JP3621194B2 - Core mold for bending hollow profiles - Google Patents

Core mold for bending hollow profiles Download PDF

Info

Publication number
JP3621194B2
JP3621194B2 JP15449196A JP15449196A JP3621194B2 JP 3621194 B2 JP3621194 B2 JP 3621194B2 JP 15449196 A JP15449196 A JP 15449196A JP 15449196 A JP15449196 A JP 15449196A JP 3621194 B2 JP3621194 B2 JP 3621194B2
Authority
JP
Japan
Prior art keywords
curved
mold
core
curved surface
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15449196A
Other languages
Japanese (ja)
Other versions
JPH105881A (en
Inventor
久男 谷川
公雄 伊藤
成幸 中川
謙二 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP15449196A priority Critical patent/JP3621194B2/en
Publication of JPH105881A publication Critical patent/JPH105881A/en
Application granted granted Critical
Publication of JP3621194B2 publication Critical patent/JP3621194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は中空形材の曲げ加工用芯型に関するものであり、特に、回転式曲げ加工機などを用いて中空形材に曲げ加工を施す際に、その湾曲部におけるシワ、変形、亀裂などの発生を防止することができる中空形材の曲げ加工用芯型に関する。
【0002】
【従来の技術】
自動車などの輸送機器を軽量化することはエネルギーの節約や地球環境の保全などの観点から重要な課題とされ、その解決手段の一つのとして、エンジン、構造部材、各種導管、ボディ表皮などがアルミニウム合金で製造されるようになってきている。アルミニウム合金をフレームなどの構造部材として用いる場合は、軽量でかつ比剛性に優れた方形横断面の中空形状が多く採用される。そして、これらの構造部材や各種導管の多くは、長さ方向に二次元的あるいは三次元的に湾曲した形状に成形される。湾曲した中空部材を成形する一つの方法は割り型を用いて鋳型する方法であるが、押出しによって予め直管状に成形された中空形材を後加工で曲げて成形することができれば、生産効率の面でも強度の面でも有利となる場合が多い。
【0003】
しかし、例えば方形横断面の中空形材をそのまま曲げると、外向き湾曲面(曲げ半径が大きくなるほうの面)が延伸され、内向き湾曲面(曲げ半径が小さいほうの面)が圧縮されて側面が撓み、湾曲部における中空部が偏平に変形して、外向き湾曲面またはその近傍の側面に亀裂を生じたり、内向き湾曲面またはその近傍の側面にシワが寄ったり、極端な場合には湾曲部で折れてしまうなどの問題が生じる。
【0004】
この問題を解決する一つの手段として、中空形材の湾曲部における横断面形状が変化しないように湾曲部の中に芯型を挿入した上で曲げ加工を行い、管体の偏平化やシワの発生を防止する方法が採用されている。この目的で用いられる芯型として、従来から湾曲芯型および積層芯型の2種類のものが知られている。
【0005】
従来の芯型の内、湾曲芯型を用いて中空形材を曲げる方法の一例を図6に示す。
図6において、符号1は横断面長方形の中空形材を示している。この中空形材1はアルミニウム合金製で、押出成形により直管状に成形された形材である。
【0006】
符号30は全体として回転式曲げ加工機を示している。この回転式曲げ加工機30は、概略、搬送台31、ローラ部材32、およびクランプ部材33からなっている。搬送台31は、中空形材1を定置してローラ部材32の外周に沿って(図では右から左へ)搬送する装置である。ローラ部材32は、中空形材1の内向き湾曲面3を受け込むローラ溝34を有する円筒体であり、その軸芯35に連結された回転駆動装置(図示せず)によって、搬送台31の搬送方向と一致する方向に回転するようになっている。このローラ溝34の曲げ半径は、中空形材1の内向き湾曲面3の設計された曲げ半径と一致している。クランプ部材33は、図示しない支柱によってローラ部材の回転軸35に連結され、ローラ部材32と一緒に回転するようになっている。またこのクランプ部材33は、中空形材1を受け込むクランプ溝36を有していて、このクランプ溝36とローラ溝34との間に中空形材1を挟んで挟圧し、中空形材1の湾曲しようとする部分(湾曲部)の先端をローラ溝34に固定するとともに、湾曲部における中空形材の横断面形状の変形を外側から拘束するようになっている。
【0007】
ここで用いられる湾曲芯型40は、概略、中空形材1の中空部に挿入し得る横断面形状を有する直方体であるが、ただし中空形材1の中空部に挿入された状態で、湾曲部の外向き湾曲面2の側となる面42が、外向き湾曲面2の設計された曲げ半径と等しい曲げ半径を有する曲面に成形され、この湾曲面42が湾曲芯型40の先端部において、対向する平面43に当接している。
【0008】
先ず、中空形材1を回転式曲げ加工機30の搬送台31に定置し、その後端部の開口から、出し入れ自在の挿入棒41の先端に固定した湾曲芯型40を挿入し、湾曲部の内部に配置する。次に、中空形材1の湾曲部の前方先端をローラ溝34とクランプ溝36との間に挟んで固定する。この状態でローラ部材32とクランプ部材33とを一緒に回転軸35の駆動力によって回転すると、中空形材1は、ローラ溝34の曲げ半径を内向き湾曲面3の曲げ半径として曲げられる。この時、中空形材1の外向き湾曲面2は、湾曲芯型40によって内側から拘束されているので、偏平化することなく、湾曲部においても一定の中空部横断面形状が維持されるようになる。
【0009】
従来の芯型の他の例は積層芯型である。この積層芯型を用いて中空形材を曲げる方法の一例を図7に示す。
図7において、符号1は横断面長方形の中空形材を示している。また符号30は全体として前記と同様な回転式曲げ加工機を示している。
【0010】
この場合、中空形材1の湾曲部の内部には、積層芯型50が、出し入れ自在の挿入棒51の先端に取り付けられて挿入されている。この積層芯型50は、長方形の可撓性材料からなる板材51,51,…が複数枚積層されてなり、その積層部の横断面形状が、中空形材1の中空部内に挿入し得る形状とされている。
【0011】
この積層芯型50を用いて中空形材1を曲げるには、先ず、この中空形材1を回転式曲げ加工機30の搬送台31に乗せ、直管状の中空形材1の中空部に上記の積層芯型50を挿入し、挿入棒51で湾曲部まで押し込み、中空形材1の湾曲部先端をローラ溝34とクランプ溝36との間に挟んで固定する。この状態でローラ部材32とクランプ部材33とを一緒に回転軸35の駆動力によって回転すると、中空形材1は、ローラ溝34の曲げ半径を内向き湾曲面3の曲げ半径として曲げられる。この時、中空形材1の内部の積層芯型50もそれぞれの板材51,51,…が互いに進行方向にズレながら曲がり、積層芯型50の横断面形状は湾曲しても変化しない。従って中空形材1も、積層芯型50によって内側から拘束されて、湾曲部において偏平化することなく、中空部の横断面形状が一定に維持されるようになる。
【0012】
【発明が解決しようとする課題】
しかし、従来の湾曲芯型40または積層芯型50を用いる方法にはそれぞれ問題があって、実質的に変形、シワ、亀裂などの欠点がない湾曲部を得ることは困難であった。すなわち、湾曲芯型40を用いる場合は、回転式曲げ加工機30によって中空形材1を曲げるに際して、中空形材1の内向き湾曲面3を拘束することができないので、この内向き湾曲面3およびその近傍の側面が圧縮されてシワになりやすい。一方、積層芯型50を用いる場合は、積層部の横断面形状を中空形材1の中空部の横断面形状に一致させると曲げた後で中空形材1から抜き取れなくなるので、中空形材1の中空部の横断面寸法より幾分小さく成形する必要があり、このため、曲げ加工に際して、湾曲部の全周を拘束することができず、湾曲部に偏平化などの横断面形状の変化を起こしてしまう。
【0013】
