JP3620617B2 - Series resonant inverter grounding circuit - Google Patents

Series resonant inverter grounding circuit Download PDF

Info

Publication number
JP3620617B2
JP3620617B2 JP01393197A JP1393197A JP3620617B2 JP 3620617 B2 JP3620617 B2 JP 3620617B2 JP 01393197 A JP01393197 A JP 01393197A JP 1393197 A JP1393197 A JP 1393197A JP 3620617 B2 JP3620617 B2 JP 3620617B2
Authority
JP
Japan
Prior art keywords
inverter
resonance
series
reactor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01393197A
Other languages
Japanese (ja)
Other versions
JPH10215577A (en
Inventor
敏栄 三浦
年弘 野村
直也 江口
清和 中村
正昭 久本
巌 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP01393197A priority Critical patent/JP3620617B2/en
Publication of JPH10215577A publication Critical patent/JPH10215577A/en
Application granted granted Critical
Publication of JP3620617B2 publication Critical patent/JP3620617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直列共振形インバータの接地回路に関する。
【0002】
【従来の技術】
図14に直列共振形インバータの従来例を示す。
同図において、1は単相インバータ、3はマッチングトランス、5A,5Bは直流遮断用(直流カット)コンデンサ、6A,6Bは共振コンデンサ、7は変流器(CT)、8は負荷としてのワークコイル、9は浮遊静電容量である。すなわち、単相インバータ1に共振コンデンサ6A,6BとCT7の1次巻線からなる共振リアルトルとを直列に接続して高周波の出力インピーダンスを低減させ、高周波出力を得ることが可能な直列共振形インバータを示している。
【0003】
図14に示す直列共振形回路では、インバータ1およびマッチングトランス3の電圧は数百Vの低電圧であるが、変流器(CT)7に印加される電圧VCT、および2つの共振コンデンサ6A,6Bに印加される電圧Vrは数kV〜十数kV以上の高周波高電圧である。
【0004】
【発明が解決しようとする課題】
このような構成で、CT7の1次巻線に地絡事故(CT1次地絡)が発生すると、CT7の電圧VCTと共振コンデンサ電圧Vrとは大きさは互いに略等しく極性は逆極性なので、マッチングトランス3の1次,2次間には同相分過電圧VCT−VrおよびVrが発生する。
ここで、マッチングトランス3の絶縁が破壊すると、上記電圧がインバータ1まで伝搬する。このとき、接地回路がないとインバータスタックの接地面までの浮遊静電容量9を通じて過電圧Vs(≒Vr)が印加され、インバータスタック破壊を引き起こす。また、過電圧が印加されることによりインバータ盤の接地電位が変動し、制御装置が誤動作するなどの問題が生じる。
【0005】
そこで、同相分過電圧除去のため、商用周波数の回路と同じようにコンデンサで接地するようにすると、高周波ではコンデンサによるインピーダンスが小さくなり、正常運転時にノルマルモードの出力周波数の電流が接地面に流れ込み、運転が不能になるという問題がある。
したがって、この発明の課題は同相分過電圧を抑制し、インバータスタックの破壊や制御装置の誤動作を回避することにある。
【0006】
【課題を解決するための手段】
このような課題を解決するため、インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
請求項1の発明では前記2つの共振コンデンサとインバータの出力2導体間にリアクトルを接続しその中点を接地した接地回路を、請求項2の発明では前記2つの共振コンデンサとインバータの出力2導体間にそれぞれコンデンサの一方の端子を接続し、その他方の端子を共通のリアクトルに接続し、その中点を接地した接地回路を、請求項3の発明では前記2つの共振コンデンサとインバータの出力2導体間にリアクトルを接続してその中点にコンデンサの一方の端子を接続し、その他方の端子を接地した接地回路を、請求項4の発明では前記2つの共振コンデンサとインバータの出力2導体間に変圧器を設け、その2次巻線の中点を接地した接地回路を、請求項5の発明では前記2つの共振コンデンサとインバータの出力2導体間に変圧器を設け、その2次巻線の中点にコンデンサの一方の端子を接続し、他方の端子を接地した接地回路をそれぞれ設けるようにしている。
請求項1ないし5のいずれかの発明では、前記接地回路における接地電流を検出し、その値が所定値以上のときは前記インバータを停止させる停止機能を持たせことができ(請求項6の発明)、または、前記接地回路の変圧器を含むインダクタンスの巻線をバイファーラー捲きとすることができる(請求項7の発明)。
【0007】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図、図2はその動作説明図である。
図1からも明らかなように、この例は図14に示す従来例に対して、リアクトル21の中点を接地した接地回路2を付加した点が特徴である。このようにすると、インバータ1の出力電圧に、リアクトル21を偏磁させるようなノルマルモードの直流成分および低周波成分がないときは、リアクトル21は短絡状態とはならず、或る大きさのインピーダンスを持つことになる。また、CTの1次地絡時の同相成分に対しては図2(イ)にも示すように、出力導体L1,L2と接地点間の電位差Vが正負逆方向となるので、リアクトル21に相殺する磁束が発生し、対抗電圧が生じない。よって、リアクトル21によるインピーダンスは漏れリアクタンス分だけでほぼ零となり、図2(ロ)のようになるため、全ての同相分過電圧を吸収できることになる。つまり、接地回路の取り付け地点からインバータスタックの接地面までのインピーダンスに比べて接地回路のインピーダンスが小さいため、同相分過電圧を効果的に抑制することができる。
【0008】
図3はこの発明の第2の実施の形態を示す構成図、図4はその動作説明図である。
図3に示すものは図1の例に対し、出力導体と接地点間にコンデンサ22A,22Bを接続した点が特徴である。このコンデンサ22A,22Bは高周波に対してはそのインピーダンスが小さいので、図4(ロ)のように示すことができ、高周波かつ同相成分に対しては図4(ハ)のように示すことができ、図1の場合と同様の機能,作用を持たせることが可能となる。したがって、その効果も同じである。
【0009】
図5はこの発明の第3の実施の形態を示す構成図、図6はその動作説明図である。
これは、図3に示すものに対し、コンデンサ22Cの接続位置をリアクトル21の接地点側にした点が特徴である。したがって、同相成分に対しては図6(ロ)のように示すことができ、高周波かつ同相成分に対しては図6(ハ)のように示すことができ、図1の場合と同様の機能,作用および効果を持たせることが可能となる。
【0010】
図7はこの発明の第4の実施の形態を示す構成図、図8はその動作説明図である。
これは、インバータ1の出力側に変圧器(トランス)を設け、その2次側の中点を接地して構成したものである。このトランスとしては、従来例に示すようにマッチングトランス3が設けられている場合はこれを兼用することができ、設けられていない場合は別途設けるようにすれば良い(図7は兼用した例を示す)。このようにすれば、電気回路的には図1の場合と全く同様となるので(トランスの2次巻線がリアクトルとなる)、その機能,作用および効果も図1の場合と同じく、同相成分に対しては図8(ロ)のように示すことができる。
