそれらの塩から選ばれるアニオン性電解質モノマー1種以上、
(ハ)式(2)で示される化合物並びにそれらの塩及びそれらの4級化物から選ばれるカチオン性電解質モノマー1種以上、及び
(ニ)N,N,N’,N’−テトラメチルエチレンジアミン、N,N−ジメチルヒドロキシエトキシエチルアミン及びN−メチルジプロパノールアミンから選ばれるレドックス系触媒の還元剤成分1種以上
を含んでなる水溶液(以下A液という)と、レドックス系触媒の酸化剤成分を含んでなる水溶液(以下B液という)との組合せからなる止水用薬液であって、A液中の(イ)成分と(ロ)成分の重量比が(イ):(ロ)=85:15〜70:30であり、(ハ)成分が(ロ)成分1モルに対し0.2〜1.5モルの量比である2液性止水用薬液。
式(1):CH=C(R)CO−O−(CHCHO)−COC(R)=CH
式(1)中、R、Rは各々独立に水素原子又はメチル基を示し、nは2〜50の整数を示す。
式(2):(R)(R)N−(CH−NHCOC(R)=CH
式(2)中、R及びRは共にメチル基又はエチル基を示し、Rは水素原子又はメチル基を示し、nは2又は3を示す。
(I) one or more compounds represented by formula (1),
(B) one or more anionic electrolyte monomers selected from acrylic acid, methacrylic acid, and 2-acrylamide-2-methylpropanesulfonic acid and salts thereof;
(C) one or more cationic electrolyte monomers selected from the compounds represented by formula (2) and salts thereof and quaternized compounds thereof; and (d) N, N, N ′, N′-tetramethylethylenediamine, An aqueous solution comprising one or more reducing agent components of a redox catalyst selected from N, N-dimethylhydroxyethoxyethylamine and N-methyldipropanolamine (hereinafter referred to as A solution), and an oxidizing agent component of a redox catalyst. A water-stopping chemical solution comprising a combination with an aqueous solution (hereinafter referred to as “B solution”), wherein the weight ratio of the (A) component to the (B) component in the A solution is (A) :( B) = 85: 15 It is -70: 30 and the chemical | medical solution for two-component water stop which is (70): 30, and (ha) component is 0.2-1.5 mol ratio with respect to 1 mol of (b) components.
Equation (1): CH 2 = C (R 1) CO-O- (CH 2 CH 2 O) n -COC (R 2) = CH 2
Wherein (1), R 1, R 2 each independently represents a hydrogen atom or a methyl radical, n is an integer of 2 to 50.
Equation (2) :( R 3) ( R 4) N- (CH 2) n -NHCOC (R 5) = CH 2
In Formula (2), R 3 and R 4 both represent a methyl group or an ethyl group, R 5 represents a hydrogen atom or a methyl group, and n represents 2 or 3.
請求項1記載の2液性止水用薬液を用いる止水工法であって、A液とB液の合計100リットルに対して(イ)成分と(ロ)成分と(ハ)成分の合計が5kg以上となるようにA液とB液を調製、混合して漏水部に注入する止水工法。It is a water stop construction method using the chemical solution for two-component water stop according to claim 1, wherein the sum of (A) component, (B) component and (C) component is based on 100 liters of A liquid and B liquid in total. A water-stop method that prepares and mixes liquid A and liquid B so as to be 5 kg or more and injects them into the water leakage part.
JP28584396A 1996-10-09 1996-10-09 Water-stopping chemical solution and water-stop method using the same Expired - Lifetime JP3621210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28584396A JP3621210B2 (en) 1996-10-09 1996-10-09 Water-stopping chemical solution and water-stop method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28584396A JP3621210B2 (en) 1996-10-09 1996-10-09 Water-stopping chemical solution and water-stop method using the same

Publications (2)

Publication Number Publication Date
JPH10110159A JPH10110159A (en) 1998-04-28
JP3621210B2 true JP3621210B2 (en) 2005-02-16

Family

ID=17696806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28584396A Expired - Lifetime JP3621210B2 (en) 1996-10-09 1996-10-09 Water-stopping chemical solution and water-stop method using the same

Country Status (1)

Country Link
JP (1) JP3621210B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032403A1 (en) * 2007-07-10 2009-01-22 Evonik Röhm Gmbh Use of a swellable polymer for sealing
JP6487481B2 (en) * 2017-03-28 2019-03-20 株式会社エステック Water-stop agent and water-stop method using the same
CN112892190B (en) * 2021-01-27 2023-03-10 成都中科绿生环境科技有限公司 Chemical deodorant and preparation method thereof

Also Published As

Publication number Publication date
JPH10110159A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP6413774B2 (en) Ground injection composition for liquefaction prevention and ground improvement method using the same
JPH09183641A (en) Nitrite based corrosion inhibitor exhibiting improved anodic and cathodic corrosion suppressing performance
JP2016130286A (en) Ground injection agent composition for preventing liquefaction, and ground improvement construction method using the composition
JPS5945949A (en) Cement composition and manufacture
JP3970604B2 (en) Water-stop agent and water-stop method
JP3621210B2 (en) Water-stopping chemical solution and water-stop method using the same
WO1985000802A1 (en) Concrete composition for underwater application
JP2004156257A (en) Fixing structure for reinforcing bar
JPH032478B2 (en)
JP2002316849A (en) Quick setting admixture for spraying, slurry of quick setting admixture for spraying, quick setting cement concrete and spraying construction method
JP6284812B2 (en) Water-stopping composition and water-stopping method
JP3429497B2 (en) Cement admixture, cement composition, and method of using the same
JP2004256585A (en) Slurry for ground improving work, improved ground formed by using the slurry, and dispersant for slurry for ground improving work
JP3506798B2 (en) Chemical solution for soil stabilization and ground stabilization method using it
JP4722322B2 (en) Hydraulic composition
JP5308279B2 (en) Spraying material and spraying method using the same
JPS6234977A (en) Water stopping agent
JP2002338316A (en) Accelerator of hardening for spraying, quick-hardening cement concrete and spraying method using the same
JPH0315951B2 (en)
JP3506765B2 (en) Chemical solution for soil stabilization and ground stabilization method using it
JPH0623380B2 (en) Waterstop
JPH03190907A (en) Modified redox catalyst
JPH0816221B2 (en) Method for producing waterproofing agent
JP2929353B2 (en) Chemical solution for soil stabilization and ground stabilization method using it
JP2006327832A (en) Cement composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term