本発明は、上記の課題を解決するためになされたものであって、従ってその目的は、中空形材に曲げ加工を施す際に、湾曲部における中空形材の変形、シワ、亀裂などの発生を防止することができる中空形材の曲げ加工用芯型を提供することにある。
【0014】
【課題を解決するための手段】
上記の課題は、外向き湾曲面の設計された曲げ半径と等しい曲げ半径の曲面を有し、芯型の少なくとも側面に配設されている湾曲型材と、外向き湾曲面と内向き湾曲面との間に積層されて中空形材の長さ方向に延びる複数の可撓性板材からなる積層型材とから構成された曲げ加工用芯型を提供することによって解決できる。上記の積層型材は、芯型の幅方向に湾曲型材に挟まれて配設されていることが好ましい。また、芯型の側面に配設された湾曲型材の少なくとも外向き湾曲面側の厚さが、芯型全体の幅の15%ないし35%の範囲内とされていることが好ましい。
【0015】
本発明はまた、前記において、湾曲型材が芯型のそれぞれの側面に配設され、積層型材が湾曲型材に挟まれて配設され、それぞれの前記湾曲型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次縮小され、かつ積層型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次拡大されてなる曲げ加工用芯型を提供する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を実施例により図面を用いて説明する。以下の説明において、従来の技術として図6,図7を用いて説明した構成要素と共通しているものは同一番号を付してその説明を省略または簡略化する。
この実施例の曲げ加工用芯型(以下、単に「芯型」という)は、直管状の中空形材を曲げるために用いられるものである。この中空形材1は、図2に示すように、中空部の横断面形状が高さH、幅Dを有する長方形をなしている。この中空形材1は、湾曲部4において、高さHの方向に、外向き湾曲面2を弧線Bに沿って曲げるように計画されている。従って、曲げられた後では、中空形材1の中空部の幅Dを形成する2面の内、一方が外向き湾曲面2となり、他方が内向き湾曲面3となる。また、中空部の高さHを形成する面はそれぞれ側面5,5となる。
【0017】
(実施例1)
図1は、前記の中空形材1を曲げるために用いる芯型10の先端部を示している。
図1に示す芯型10は、中空形材1の外向き湾曲面2の設計された曲げ半径と等しい曲げ半径の曲面2a を有する湾曲型材13と、外向き湾曲面2と内向き湾曲面3との間に積層されて中空形材1の長さ方向に延びる複数の可撓性板材11a ,11b ,…,11n からなる積層型材12とから構成されている。
【0018】
この芯型10の横断面形状は長方形であって、その高さと幅の寸法は、これを中空形材1の中空部に許容し得るクリアランスを持って挿入し得る値とされている。ここでは説明のため、クリアランスを無視して、芯型10の横断面の高さをH、幅をDと表記する。
【0019】
この芯型10は、双方の側面5a ,5a に湾曲型材13,13が配設され、積層型材12は、これらの湾曲型材13,13に挟まれて配設されている。そして、湾曲型材13,13の厚さdは、芯型10全体の幅Dの15%ないし35%の範囲内とされている。また、積層型材12は、その先端が湾曲型材13の先端より長さLだけ突出している。
【0020】
次に、この芯型10を用いて前記の中空形材1を曲げる方法の一例を、図3を用いて説明する。この方法では、従来例において説明した前記の回転式曲げ加工機30を使用する。
先ず、中空形材1を回転式曲げ加工機30(例えば大洋社製「ドローベンダー」)の搬送台31に定置し、前記の芯型10を出し入れ自在の挿入棒14の先端に固定して、中空形材1の後部開口から湾曲部4の位置まで挿入する。この際、湾曲型材13の曲面2a が、曲げようとする中空形材1の外向き湾曲面2に対向するように挿入する。
【0021】
次に湾曲部4の先端部をローラ溝34とクランプ溝36との間に、内向き湾曲面3をローラ溝34側として挟んで固定する。この状態でローラ部材32とクランプ部材33とを一緒に中空形材1の搬送方向に回転すると、中空形材1は、後方の直管部が搬送台31によって拘束されているため、ローラ溝34の曲げ半径を内向き湾曲面3の曲げ半径として曲げられる。
【0022】
実施例1の芯型10を用いた上記の方法によれば、中空形材1の湾曲部4において、外向き湾曲面2は、その中空部の両側面5,5に対向して配設された湾曲型材13,13のそれぞれの湾曲面2a によって拘束されるので、設計され弧線Bに沿って曲げられ、偏平化することがない。また、積層型材12が芯型10の幅方向に湾曲型材13,13に挟まれて配設されているので、芯型10の外向き湾曲面2に対する拘束力と内向き湾曲面3に対する拘束力が均衡して中空形材1の亀裂などが生じ難くなる。
【0023】
更に、内向き湾曲面3およびその近傍の側面は、湾曲部4において、外側からローラ溝34によって、また内側から、湾曲しても高さHが変わらない積層型材12によって拘束されるので、ローラ溝34の湾曲に沿って曲げられ、シワなどの変形が生じることがない。
【0024】
中空形材1の側面は、外側からローラ溝34の側面とクランプ溝36の側面とによって、また内側から湾曲型材13の側面5a ,5a によって拘束されているので、シワや撓みなどの変形が生じることがない。
【0025】
上記の作用によって、中空形材1の湾曲部4においては、その外向き湾曲面2とその近傍の側面が、シワや亀裂を発生することなく必要な分量だけ延伸され、内向き湾曲面3とその近傍の側面にもシワなどの変形が生じることなく、湾曲部4においても非湾曲部と同様の横断面形状が維持される。
【0026】
図1に示した上記実施例1において、湾曲型材13,13の厚さdは、芯型10全体の幅Dの15%ないし35%の範囲内とすることが好ましい。実験の結果、d/Dの比率が15%未満では、湾曲型材13の湾曲面2a による変形防止効果が不十分で、湾曲部4の横断面に変形が生じ易くなり、また35%を越えると、内向き湾曲面3近傍における無拘束空間が増大するとともに外向き湾曲面2における拘束力が過大となって、外向き湾曲面近傍の伸長に対して素材の延展性が対応できず変形や亀裂が生じ易くなることがわかった。
【0027】
湾曲型材13,13の厚さdと芯型10の幅Dとの比d/Dを変化させて曲げ加工を行ったときの、曲げ加工後の湾曲部の状態を観察した試験例を以下に示す。この試験では、アルミニウム合金押出し形材を、内向き曲げ半径150mmに曲げ加工した。湾曲型材厚さd(mm)と芯型幅D(mm)、その比(d/D)および曲げ加工後の湾曲部の状態(結果)を表1に示す。
【0028】
【表1】

Figure 0003621194
【0029】
表1の結果から、d/Dの値が15%ないし35%の範囲内できわめて良好な横断面形状を有する湾曲部が得られたことがわかる。
【0030】
曲げられた後の湾曲部4からこの芯型10を取り出すには、単に挿入棒14とともに芯型10を引き抜けばよい。この際、湾曲型材13は中空形材1の直管部の延長線上にあるので、引き抜きの抵抗にならない。また積層部12は、湾曲部4内で全体として曲げられているが、積層されたそれぞれの可撓性板材11a 〜11n が引き抜きに際して平板状態に戻るので、これらも引き抜きの障害にならず、容易に取り出すことができる。
【0031】
(実施例2)
図4に、実施例1において示したものと同様な中空形材1を曲げるために用いる芯型の他の実施例を示す。図4において、この芯型20は、中空形材1の外向き湾曲面2の設計された曲げ半径と等しい曲げ半径の曲面2a を有する湾曲型材23,23と、外向き湾曲面2と内向き湾曲面3との間に積層されて中空形材1の長さ方向に延びる複数の可撓性板材21a ,21b ,…,21n からなる積層型材22とから構成されている。
【0032】
この芯型20の横断面形状は長方形であって、その高さと幅の寸法は、これを中空形材1の中空部に許容し得るクリアランスを持って挿入し得る値とされている。ここでは説明のため、クリアランスを無視して、芯型10の横断面の高さをH、幅をDと表記する。
【0033】
この芯型20は、双方の側面5a ,5a に湾曲型材23,23が配設され、積層型材22は、これらの湾曲型材23,23に挟まれて配設されている。そして実施例2の芯型20においては、それぞれの湾曲型材23の厚さが、湾曲部の外向き湾曲面2側の厚さd1 から内向き湾曲面3側の厚さd2 に向かって漸次縮小され、一方、積層型材22の幅は、湾曲部の外向き湾曲面2側の幅w1 から内向き湾曲面3側の幅wn に向かって漸次拡大されて、芯型20全体として一定の幅Dが維持されるようになっている。この積層型材22の幅の変化は、積層された板材21a ,21b ,…,21n のそれぞれの幅w1 ,w2 ,…,wn を段階的に順次拡大することによって達成される。