【0011】
図9はこの発明の第5の実施の形態を示す構成図、図10はその動作説明図である。
これは、図7に示すものに対し、トランス2次側の中点と接地間にコンデンサ22Dを接続した点が特徴である。したがって、同相成分に対しては図10(ロ)のように示すことができ、高周波かつ同相成分に対しては図10(ハ)のように示すことができ、図1の場合と同様の機能,作用および効果を持たせることが可能となる。
【0012】
図11はこの発明の第6の実施の形態を示す構成図である。
これは、図1に示すような接地回路を備えたインバータに対し、CT7で1次地絡が発生すると、同相分過電圧が接地回路2に印加され、大電流が接地線に流れる。そこで、電流検出用CT23を設け、ここを流れる電流が抵抗14に設定されている所定レベル以上になったら、コンパレータ13により異常として検出し、制御装置11およびゲート駆動回路12に故障停止信号を出力し、インバータ1を停止させるもので、故障の迅速な検出を可能とし、被害の拡大を未然に防ぐことを可能にするものである。ここでは、接地線に流れる大電流をCTにより検出するようにしたが、他のインピーダンス素子を接続し、これに電流が流れたときの電圧をコンパレータに入力して検出するようにしても良い。また、接地回路として図1に示すものに用いたが、図3,図5,図7および図9に示すものを用いても良いことは言うまでもない。
【0013】
図12はこの発明の第7の実施の形態を示す構成図である。
これは、接地回路を構成するインダクタンス巻線の捲き方の具体例を示すもので、同相分過電圧が巻線間に印加されたとき、磁束を効果的に打ち消すために出力導体間各端子U,Vからアース端子までを密接して捲くバイファーラー巻なる捲線方法を採用している。こうすれば、鉄心24の同じ部分に正負逆方向の磁束が生じるので、同相分電圧が印加されたときの漏れリアクタンスを小さくすることが可能となる利点がもたらされる。
【0014】
図13に図1の変形例を示す。
これは、図1に示すマッチングトランス3を、零相リアクトル4に置き換えたものである。すなわち、マッチングトランス3の1次,2次間インピーダンスに代えて、零相リアクトル4の持つ同相分インピーダンスを利用することにより、図1の場合と同様にして同相分過電圧を抑制せんとするものである。なお、この例は図3,図5の如き接地回路を用いる場合にも同様にして適用することが可能である。
【0015】
【発明の効果】
この発明によれば、同相分過電圧を抑制できるため、CTの1次巻線地絡事故等が生じても、インバータに過電圧が印加されるのを回避することができ、制御装置の誤動作やインバータの素子破壊を防止し得る利点が得られる。また、正常運転時の高周波成分のノルマルモードの出力電圧に対しては、この発明による接地回路は高インピーダンスとなるので、悪影響を与えるおそれもないなどの利点もある。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す構成図である。
【図2】図1の動作説明図である。
【図3】この発明の第2の実施の形態を示す構成図である。
【図4】図3の動作説明図である。
【図5】この発明の第3の実施の形態を示す構成図である。
【図6】図4の動作説明図である。
【図7】この発明の第4の実施の形態を示す構成図である。
【図8】図7の動作説明図である。
【図9】この発明の第5の実施の形態を示す構成図である。
【図10】図9の動作説明図である。
【図11】この発明による停止機能付きインバータ例を示す構成図である。
【図12】この発明による巻線例の説明図である。
【図13】図1の変形例を示す構成図である。
【図14】従来例を示す構成図である。
【符号の説明】
1…インバータ、2…接地回路、3…トランス、4…零相リアクトル、5A,5B…直流カットコンデンサ、6A,6B…共振コンデンサ、7…変流器(CT)、8…負荷(ワークコイル)、9…浮遊静電容量、11…制御装置、12…ゲート駆同回路、13…コンパレータ、14…電流検出レベル調整用抵抗、15…電流検出用抵抗、21…リアクトル、22A,22B,22C,22D…コンデンサ、23…接地電流検出用CT、24…鉄心、25…巻線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground circuit of a series resonance type inverter.
[0002]
[Prior art]
FIG. 14 shows a conventional example of a series resonance type inverter.
In the figure, 1 is a single-phase inverter, 3 is a matching transformer, 5A and 5B are DC blocking capacitors, 6A and 6B are resonance capacitors, 7 is a current transformer (CT), and 8 is a work as a load. The coil 9 is a floating capacitance. That is, a series resonant inverter capable of obtaining a high-frequency output by connecting a resonant capacitor 6A, 6B and a resonant realtor composed of a primary winding of CT7 to the single-phase inverter 1 in series to reduce a high-frequency output impedance. Is shown.
[0003]
In the series resonant circuit shown in FIG. 14, the voltage of the inverter 1 and the matching transformer 3 is a low voltage of several hundred volts, but the voltage V CT applied to the current transformer (CT) 7 and the two resonant capacitors 6A. , 6B is a high frequency high voltage of several kV to several tens of kV or more.
[0004]
[Problems to be solved by the invention]
In such a configuration, when earth fault (CT1 primary ground fault) occurs in the primary winding of CT7, substantially equal polarity to each other magnitude of the voltage V CT and the resonant capacitor voltage Vr of CT7 because reverse polarity, Between the primary and secondary of the matching transformer 3, in-phase overvoltages V CT -Vr and Vr are generated.