【0034】
芯型20は、中空形材1の中空部の横断面形状に等しい横断面形状を有するので、実施例1の芯型10と同様にして中空形材1内に挿入することができる。芯型20を挿入した中空形材1は、実施例1と同様にして回転式曲げ加工機30を用いて曲げ加工を行うことができる。
【0035】
実施例2の芯型20を用いれば、曲げ加工に際して、芯型の両側面5a ,5a をなす湾曲型材23,23が、これに挟まれた積層型材22を内向き湾曲面3の方向に押圧するように作用するため、積層型材22による内向き湾曲面3への拘束力が強まり、内向き湾曲面3とその近傍の側面におけるシワを防止する効果が更に高められる。一方、外向き湾曲面2とその近傍の側面においては、積層型材22が内向き湾曲面3の方向に押圧されることによって芯型20の外向き湾曲面側の幅Dがわずかに縮小し、このため型の拘束力が若干弱まり、無理な伸長が抑制され、亀裂を防止する効果が更に高められる。
【0036】
(実施例3)
本発明の芯型は、異形横断面の中空形材の曲げ加工にも適用することができる。その一例を実施例3として図5に示す。図5は、段差を有する異形横断面の中空形材6と、これを曲げるために挿入された芯型25の横断面を示している。この中空形材6は、それぞれ段差が設けられた外向き湾曲面61,62と、内向き湾曲面63と、側面64a ,64b ,64c とによって形成されている。
【0037】
図5に示す芯型25は、中空形材6のそれぞれ側面64a ,64b ,64c に対向する位置に湾曲型材26,26,26が配設され、芯型25の幅方向に湾曲型材26,26,26に挟まれて積層型材27,27が配設されてなっている。それぞれの湾曲型材26は、図示しないが、外向き湾曲面の設計された曲げ半径と等しい曲げ半径の曲面を有している。また、それぞれの積層型材27は、それぞれ外向き湾曲面61,62と内向き湾曲面63との間に積層されて中空形材6の長さ方向に延びる複数の可撓性板材28,28,…からなっている。
【0038】
この芯型25を用いて前記の中空形材6を曲げる方法の一例を、以下に示す。この方法では、実施例1の場合に用いたものと同様の回転式曲げ加工機30を使用する。ただし、搬送台31の受け面とクランプ溝36の横断面形状を、前記の中空形材6の外向き湾曲面61,62およびその近傍の側面を外側から拘束することができる形状に変更する。
【0039】
中空形材6を回転式曲げ加工機30の搬送台31に定置し、前記の芯型25を出し入れ自在の挿入棒の先端に固定して、中空形材6の後部開口から湾曲部の位置まで挿入する。この際、湾曲型材26の曲面が、曲げようとする中空形材1の外向き湾曲面に対向するように挿入する。
【0040】
次に湾曲部の先端部をローラ溝34とクランプ溝36との間に、内向き湾曲面3をローラ溝34側として挟んで固定する。この状態でローラ部材32とクランプ部材33とを一緒に中空形材6の搬送方向に回転すると、中空形材6は、後方の直管部が搬送台31によって拘束されているため、ローラ溝34の曲げ半径を内向き湾曲面の曲げ半径として曲げられる。
【0041】
実施例3の芯型25を用いた上記の方法によれば、中空形材6の湾曲部において、外向き湾曲面61,62とその近傍の側面は、外側からクランプ溝36によって、また内側から、中空部の各側面64a ,64b ,64c に配設された湾曲型材26,26,26によって拘束されるので、設計された弧線通りに曲げられ、変形、亀裂などが生じることがない。
【0042】
また、内向き湾曲面63とその近傍の側面は、外側からローラ溝34によって、また内側から、湾曲しても高さが変わらない積層型材28,28によって拘束されているので、設計された内向き湾曲面通りに成形され、シワなどの変形が生じることがない。
【0043】
上記の作用によって、異形横断面の中空形材6の湾曲部においても、外向き湾曲面61,62とその近傍の側面が偏平化などの変形や亀裂を生じることなく必要な分量だけ延伸され、内向き湾曲面63とその近傍の側面にシワなどの変形が生じることなく、湾曲部においても非湾曲部と同様の横断面形状が保持される。
【0044】
本発明の芯型において、積層型材を構成する可撓性板材は、中空形材の湾曲部で曲げ加工時および芯型の抜き取り時に、長さ方向に屈曲し得る材質のものであればよいので、例えば銅板、鉛板、アルミニウム板など反発弾性の小さいものであってもよく、また鋼板、プラスチック板など反発弾性の大きいものであってもよい。また、特に中空形材の側面と対向する位置に配設された湾曲型材は、曲げ加工時に中空形材に鋭い切り込みを生じないように、その角部(稜線部分)を丸めて成形することが好ましい。
【0045】
以上、実施例1〜実施例3で説明した芯型は、横断面角形の中空形材を曲げる際に用いられるものであるが、本発明の芯型が適用できる中空形材はこれに限定されるものではない。例えば横断面形状が台形、円形または楕円形などの中空形材であっても、これに挿入する芯型の横断面形状を全体として台形、円形または楕円形などに成形しておけば、同様に横断面形状に変形、シワ、亀裂などのない湾曲部を形成することができる。また、外側の周面に、長さ方向に延びるフィンや周方向に延びるフランジなどが一体に成形された中空形材を曲げる場合にも、本発明の芯型は有利に使用することができる。更に、本発明の芯型は、横断面コ字状または樋状など、長さ方向に解放縁部がある形材を曲げる際にも適用することができる。
【0046】
本発明の芯型を用いて中空形材を曲げれば、湾曲部における剛性劣化が防止され、また横断面形状が非湾曲部と変わらないので、本発明の芯型は、自動車など輸送機器の中空構造部材や各種導管などの湾曲部の形成に好適に使用できるばかりでなく、中空の建築部材、家具部材、配線・配管部材などの曲げ加工にも用いることができる。
【0047】
【発明の効果】
本発明の中空形材の曲げ加工用芯型は、外向き湾曲面の設計された曲げ半径と等しい曲げ半径の曲面を有する湾曲型材と、外向き湾曲面と内向き湾曲面との間に積層されて中空形材の長さ方向に延びる複数の可撓性板材からなる積層型材とから構成されたものであるので、これを用いて中空形材を曲げれば、湾曲部における中空部が内側から拘束されるので横断面形状が変化せず、湾曲部のシワ、変形、亀裂などが防止される。
【0048】
前記において、積層型材が芯型の幅方向に湾曲型材に挟まれて配設されていれば、芯型の外向き湾曲面に対する拘束力と内向き湾曲面に対する拘束力が均衡して中空形材の亀裂などが生じ難くなる。
【0049】
このとき湾曲型材が、芯型の少なくとも側面に配設されていれば、外向き湾曲面とその近傍の側面が湾曲型材によって拘束されるので、外向き湾曲面が設計された弧線に沿って曲げられ、偏平化することがない。
【0050】
また、芯型の側面に配設された湾曲型材の少なくとも外向き湾曲面側の厚さが、芯型全体の幅の15%ないし35%の範囲内とされていれば、湾曲部に発生するシワ、変形、亀裂などが更に軽減される。
【0051】
前記において、湾曲型材が芯型のそれぞれの側面に配設され、積層型材が湾曲型材に挟まれて配設され、それぞれの前記湾曲型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次縮小され、かつ積層型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次拡大されていれば、内向き湾曲面が強く拘束され、外向き湾曲面とその近傍の側面における拘束力が比較的緩和されるので、内向き湾曲面とその近傍の側面におけるシワ、外向き湾曲面とその近傍の側面における亀裂を防止する効果が更に高められる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す横断斜視図。
【図2】本発明を適用する中空形材の一例を示す横断斜視図。
【図3】本発明の一適用例を示す部分縦断側面図。
【図4】本発明の他の一実施例を示す横断斜視図。
【図5】本発明の更に他の一実施例を示す横断斜視図。
【図6】従来の芯型の適用例を示す部分縦断側面図。
【図7】従来の他の芯型の適用例を示す部分縦断側面図。
【符号の説明】
2a ……曲面
10……芯型
11a ,11b ,11n ……可撓性板材
12……積層型材
13……湾曲型材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a core for bending a hollow shape, and in particular, when bending the hollow shape using a rotary bending machine or the like, such as wrinkles, deformation, cracks, etc. in the curved portion. The present invention relates to a core for bending a hollow profile that can be prevented from occurring.
[0002]
[Prior art]
It is important to reduce the weight of transportation equipment such as automobiles from the viewpoint of saving energy and preserving the global environment. As one solution, engines, structural members, various conduits, body skins, etc. are made of aluminum. It is becoming manufactured with alloys. When an aluminum alloy is used as a structural member such as a frame, a hollow shape having a square cross section that is lightweight and excellent in specific rigidity is often used. Many of these structural members and various conduits are formed into a shape that is two-dimensionally or three-dimensionally curved in the length direction. One method for forming a curved hollow member is to mold using a split mold. However, if a hollow shaped material previously formed into a straight tube by extrusion can be bent and formed by post-processing, the production efficiency can be improved. It is often advantageous both in terms of surface and strength.
[0003]
However, for example, if a hollow section having a rectangular cross section is bent as it is, the outward curved surface (the surface with the larger bending radius) is stretched and the inward curved surface (the surface with the smaller bending radius) is compressed. In extreme cases, the side surface is bent, the hollow part of the curved part is deformed flat, and the outward curved surface or the side surface in the vicinity thereof is cracked, or the inward curved surface or the side surface in the vicinity thereof is wrinkled. Causes problems such as breaking at the curved portion.
[0004]
One way to solve this problem is to insert the core mold into the curved part so that the cross-sectional shape of the curved part of the hollow profile does not change, and then bend it to flatten the tube or A method for preventing the occurrence is employed. Conventionally, there are two known core types used for this purpose, a curved core type and a laminated core type.
[0005]
FIG. 6 shows an example of a method for bending a hollow shape using a curved core mold among conventional core molds.
In FIG. 6, the code | symbol 1 has shown the hollow shape material of a cross section rectangle. The hollow member 1 is made of an aluminum alloy and is a member formed into a straight tube shape by extrusion.
[0006]
Reference numeral 30 indicates a rotary bending machine as a whole. The rotary bending machine 30 is roughly composed of a conveyance table 31, a roller member 32, and a clamp member 33. The conveyance stand 31 is a device that places the hollow profile 1 and conveys it along the outer periphery of the roller member 32 (from right to left in the figure). The roller member 32 is a cylindrical body having a roller groove 34 that receives the inwardly curved surface 3 of the hollow shape member 1, and a rotation driving device (not shown) connected to the shaft core 35 of the transport base 31. It rotates in a direction that coincides with the transport direction. The bending radius of the roller groove 34 coincides with the designed bending radius of the inwardly curved surface 3 of the hollow profile 1. The clamp member 33 is connected to the rotation shaft 35 of the roller member by a post (not shown), and rotates together with the roller member 32. The clamp member 33 has a clamp groove 36 for receiving the hollow member 1. The clamp member 33 sandwiches the hollow member 1 between the clamp groove 36 and the roller groove 34 and presses the hollow member 1. The tip of the portion to be curved (curved portion) is fixed to the roller groove 34, and the deformation of the cross-sectional shape of the hollow shape material in the curved portion is constrained from the outside.