Here, when the insulation of the matching transformer 3 is broken, the voltage propagates to the inverter 1. At this time, if there is no ground circuit, an overvoltage Vs (≈Vr) is applied through the floating capacitance 9 up to the ground plane of the inverter stack, causing inverter stack destruction. In addition, when the overvoltage is applied, the ground potential of the inverter panel fluctuates, causing problems such as malfunction of the control device.
[0005]
So, in order to eliminate overvoltages in the common mode, if the capacitor is grounded in the same way as the circuit of the commercial frequency, the impedance due to the capacitor is reduced at high frequencies, and the current of the normal mode output frequency flows into the ground plane during normal operation. There is a problem that driving becomes impossible.
Accordingly, an object of the present invention is to suppress the overvoltage for the common mode and to avoid the destruction of the inverter stack and the malfunction of the control device.
[0006]
[Means for Solving the Problems]
In order to solve such a problem, in a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
The ground circuit grounded the midpoint connecting the reactor between the output 2 conductors of the two resonant capacitors and the inverter in the invention of claim 1, wherein the two resonant capacitors and the inverter output 2 conductors in the invention of claim 2 A ground circuit in which one terminal of each capacitor is connected between them, the other terminal is connected to a common reactor, and a midpoint thereof is grounded. In the invention of claim 3, the two resonant capacitors and the output 2 of the inverter are provided. A grounding circuit in which a reactor is connected between conductors, one terminal of the capacitor is connected to the middle point thereof, and the other terminal is grounded, is provided between the two resonant capacitors and the two output conductors of the inverter according to the invention of claim 4. transformer transformer is provided, a ground circuit is grounded midpoint of the secondary winding, in the invention of claim 5 between the output 2 conductors of the two resonant capacitors and inverter The provided, connecting the one terminal of the capacitor to the midpoint of the secondary winding, and a ground circuit to ground the other terminal to be provided, respectively.
In any one of the claims 1 to 5, wherein the detecting a ground current in the grounding circuit, when its value is a predetermined value or more can Ru to have a stop function for stopping the inverter (claims 6 (Invention) or an inductance winding including the transformer of the ground circuit can be used as a biferrar (Invention of Claim 7).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a first embodiment of the present invention, and FIG.
As is apparent from FIG. 1, this example is characterized in that a grounding circuit 2 in which the midpoint of the reactor 21 is grounded is added to the conventional example shown in FIG. In this way, when the output voltage of the inverter 1 does not have a normal mode DC component and a low frequency component that demagnetizes the reactor 21, the reactor 21 is not short-circuited and has a certain impedance. Will have. Further, as shown in FIG. 2 (a), the potential difference V L between the output conductors L1 and L2 and the grounding point is in the positive and negative directions for the in-phase component at the time of the primary ground fault of the CT. Magnetic flux that cancels out is generated, and no counter voltage is generated. Therefore, the impedance due to the reactor 21 is substantially zero only for the leakage reactance, and is as shown in FIG. 2 (b), so that all the in-phase overvoltages can be absorbed. That is, since the impedance of the ground circuit is smaller than the impedance from the ground circuit attachment point to the ground plane of the inverter stack, it is possible to effectively suppress the in-phase overvoltage.