[0007]
The curved core mold 40 used here is generally a rectangular parallelepiped having a cross-sectional shape that can be inserted into the hollow portion of the hollow shape member 1, but the curved portion is inserted in the hollow portion of the hollow shape member 1. The surface 42 on the side of the outward curved surface 2 is formed into a curved surface having a bending radius equal to the designed bending radius of the outward curved surface 2, and the curved surface 42 is formed at the tip of the curved core die 40. It abuts against the opposing flat surface 43.
[0008]
First, the hollow shape member 1 is placed on the transport base 31 of the rotary bending machine 30, and the curved core die 40 fixed to the tip of the insertion rod 41 that can be freely inserted and removed is inserted from the opening at the rear end thereof. Place inside. Next, the front end of the curved portion of the hollow shape member 1 is fixed between the roller groove 34 and the clamp groove 36. When the roller member 32 and the clamp member 33 are rotated together by the driving force of the rotary shaft 35 in this state, the hollow profile 1 is bent with the bending radius of the roller groove 34 as the bending radius of the inwardly curved surface 3. At this time, the outward curved surface 2 of the hollow shape member 1 is constrained from the inside by the curved core die 40, so that a constant hollow portion cross-sectional shape is maintained even in the curved portion without being flattened. become.
[0009]
Another example of a conventional core type is a laminated core type. FIG. 7 shows an example of a method of bending a hollow shape using this laminated core mold.
In FIG. 7, the code | symbol 1 has shown the hollow shape material of a cross section rectangle. Reference numeral 30 indicates a rotary bending machine similar to the above as a whole.
[0010]
In this case, the laminated core mold 50 is attached to and inserted into the distal end of the insertion rod 51 that can be freely inserted and removed, inside the curved portion of the hollow shape member 1. The laminated core mold 50 is formed by laminating a plurality of plate members 51, 51,... Made of a rectangular flexible material, and the cross-sectional shape of the laminated portion can be inserted into the hollow portion of the hollow shape member 1. It is said that.
[0011]
In order to bend the hollow profile 1 using the laminated core mold 50, first, the hollow profile 1 is placed on the transport base 31 of the rotary bending machine 30, and the hollow profile 1 is placed in the hollow portion of the straight tubular profile 1. The laminated core die 50 is inserted and pushed into the curved portion with the insertion rod 51, and the distal end of the curved portion of the hollow shape member 1 is sandwiched and fixed between the roller groove 34 and the clamp groove 36. When the roller member 32 and the clamp member 33 are rotated together by the driving force of the rotary shaft 35 in this state, the hollow profile 1 is bent with the bending radius of the roller groove 34 as the bending radius of the inwardly curved surface 3. At this time, the laminated core die 50 inside the hollow shape member 1 also bends while the plate members 51, 51,... Are displaced from each other in the traveling direction, and the cross-sectional shape of the laminated core die 50 does not change even if it is curved. Therefore, the hollow member 1 is also restrained from the inside by the laminated core die 50, and the cross-sectional shape of the hollow part is maintained constant without being flattened in the curved part.
[0012]
[Problems to be solved by the invention]
However, each of the conventional methods using the curved core mold 40 or the laminated core mold 50 has problems, and it has been difficult to obtain a curved portion substantially free from defects such as deformation, wrinkles, and cracks. That is, when the curved core die 40 is used, when the hollow profile 1 is bent by the rotary bending machine 30, the inward curved surface 3 of the hollow profile 1 cannot be constrained. And the side surface in the vicinity thereof is easily compressed and wrinkled. On the other hand, when the laminated core mold 50 is used, if the cross-sectional shape of the laminated portion is matched with the cross-sectional shape of the hollow portion of the hollow shape member 1, it cannot be pulled out from the hollow shape member 1 after being bent. Therefore, it is necessary to mold the hollow portion 1 slightly smaller than the cross-sectional dimension of the hollow portion. Therefore, the entire circumference of the bending portion cannot be constrained during bending, and the cross-sectional shape changes such as flattening in the bending portion. Will be caused.
[0013]
The present invention has been made in order to solve the above-described problems. Therefore, the object of the present invention is to generate deformation, wrinkles, cracks, etc. of the hollow shape material in the curved portion when bending the hollow shape material. An object of the present invention is to provide a core for bending a hollow shape member capable of preventing the above-described problem.
[0014]
[Means for Solving the Problems]
The above problem is bent equal bending radii are designed in the outward curved surface have a radius of the curved surface, the curved-type material is disposed on at least side surfaces of the core type, an outward curved surface and inwardly curved surface This can be solved by providing a bending core die that is composed of a plurality of flexible plate members that are laminated between each other and extend in the length direction of the hollow shape member. It is preferable that the laminated mold material is disposed between the curved mold materials in the width direction of the core mold . Also, at least the outward curved surface thickness of the curved member disposed on a side surface of the core type, which is preferably within the range of 35% by 15% of the core type total width.
[0015]
According to the present invention, in the above, the curved mold material is disposed on each side surface of the core mold, the laminated mold material is disposed between the curved mold materials, and the thickness of each curved mold material is determined from the outward curved surface side. Provided is a bending core die that is gradually reduced toward the inwardly curved surface side, and the thickness of the laminated mold material is gradually increased from the outwardly curved surface side toward the inwardly curved surface side.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, components that are common to the components described with reference to FIGS. 6 and 7 as conventional techniques are denoted by the same reference numerals, and description thereof is omitted or simplified.
The core for bending in this embodiment (hereinafter simply referred to as “core”) is used for bending a straight tubular hollow member. As shown in FIG. 2, the hollow shape member 1 has a rectangular shape in which the cross-sectional shape of the hollow portion has a height H and a width D. This hollow shape member 1 is planned to bend the outward curved surface 2 along the arc B in the direction of the height H in the curved portion 4. Therefore, after bending, one of the two surfaces forming the width D of the hollow portion 1 of the hollow shape member 1 becomes the outward curved surface 2 and the other becomes the inward curved surface 3. Further, the surfaces forming the height H of the hollow portion are the side surfaces 5 and 5, respectively.
[0017]
(Example 1)
FIG. 1 shows the tip of a core mold 10 used for bending the hollow profile 1.
A core mold 10 shown in FIG. 1 includes a curved mold 13 having a curved surface 2a having a bending radius equal to the designed bending radius of the outward curved surface 2 of the hollow profile 1, and the outward curved surface 2 and the inward curved surface 3. , 11n and a plurality of flexible plate members 11a, 11b,..., 11n.
[0018]
The cross-sectional shape of the core mold 10 is rectangular, and the height and width dimensions thereof are values that can be inserted into the hollow portion of the hollow shape member 1 with an allowable clearance. Here, for the sake of explanation, the clearance is ignored, and the height of the cross section of the core mold 10 is expressed as H and the width as D.
[0019]
The core mold 10 is provided with curved mold members 13 and 13 on both side surfaces 5 a and 5 a, and the laminated mold member 12 is disposed between the curved mold members 13 and 13. The thickness d of the curved mold members 13 and 13 is in the range of 15% to 35% of the width D of the entire core mold 10. Further, the end of the laminated mold 12 protrudes from the end of the curved mold 13 by a length L.
[0020]
Next, an example of a method for bending the hollow profile 1 using the core mold 10 will be described with reference to FIG. In this method, the rotary bending machine 30 described in the conventional example is used.
First, the hollow shape member 1 is placed on a transport base 31 of a rotary bending machine 30 (for example, “Drawbender” manufactured by Taiyo Co., Ltd.), and the core mold 10 is fixed to the distal end of a removable insertion rod 14. The hollow shape member 1 is inserted from the rear opening to the position of the curved portion 4. At this time, the curved surface 2a of the curved mold 13 is inserted so as to face the outward curved surface 2 of the hollow profile 1 to be bent.
[0021]
Next, the curved portion 4 is fixed by sandwiching the tip portion of the curved portion 4 between the roller groove 34 and the clamp groove 36 with the inward curved surface 3 as the roller groove 34 side. In this state, when the roller member 32 and the clamp member 33 are rotated together in the conveying direction of the hollow member 1, the hollow member 1 has the straight straight tube portion constrained by the conveying table 31. Is bent as the bending radius of the inwardly curved surface 3.
[0022]
According to the above method using the core mold 10 of the first embodiment, in the curved portion 4 of the hollow shape member 1, the outward curved surface 2 is disposed to face both side surfaces 5 and 5 of the hollow portion. The curved mold members 13 and 13 are constrained by the curved surfaces 2a of the curved mold members 13, 13 so that they are designed and bent along the arc line B and are not flattened. In addition, since the laminated mold 12 is disposed between the curved molds 13 and 13 in the width direction of the core mold 10, the constraint force on the outward curved surface 2 and the constraint force on the inward curved surface 3 of the core mold 10. Are not balanced and cracks of the hollow shape member 1 are less likely to occur.
[0023]
Further, the inwardly curved surface 3 and the side surface in the vicinity thereof are restrained by the roller groove 34 from the outside in the curved portion 4 and by the laminated mold material 12 whose height H does not change even when curved from the inside. It is bent along the curvature of the groove 34, and deformation such as wrinkles does not occur.
[0024]
Since the side surface of the hollow shape member 1 is constrained by the side surface of the roller groove 34 and the side surface of the clamp groove 36 from the outside and by the side surfaces 5a, 5a of the curved mold member 13 from the inside, deformation such as wrinkles and deflection occurs. There is nothing.
[0025]
Due to the above action, in the curved portion 4 of the hollow shape member 1, the outward curved surface 2 and the side surface in the vicinity thereof are extended by a necessary amount without generating wrinkles or cracks, and the inward curved surface 3 and A side cross-sectional shape similar to that of the non-curved portion is maintained in the curved portion 4 without causing deformation such as wrinkles on the side surface in the vicinity thereof.
[0026]
In the first embodiment shown in FIG. 1, the thickness d of the curved mold members 13 and 13 is preferably in the range of 15% to 35% of the width D of the entire core mold 10. As a result of the experiment, when the ratio d / D is less than 15%, the deformation preventing effect by the curved surface 2a of the curved mold member 13 is insufficient, and the transverse section of the curved portion 4 is likely to be deformed, and when it exceeds 35%. The unconstrained space in the vicinity of the inwardly curved surface 3 increases, and the restraining force in the outwardly curved surface 2 becomes excessive, so that the extensibility of the material cannot cope with the elongation in the vicinity of the outwardly curved surface, and deformation or cracks It turned out that it becomes easy to occur.
[0027]
A test example in which the state of the curved portion after bending is observed when the bending is performed by changing the ratio d / D between the thickness d of the bending mold members 13 and 13 and the width D of the core mold 10 is as follows. Show. In this test, an aluminum alloy extruded profile was bent to an inward bending radius of 150 mm. Table 1 shows the thickness d (mm) of the curved mold, the width D (mm) of the core mold, the ratio (d / D), and the state (result) of the curved portion after bending.
[0028]
[Table 1]
Figure 0003621194
[0029]
From the results of Table 1, it can be seen that a curved portion having a very good cross-sectional shape was obtained when the d / D value was in the range of 15% to 35%.
[0030]
In order to take out the core mold 10 from the bent portion 4 after being bent, it is only necessary to pull out the core mold 10 together with the insertion rod 14. At this time, since the curved mold 13 is on the extension line of the straight pipe portion of the hollow profile 1, it does not become a resistance to pulling out. The laminated portion 12 is bent as a whole within the curved portion 4, but the laminated flexible plate members 11a to 11n return to the flat plate state when being drawn, so that they are not obstructed by the drawing and can be easily performed. Can be taken out.
[0031]
(Example 2)
FIG. 4 shows another embodiment of the core type used for bending the hollow profile 1 similar to that shown in the embodiment 1. In FIG. 4, the core mold 20 includes curved mold members 23 and 23 having curved surfaces 2 a having a bending radius equal to the designed bending radius of the outward curved surface 2 of the hollow profile 1, and the outward curved surface 2 and the inward facing. It is comprised from the lamination | stacking type | mold material 22 which consists of several flexible board | plate materials 21a, 21b, ..., 21n laminated | stacked between the curved surfaces 3 and extended in the length direction of the hollow shape member 1. FIG.
[0032]
The cross-sectional shape of the core mold 20 is rectangular, and the height and width dimensions thereof are values that can be inserted into the hollow portion of the hollow shape member 1 with an allowable clearance. Here, for the sake of explanation, the clearance is ignored, and the height of the cross section of the core mold 10 is expressed as H and the width as D.
[0033]
The core mold 20 is provided with curved mold members 23 and 23 on both side surfaces 5a and 5a, and the laminated mold member 22 is disposed between the curved mold members 23 and 23. In the core mold 20 of the second embodiment, the thickness of each curved mold member 23 is gradually reduced from the thickness d1 on the outward curved surface 2 side of the curved portion toward the thickness d2 on the inward curved surface 3 side. On the other hand, the width of the laminated mold 22 is gradually increased from the width w1 on the outward curved surface 2 side of the curved portion toward the width wn on the inward curved surface 3 side, so that the core mold 20 as a whole has a constant width D. Is to be maintained. The change in the width of the laminated mold 22 is achieved by sequentially expanding the widths w1, w2,..., Wn of the laminated plate members 21a, 21b,.
[0034]
Since the core die 20 has a cross-sectional shape equal to the cross-sectional shape of the hollow portion of the hollow shape member 1, it can be inserted into the hollow shape member 1 in the same manner as the core die 10 of the first embodiment. The hollow shape member 1 in which the core mold 20 is inserted can be bent using the rotary bending machine 30 in the same manner as in the first embodiment.