[0008]
FIG. 3 is a block diagram showing a second embodiment of the present invention, and FIG. 4 is a diagram for explaining the operation thereof.
3 is different from the example of FIG. 1 in that capacitors 22A and 22B are connected between the output conductor and the grounding point. Since these capacitors 22A and 22B have low impedance for high frequencies, they can be shown as shown in FIG. 4 (b), and for high frequency and in-phase components, they can be shown as shown in FIG. 4 (c). It is possible to provide the same functions and operations as in the case of FIG. Therefore, the effect is the same.
[0009]
FIG. 5 is a block diagram showing a third embodiment of the present invention, and FIG. 6 is a diagram for explaining the operation thereof.
This is characterized in that the connection position of the capacitor 22C is set to the grounding point side of the reactor 21 with respect to that shown in FIG. Therefore, the in-phase component can be shown as shown in FIG. 6 (b), and the high-frequency and in-phase component can be shown as shown in FIG. 6 (c). The same function as in FIG. , It is possible to have actions and effects.
[0010]
FIG. 7 is a block diagram showing a fourth embodiment of the present invention, and FIG. 8 is a diagram for explaining the operation thereof.
In this configuration, a transformer (transformer) is provided on the output side of the inverter 1 and the midpoint of the secondary side is grounded. As the transformer, as shown in the conventional example, when the matching transformer 3 is provided, it can be also used. When the matching transformer 3 is not provided, it may be provided separately (FIG. 7 shows an example of the combined use). Show). In this way, the electrical circuit is exactly the same as in the case of FIG. 1 (the secondary winding of the transformer becomes a reactor), and its function, action and effect are the same in-phase components as in FIG. Can be shown as shown in FIG.
[0011]
FIG. 9 is a block diagram showing a fifth embodiment of the present invention, and FIG. 10 is an operation explanatory view thereof.
This is different from that shown in FIG. 7 in that a capacitor 22D is connected between the midpoint of the transformer secondary side and the ground. Therefore, the in-phase component can be shown as shown in FIG. 10 (b), and the high-frequency and in-phase component can be shown as shown in FIG. 10 (c). , It is possible to have actions and effects.
[0012]
FIG. 11 is a block diagram showing a sixth embodiment of the present invention.
This is because when a primary ground fault occurs at CT7 for an inverter having a ground circuit as shown in FIG. 1, an overvoltage corresponding to the common mode is applied to the ground circuit 2, and a large current flows through the ground line. Therefore, a current detection CT 23 is provided, and when the current flowing therethrough exceeds a predetermined level set in the resistor 14, it is detected as an abnormality by the comparator 13, and a failure stop signal is output to the control device 11 and the gate drive circuit 12. In this case, the inverter 1 is stopped so that the failure can be detected quickly and the spread of damage can be prevented in advance. Here, the large current flowing through the ground line is detected by CT, but another impedance element may be connected and the voltage when the current flows through the impedance element may be input to the comparator for detection. Further, although the ground circuit shown in FIG. 1 is used, it goes without saying that those shown in FIGS. 3, 5, 7 and 9 may be used.
[0013]
FIG. 12 is a block diagram showing a seventh embodiment of the present invention.
This shows a specific example of how to wind the inductance windings constituting the ground circuit, and each terminal U between the output conductors U, in order to effectively cancel the magnetic flux when an in-phase overvoltage is applied between the windings. A winding method is used in which a bi-ferrer winding is used in which the V and ground terminals are in close contact. In this way, since magnetic fluxes in the positive and negative directions are generated in the same part of the iron core 24, there is an advantage that the leakage reactance can be reduced when the common-mode voltage is applied.
[0014]
FIG. 13 shows a modification of FIG.
This is obtained by replacing the matching transformer 3 shown in FIG. 1 with a zero-phase reactor 4. That is, by using the common-mode impedance of the zero-phase reactor 4 instead of the primary-secondary impedance of the matching transformer 3, the over-voltage of the common mode is suppressed as in the case of FIG. is there. This example can also be applied in the same way when a ground circuit as shown in FIGS. 3 and 5 is used.
[0015]
【The invention's effect】
According to the present invention, since the overvoltage can be suppressed by the common mode, it is possible to prevent the overvoltage from being applied to the inverter even if a CT primary winding ground fault occurs or the like. Advantages that can prevent device destruction are obtained. In addition, the ground circuit according to the present invention has a high impedance with respect to the normal mode output voltage of the high frequency component during normal operation.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment of the present invention;
FIG. 2 is an operation explanatory diagram of FIG. 1;
FIG. 3 is a block diagram showing a second embodiment of the present invention.
4 is an operation explanatory diagram of FIG. 3; FIG.
FIG. 5 is a block diagram showing a third embodiment of the present invention.
6 is an operation explanatory diagram of FIG. 4. FIG.
FIG. 7 is a block diagram showing a fourth embodiment of the present invention.
8 is an operation explanatory diagram of FIG. 7. FIG.
FIG. 9 is a block diagram showing a fifth embodiment of the present invention.
10 is an operation explanatory diagram of FIG. 9. FIG.
FIG. 11 is a block diagram showing an example of an inverter with a stop function according to the present invention.
FIG. 12 is an explanatory diagram of a winding example according to the present invention.
FIG. 13 is a configuration diagram showing a modification of FIG. 1;
FIG. 14 is a configuration diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter, 2 ... Grounding circuit, 3 ... Transformer, 4 ... Zero phase reactor, 5A, 5B ... DC cut capacitor, 6A, 6B ... Resonance capacitor, 7 ... Current transformer (CT), 8 ... Load (work coil) , 9 ... Stray capacitance, 11 ... Control device, 12 ... Gate drive circuit, 13 ... Comparator, 14 ... Current detection level adjusting resistor, 15 ... Current detection resistor, 21 ... Reactor, 22A, 22B, 22C, 22D ... capacitor, 23 ... CT for ground current detection, 24 ... iron core, 25 ... winding.

Claims (7)

インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
前記2つの共振コンデンサとインバータの出力2導体間にリアクトルを接続しその中点を接地した接地回路を設けたことを特徴とする直列共振形インバータの接地回路。
In a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
A grounding circuit for a series resonance type inverter, characterized in that a grounding circuit is provided in which a reactor is connected between the two resonant capacitors and two output conductors of the inverter and the midpoint thereof is grounded.
インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
前記2つの共振コンデンサとインバータの出力2導体間にそれぞれコンデンサの一方の端子を接続し、その他方の端子を共通のリアクトルに接続し、その中点を接地した接地回路を設けたことを特徴とする直列共振形インバータの接地回路。
In a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
A grounding circuit is provided in which one terminal of each capacitor is connected between the two resonance capacitors and the two output conductors of the inverter, the other terminal is connected to a common reactor, and the midpoint thereof is grounded. A series resonant inverter grounding circuit.
インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
前記2つの共振コンデンサとインバータの出力2導体間にリアクトルを接続してその中点にコンデンサの一方の端子を接続し、その他方の端子を接地した接地回路を設けたことを特徴とする直列共振形インバータの接地回路。
In a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
A series resonance comprising a ground circuit in which a reactor is connected between the two resonant capacitors and the two output conductors of the inverter, one terminal of the capacitor is connected to the midpoint, and the other terminal is grounded Type inverter grounding circuit.
インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
前記2つの共振コンデンサとインバータの出力2導体間に変圧器を設け、その2次巻線の中点を接地した接地回路を設けたことを特徴とする直列共振形インバータの接地回路。
In a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
A grounding circuit for a series resonance type inverter, characterized in that a transformer is provided between the two resonant capacitors and two output conductors of the inverter, and a grounding circuit is provided in which the middle point of the secondary winding is grounded.
インバータの出力側に共振リアクトルを介して2つの共振コンデンサを直列に接続した直列共振形インバータにおいて、
前記2つの共振コンデンサとインバータの出力2導体間に変圧器を設け、その2次巻線の中点にコンデンサの一方の端子を接続し、他方の端子を接地した接地回路を設けたことを特徴とする直列共振形インバータの接地回路。
In a series resonance type inverter in which two resonance capacitors are connected in series via a resonance reactor on the output side of the inverter,
A transformer is provided between the two resonant capacitors and the output two conductors of the inverter, and a ground circuit is provided in which one terminal of the capacitor is connected to the middle point of the secondary winding and the other terminal is grounded. The ground circuit of the series resonance type inverter.
前記接地回路における接地電流を検出し、その値が所定値以上のときは前記インバータを停止させる停止機能を持たせたことを特徴とする請求項1ないし5のいずれかに記載の直列共振形インバータの接地回路。6. The series resonance inverter according to claim 1, further comprising a stop function for detecting a ground current in the ground circuit and stopping the inverter when the value is equal to or greater than a predetermined value. Grounding circuit. 前記接地回路の変圧器を含むインダクタンスの巻線をバイファーラー捲きとすることを特徴とする請求項1ないし5のいずれかに記載の直列共振形インバータの接地回路。6. The ground circuit of a series resonance inverter according to claim 1, wherein a winding having an inductance including the transformer of the ground circuit is used as a biferrar winding.
JP01393197A 1997-01-28 1997-01-28 Series resonant inverter grounding circuit Expired - Lifetime JP3620617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01393197A JP3620617B2 (en) 1997-01-28 1997-01-28 Series resonant inverter grounding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01393197A JP3620617B2 (en) 1997-01-28 1997-01-28 Series resonant inverter grounding circuit

Publications (2)

Publication Number Publication Date
JPH10215577A JPH10215577A (en) 1998-08-11
JP3620617B2 true JP3620617B2 (en) 2005-02-16

Family

ID=11846943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01393197A Expired - Lifetime JP3620617B2 (en) 1997-01-28 1997-01-28 Series resonant inverter grounding circuit

Country Status (1)

Country Link
JP (1) JP3620617B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165438A (en) * 2000-11-28 2002-06-07 Meidensha Corp High-frequency power supply for welding seam welded steel pipe
KR101272794B1 (en) * 2011-09-30 2013-06-10 (주) 이이시스 High-voltage power device for plasma having pulse output
WO2016208402A1 (en) * 2015-06-26 2016-12-29 株式会社村田製作所 Power transmitting device, power receiving device, and power transmission system
JP6832395B2 (en) * 2019-07-31 2021-02-24 島田理化工業株式会社 Leakage current suppression circuit to the ground wire in the inverter unit and leakage current suppression method to the ground wire in the inverter unit

Also Published As

Publication number Publication date
JPH10215577A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3393374B2 (en) Power conversion system
US7050279B2 (en) Method and apparatus for high impedance grounding of medium voltage AC drives
JP3912096B2 (en) Noise reduction device for power converter
JP3620617B2 (en) Series resonant inverter grounding circuit
JP4835930B2 (en) Inverter device provided with ground fault detection means
JPH08237936A (en) Noise filter for voltage type inverter
US7986104B2 (en) Discharge lamp lighting apparatus
JPH0374172A (en) Voltage generator
KR101033699B1 (en) Circuit for preventing a earth leakage circuit breaker from miss-operating by high frequency
JP4718228B2 (en) Power factor correction circuit
JPH11299264A (en) Method and apparatus for suppressing common mode voltage of inverter
US5313358A (en) Multiphase common mode transient suppressor
JPH07312823A (en) Dc leak detection and protective device
JP4051157B2 (en) Neon transformer ground fault detection circuit
JP3159459B2 (en) Line filter to prevent electric shock in electrical equipment
JP3401413B2 (en) Noise suppression device
JP3339605B2 (en) Ground wire disconnection detector and electric / electronic equipment having ground wire disconnection detector
JP3717200B2 (en) Leakage transformer ground fault detector
JP6828839B2 (en) Switching power supply
JP2007151288A (en) Alternating-current motor drive system
JP3112350B2 (en) Leakage detection device of earth leakage breaker
JPH02164223A (en) Ground protector for inverter
JPH05161258A (en) Surge voltage absorbing circuit
JP3055096B2 (en) Leakage current detector
JPH0449858A (en) Dc power supply circuit

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term