[0035]
If the core mold 20 of the second embodiment is used, the bending mold members 23 and 23 forming both side surfaces 5a and 5a of the core mold press the laminated mold member 22 sandwiched between them in the direction of the inward curved surface 3 during bending. Therefore, the binding force to the inwardly curved surface 3 by the laminated mold 22 is increased, and the effect of preventing wrinkles on the inwardly curved surface 3 and the side surfaces in the vicinity thereof is further enhanced. On the other hand, on the outward curved surface 2 and the side surface in the vicinity thereof, the width D on the outward curved surface side of the core mold 20 is slightly reduced by pressing the laminated mold material 22 in the direction of the inward curved surface 3. For this reason, the mold restraining force is slightly weakened, excessive stretching is suppressed, and the effect of preventing cracks is further enhanced.
[0036]
(Example 3)
The core mold of the present invention can also be applied to bending a hollow profile having an irregular cross section. An example thereof is shown in FIG. FIG. 5 shows a cross section of a hollow member 6 having a deformed cross section having a step and a core mold 25 inserted to bend it. The hollow member 6 is formed by outward curved surfaces 61 and 62 provided with steps, an inward curved surface 63, and side surfaces 64a, 64b and 64c.
[0037]
In the core mold 25 shown in FIG. 5, the curved mold members 26, 26, 26 are arranged at positions facing the side surfaces 64 a, 64 b, 64 c of the hollow profile 6, respectively, and the curved mold members 26, 26 are arranged in the width direction of the core mold 25. , 26 are provided with laminated mold members 27, 27. Although not shown, each curved mold member 26 has a curved surface having a bending radius equal to the designed bending radius of the outward curved surface. Each of the laminated mold members 27 is laminated between the outwardly curved surfaces 61 and 62 and the inwardly curved surface 63 and extends in the length direction of the hollow member 6. It consists of ...
[0038]
An example of a method for bending the hollow profile 6 using the core mold 25 will be described below. In this method, the same rotary bending machine 30 as that used in the first embodiment is used. However, the cross-sectional shape of the receiving surface of the conveyance base 31 and the clamp groove 36 is changed to a shape that can restrain the outward curved surfaces 61 and 62 of the hollow shape member 6 and the side surfaces in the vicinity thereof from the outside.
[0039]
From the rear opening of the hollow shape member 6 to the position of the curved portion, the hollow shape member 6 is fixed on the transport base 31 of the rotary bending machine 30 and the core die 25 is fixed to the distal end of the insertion / removal rod. insert. At this time, the curved mold member 26 is inserted so that the curved surface thereof faces the outward curved surface of the hollow profile 1 to be bent.
[0040]
Next, the inwardly curved surface 3 is sandwiched between the roller groove 34 and the clamp groove 36 as the roller groove 34 side, and the tip of the curved portion is fixed. In this state, when the roller member 32 and the clamp member 33 are rotated together in the conveying direction of the hollow member 6, the straight member of the hollow member 6 is restrained by the conveying table 31, so that the roller groove 34. Is bent as the bending radius of the inwardly curved surface.
[0041]
According to the above method using the core mold 25 of the third embodiment, in the curved portion of the hollow shape member 6, the outward curved surfaces 61 and 62 and the side surfaces in the vicinity thereof are clamped from the outside by the clamp groove 36 and from the inside. Since it is restrained by the curved mold members 26, 26, 26 disposed on the side surfaces 64a, 64b, 64c of the hollow portion, it is bent according to the designed arc line, and deformation, cracks, etc. do not occur.
[0042]
Further, the inwardly curved surface 63 and the side surface in the vicinity thereof are constrained by the roller groove 34 from the outside, and from the inside by the laminated mold members 28 and 28 whose height does not change even if curved, so that the designed inner It is shaped according to the direction of the curved surface, and deformation such as wrinkles does not occur.
[0043]
By the above action, even in the curved portion of the hollow shape member 6 having an irregular cross section, the outward curved surfaces 61 and 62 and the side surfaces in the vicinity thereof are stretched by a necessary amount without causing deformation or cracking such as flattening, The inward curved surface 63 and the side surface in the vicinity thereof are not deformed such as wrinkles, and the same cross-sectional shape as that of the non-curved portion is maintained in the curved portion.
[0044]
In the core mold of the present invention, the flexible plate material constituting the laminated mold material may be any material that can be bent in the length direction at the time of bending at the curved portion of the hollow shape material and when the core mold is extracted. For example, a copper plate, a lead plate, an aluminum plate or the like having a small impact resilience may be used, and a steel plate or a plastic plate having a large impact resilience may be used. Further, in particular, a curved mold disposed at a position facing the side surface of the hollow profile may be formed by rounding its corners (ridge lines) so that the hollow profile is not sharply cut during bending. preferable.
[0045]
As described above, the core mold described in Examples 1 to 3 is used when bending a hollow section having a square cross section, but the hollow mold to which the core mold of the present invention can be applied is limited to this. It is not something. For example, even if the cross-sectional shape is a trapezoidal shape, a circular shape or an elliptical shape, if the core-shaped cross-sectional shape to be inserted is formed into a trapezoidal shape, a circular shape or an oval shape as a whole, the same A curved portion free from deformation, wrinkles, cracks or the like can be formed in the cross-sectional shape. The core mold of the present invention can also be advantageously used when bending a hollow shape in which a fin extending in the length direction, a flange extending in the circumferential direction, and the like are integrally formed on the outer peripheral surface. Furthermore, the core mold of the present invention can also be applied when bending a shape having a release edge in the length direction, such as a U-shaped cross section or a bowl shape.
[0046]
If the hollow shape member is bent using the core mold of the present invention, the deterioration of rigidity in the curved portion is prevented, and the cross-sectional shape is not different from that of the non-curved section. Therefore, the core mold of the present invention is used for transportation equipment such as automobiles. Not only can it be used suitably for the formation of curved parts such as hollow structural members and various conduits, but it can also be used for bending of hollow building members, furniture members, wiring / pipe members and the like.
[0047]
【The invention's effect】
The hollow core bending mold of the present invention includes a curved mold having a curved surface having a bending radius equal to the designed bending radius of the outward curved surface, and a laminate between the outward curved surface and the inward curved surface. Since the hollow shape material is bent using this, the hollow portion in the curved portion is formed on the inner side. Therefore, the cross-sectional shape does not change and wrinkles, deformation, cracks, etc. of the curved portion are prevented.
[0048]
In the above, if the laminated mold material is disposed so as to be sandwiched between the curved mold materials in the width direction of the core mold, the restraining force for the outward curved surface of the core mold and the restraining force for the inward curved surface are balanced, so Cracks are less likely to occur.
[0049]
At this time, if the curved mold material is disposed on at least the side surface of the core mold, the outward curved surface and the side surface in the vicinity thereof are constrained by the curved mold material, so that the outward curved surface is bent along the designed arc line. And is not flattened.
[0050]
Moreover, if the thickness of at least the outward curved surface side of the curved mold member disposed on the side surface of the core mold is within the range of 15% to 35% of the entire width of the core mold, the curved section is generated in the curved portion. Wrinkles, deformation, cracks, etc. are further reduced.
[0051]
In the above, the curved mold material is disposed on each side surface of the core mold, the laminated mold material is disposed between the curved mold materials, and the thickness of each curved mold material is from the outward curved surface side to the inward curved surface side. And the thickness of the laminated mold is gradually increased from the outward curved surface side to the inward curved surface side, the inward curved surface is strongly restrained, and the outward curved surface and its Since the restraining force on the side surfaces in the vicinity is relatively relaxed, the effect of preventing cracks in the inward curved surface and the side surfaces in the vicinity thereof, and cracks in the outward curved surface and the side surfaces in the vicinity thereof is further enhanced.
[Brief description of the drawings]
FIG. 1 is a transverse perspective view showing an embodiment of the present invention.
FIG. 2 is a transverse perspective view showing an example of a hollow member to which the present invention is applied.
FIG. 3 is a partially longitudinal side view showing an application example of the present invention.
FIG. 4 is a cross-sectional perspective view showing another embodiment of the present invention.
FIG. 5 is a transverse perspective view showing still another embodiment of the present invention.
FIG. 6 is a partially longitudinal side view showing an application example of a conventional core type.
FIG. 7 is a partially longitudinal side view showing another conventional core type application example.
[Explanation of symbols]
2a: Curved surface 10: Core mold 11a, 11b, 11n: Flexible plate 12: Laminated mold 13: Curved mold

Claims (4)

中空形材を曲げ加工するに際して、この中空形材の中空部の外向き湾曲面と内向き湾曲面と側面とによって形成される湾曲部に挿入して用いる芯型であって、外向き湾曲面の設計された曲げ半径と等しい曲げ半径の曲面を有する湾曲型材と、外向き湾曲面と内向き湾曲面との間に積層されて中空形材の長さ方向に延びる複数の可撓性板材からなる積層型材とから構成され、前記湾曲型材が複合された芯型の少なくとも側面に配設されたことを特徴とする中空形材の曲げ加工用芯型。When bending a hollow shape member, the core shape is used by being inserted into a curved portion formed by an outwardly curved surface, an inwardly curved surface and a side surface of the hollow portion of the hollow shape material, and the outwardly curved surface A curved mold having a curved surface having a bending radius equal to the designed bending radius, and a plurality of flexible plates stacked between the outward curved surface and the inward curved surface and extending in the length direction of the hollow profile. A hollow core bending core characterized in that it is disposed on at least a side surface of a core mold in which the curved mold material is combined . 積層型材が芯型の幅方向に湾曲型材に挟まれて配設されたことを特徴とする請求項1に記載の中空形材の曲げ加工用芯型。The core for bending a hollow profile according to claim 1, wherein the laminated mold is disposed between the curved mold in the width direction of the core. 芯型の側面に配設された湾曲型材の少なくとも外向き湾曲面側の厚さが、芯型全体の幅の15%ないし35%の範囲内とされたことを特徴とする請求項1に記載の中空形材の曲げ加工用芯型。The thickness of at least the outward curved surface side of the curved mold member disposed on the side surface of the core mold is set within a range of 15% to 35% of the width of the entire core mold. Core type for bending hollow shape materials. 湾曲型材が芯型のそれぞれの側面に配設され、積層型材が湾曲型材に挟まれて配設され、それぞれの前記湾曲型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次縮小され、かつ積層型材の厚さが外向き湾曲面側から内向き湾曲面側に向かって漸次拡大されてなることを特徴とする請求項1に記載の中空形材の曲げ加工用芯型。A curved mold material is disposed on each side surface of the core mold, a laminated mold material is disposed between the curved mold materials, and the thickness of each curved mold material is from the outward curved surface side toward the inward curved surface side. 2. The core for bending a hollow shape member according to claim 1, wherein the core is gradually reduced and the thickness of the laminated mold is gradually increased from the outward curved surface side toward the inward curved surface side. .
JP15449196A 1996-06-14 1996-06-14 Core mold for bending hollow profiles Expired - Fee Related JP3621194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15449196A JP3621194B2 (en) 1996-06-14 1996-06-14 Core mold for bending hollow profiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15449196A JP3621194B2 (en) 1996-06-14 1996-06-14 Core mold for bending hollow profiles

Publications (2)

Publication Number Publication Date
JPH105881A JPH105881A (en) 1998-01-13
JP3621194B2 true JP3621194B2 (en) 2005-02-16

Family

ID=15585414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15449196A Expired - Fee Related JP3621194B2 (en) 1996-06-14 1996-06-14 Core mold for bending hollow profiles

Country Status (1)

Country Link
JP (1) JP3621194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146102A (en) * 2021-04-23 2022-11-01 명한 Mandrill device and its mandrill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220146102A (en) * 2021-04-23 2022-11-01 명한 Mandrill device and its mandrill
KR102506591B1 (en) 2021-04-23 2023-03-03 명한 Mandrill device

Also Published As

Publication number Publication date
JPH105881A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP5614514B2 (en) Manufacturing method of center pillar reinforcement
US5836189A (en) Method of manufacturing a pipe having sections with different cross-sectional configurations
US8516682B2 (en) Manufacturing method of a stator core of rotating electrical machine
JP6539562B2 (en) Flange forming method
JP3621194B2 (en) Core mold for bending hollow profiles
JP2006247748A (en) Pipe integrally equipped with flange, more particularly pipe integrally equipped with flange composed of flexibly rolled material for vehicle and body structure
JP3625154B2 (en) Pipe bending method
JP7054057B2 (en) Bend pipe and its manufacturing method
US8443642B2 (en) Process for pre-forming cylindrical tubes into tubular members having sharp corners
JP2002066638A (en) Press working method for metallic plate with small springback and press auxiliary die
JP4320856B2 (en) Hollow shape bending method, seat back frame manufacturing method and seat back frame structure
JPH06226339A (en) Manufacture of specially shaped bent pipe
JP5090721B2 (en) Drawing method for deformed metal materials
JP4606942B2 (en) Winding core manufacturing equipment
JP2006118304A (en) Manufacturing device for metal form panel
JP3778961B2 (en) Manufacturing method of tubular member for vehicle body structure
JPWO2007132799A1 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JPH07214147A (en) Production of special shaped tube
JP2007185697A (en) Machining method and machining device for metallic tube
JPH11333527A (en) Manufacture of cylindrical member for vehicle body structure
JP2005095982A (en) Aluminum alloy-made wheel rim for automobile, and method for manufacturing the same
CN218109052U (en) Seamless pipe wall thickness attenuate device
JPH0510980Y2 (en)
JP4105816B2 (en) Hollow profile
JP4163317B2 (en) Hollow extruded profile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees