JP3616819B2 - Method for producing boron / carbon / nitrogen nanotubes - Google Patents

Method for producing boron / carbon / nitrogen nanotubes Download PDF

Info

Publication number
JP3616819B2
JP3616819B2 JP2002331409A JP2002331409A JP3616819B2 JP 3616819 B2 JP3616819 B2 JP 3616819B2 JP 2002331409 A JP2002331409 A JP 2002331409A JP 2002331409 A JP2002331409 A JP 2002331409A JP 3616819 B2 JP3616819 B2 JP 3616819B2
Authority
JP
Japan
Prior art keywords
carbon
nitrogen
nanotubes
boron
bcn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002331409A
Other languages
Japanese (ja)
Other versions
JP2004161571A (en
Inventor
義雄 板東
レンチィ・マ
忠夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002331409A priority Critical patent/JP3616819B2/en
Publication of JP2004161571A publication Critical patent/JP2004161571A/en
Application granted granted Critical
Publication of JP3616819B2 publication Critical patent/JP3616819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ホウ素・炭素・窒素ナノチューブの製造方法に関するものである。さらに詳しくは、この出願の発明は、実用に適用できる有用な特性と容易に変容しない安定した物性を有し、安価で大量に提供できるホウ素・炭素・窒素ナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
カーボンナノチューブの発見以来、窒化ホウ素ナノチューブ、炭化ホウ素ナノチューブ、ホウ素・炭素・窒素(BCN)ナノチューブ等の多元素系のナノチューブの研究に多大な関心が寄せられるようになってきた。最近では、これらのナノチューブの中にモリブデン、鉄−ニッケル、銅などの金属を内含させてもいる。
【0003】
以上の多元素系ナノチューブは、絶縁性、化学的安定性、耐酸化性、耐食性等に優れているため、ナノスケールの電子デバイスやナノ構造のセラミック材料として用いられることが期待されている。しかしながら、現状では、実用に適した安定した物質を安価に、大量に提供できる段階に至ってはいない。このため、実用に適用可能な有用な特性と安定した物性を有し、安価で大量に、ホウ素・炭素・窒素を構成元素とするナノチューブを提供する方法が望まれている(たとえば、特許文献1参照)。
【0004】
【特許文献1】
特開平07−187883号公報
【0005】
【発明が解決しようとする課題】
この出願の発明は、上記のとおりの事情に鑑みてなされたものであり、実用に適用でき
る有用な特性と容易に変容しない安定した物性を有し、安価で大量に提供できるホウ素・炭素・窒素ナノチューブの製造方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、構成元素がホウ素、炭素及び窒素であるナノチューブであり、ナノチューブの長さ方向に構成元素比率が異なっているホウ素・炭素・窒素ナノチューブの製造方法であって、鉄のナノ粒子を保持したアルミナを触媒とし、(CH 3 2 NH・BH 3 を窒素気流中で横型調整炉を用いて1000℃〜1200℃の温度域に加熱し、熱分解反応させることを特徴とするホウ素・炭素・窒素ナノチューブの製造方法を提供する。
【0007】
【発明の実施の形態】
この出願の発明のホウ素・炭素・窒素(BCN)ナノチューブは、以下の二つの方法で製造する。
[1]硝酸第二鉄の水溶液に窒素ガスを吹き込み、流動しているカーボンブラックの中に導入し、1300℃〜1500℃の温度域で一酸化炭素を発生させる。次いで、窒素及び一酸化炭素を含む気体を垂直式誘導炉に導入し、先駆物質であるB432Hを1600℃〜1800℃の温度域で分解させて気体状の酸化ホウ素を生成させる。上記温度域は、最適反応温度の常識的な変動幅であり、すなわち、1400℃±100℃であり、1700℃±100℃である。そして、引き続き、窒素及び一酸化炭素の雰囲気中において硝酸第二鉄を触媒として還元させることにより、長さ方向に構成元素比率が異なる若しくは中心から半径方向に構成元素比率の異なる層が積層したホウ素・炭素・窒素(BCN)ナノチューブが得られる。さらに鉄が充填された上記のホウ素・炭素・窒素(BCN)ナノチューブが得られる。
[2]先駆物質(CH32NH・BH3に、鉄のナノ粒子を保持したアルミナを触媒として作用させ、窒素ガス雰囲気下で横型調整炉中において1000℃〜1200℃の温度域に加熱し、熱分解反応させることにより長さ方向に構成元素比率が異なるホウ素・炭素・窒素(BCN)ナノチューブが得られる。上記温度域も最適反応温度の常識的な変動幅であり、すなわち、1100℃±100℃である。
【0008】
ホウ素・炭素・窒素(BCN)ナノチューブは、透過型電子顕微鏡を用いて観察することにより、内部に中空部分を有するナノチューブ構造であり、内部に鉄が充填されている部分が存在することが確認される。また、ナノチューブの中空部分はナノチューブの長さ方向に貫通していなく、仕切られた区画室が形成されていることが確認される。一本のナノチューブの中に長い区画室と短い区画室が存在する。電子エネルギー損失スペクトル分析の結果から、長い区画室の成分組成は窒化ホウ素(BN)が多く、短い区画室の成分組成は炭素(C)が多いことが確認される。一方、鉄が充填されているホウ素・炭素・窒素(BCN)ナノチューブは、中心から半径方向に構成元素の比率が異なり、最外層は窒化ホウ素(BN)の含有量が多い層であり、内側の層は炭素(C)の含有量が多い層である。
【0009】
(CH32NH・BH3を先駆物質に用いて合成したホウ素・炭素・窒素(BCN)ナノチューブについて走査型電子顕微鏡で観察すると、ナノチューブが絡み合って屈曲し、コイル状となっていることが確認される。
【0010】
いずれのホウ素・炭素・窒素(BCN)ナノチューブも大量に製造され、しかも上記のとおり方法により製造されるため、安価となる。
【0011】
【実施例】
(実施例1)
硝酸第二鉄の0.05モル水溶液に窒素ガスを吹き込み、流動しているカーボンブラックの中に移送し、約1400℃に加熱して一酸化炭素ガスを生成させた。その後、一酸化炭素ガス及び窒素ガスを垂直式誘導炉に導入し、B432Hを1700℃で分解させて気体状の酸化ホウ素を発生させるとともに、一酸化炭素ガス及び窒素ガスにより還元してホウ素・炭素・窒素(BCN)ナノチューブおよび鉄が充填されたホウ素・炭素・窒素(BCN)ナノチューブを大量に得た。
【0012】
図1<a><b>は、それぞれ、上記のホウ素・炭素・窒素(BCN)ナノチューブを透過型電子顕微鏡で観察した顕微鏡像である。中空部分を有するナノチューブ構造であることが確認される。顕微鏡像で暗く写っている部分に鉄が充填されている。また、図1<b>に示したように、ナノチューブの中空部分は、ナノチューブの長さ方向に貫通していなく、区画室で仕切られている。より詳しく観察すると、図2<a><b>に示したように、一本のナノチューブの中に長い区画室と短い区画室が存在していることが確認される。
【0013】
それぞれの区画室について電子エネルギー損失スペクトルを測定したところ、長い区画室は窒化ホウ素(BN)の多い組成であり、短い区画室は炭素(C)の多い組成である。また、電子エネルギー損失スペクトルの測定結果から、鉄が充填されているホウ素・炭素・窒素(BCN)ナノチューブは、中心から半径方向に構成元素の比率が異なり、最外層は窒化ホウ素(BN)の含有量が多く、内側の層は炭素(C)が多い。
【0014】
(実施例2)
鉄のナノ粒子を保持したアルミナを触媒として、先駆物質である(CH32NH・BH3を窒素ガス気流中で横型調整炉を用いて1050℃に加熱し、熱分解反応を生起させ、ホウ素・炭素・窒素(BCN)ナノチューブを得た。
【0015】
図3<a><b>は、それぞれ、得られたホウ素・炭素・窒素(BCN)ナノチューブを走査型電子顕微鏡を用いて観察した顕微鏡像である。ホウ素・炭素・窒素(BCN)ナノチューブが絡み合って屈曲し、コイル状の形態になり、大量に得られている。
【0016】
もちろんこの出願の発明は、以上の実施形態及び実施例により限定されるものではない。細部については様々な態様が可能である。
【0017】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、構成元素がホウ素、炭素、窒素であるナノチューブであり、ナノチューブの長さ方向に構成元素比率が異なる特殊な形態をした、実用に適用できる有用な特性と容易に変容しない安定した物性を有するナノチューブを、安価に大量に提供することができる。
【図面の簡単な説明】
【図1】<a><b>は、それぞれ、実施例1で得られたホウ素・炭素・窒素ナノチューブの透過型電子顕微鏡像である。
【図2】<a><b>は、それぞれ、実施例1で得られたホウ素・炭素・窒素ナノチューブの透過型電子顕微鏡像である。
【図3】<a><b>は、それぞれ、実施例2で得られたホウ素・炭素・窒素ナノチューブの走査型電子顕微鏡像である。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing boron / carbon / nitrogen nanotubes . More specifically, the invention of this application relates to a method for producing boron, carbon, and nitrogen nanotubes that have useful properties applicable to practical use and stable physical properties that do not easily change, and that can be provided in large quantities at low cost.
[0002]
[Prior art]
Since the discovery of carbon nanotubes, there has been a great deal of interest in research on multi-element nanotubes such as boron nitride nanotubes, boron carbide nanotubes, and boron / carbon / nitrogen (BCN) nanotubes. Recently, metals such as molybdenum, iron-nickel, and copper are included in these nanotubes.
[0003]
The multi-element nanotubes described above are excellent in insulation, chemical stability, oxidation resistance, corrosion resistance, and the like, and thus are expected to be used as nanoscale electronic devices and nanostructure ceramic materials. However, at present, the stage has not yet reached a stage where stable materials suitable for practical use can be provided in large quantities at low cost. For this reason, there is a demand for a method of providing nanotubes having useful characteristics applicable to practical use and stable physical properties, and having boron, carbon, and nitrogen as constituent elements in large quantities at low cost (for example, Patent Document 1). reference).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 07-187883
[Problems to be solved by the invention]
The invention of this application has been made in view of the circumstances as described above, and has boron, carbon, and nitrogen that have useful properties applicable to practical use and stable physical properties that do not easily change, and can be provided in large quantities at low cost. Providing a method for producing a nanotube is an issue to be solved.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of this application is a nanotube in which constituent elements are boron, carbon, and nitrogen, and manufacture of boron / carbon / nitrogen nanotubes in which constituent element ratios are different in the length direction of the nanotube In this method, alumina containing iron nanoparticles is used as a catalyst, and (CH 3 ) 2 NH · BH 3 is heated to a temperature range of 1000 ° C. to 1200 ° C. using a horizontal adjustment furnace in a nitrogen stream. Provided is a method for producing boron, carbon, and nitrogen nanotubes, characterized by causing a decomposition reaction.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The boron-carbon-nitrogen (BCN) nanotube of the invention of this application is produced by the following two methods.
[1] Nitrogen gas is blown into an aqueous solution of ferric nitrate and introduced into flowing carbon black to generate carbon monoxide in a temperature range of 1300 ° C to 1500 ° C. Next, a gas containing nitrogen and carbon monoxide is introduced into a vertical induction furnace, and the precursor B 4 N 3 O 2 H is decomposed in a temperature range of 1600 ° C. to 1800 ° C. to generate gaseous boron oxide. Let The above temperature range is a common-sense fluctuation range of the optimum reaction temperature, that is, 1400 ° C. ± 100 ° C. and 1700 ° C. ± 100 ° C. Subsequently, boron in which layers of different constituent element ratios in the length direction or different constituent element ratios from the center in the radial direction are laminated by reducing ferric nitrate as a catalyst in an atmosphere of nitrogen and carbon monoxide. Carbon / nitrogen (BCN) nanotubes are obtained. Further, the boron-carbon-nitrogen (BCN) nanotubes filled with iron are obtained.
[2] Precursor (CH 3 ) 2 NH · BH 3 is allowed to act as a catalyst with alumina holding iron nanoparticles, and heated in a horizontal adjustment furnace to a temperature range of 1000 ° C. to 1200 ° C. in a nitrogen gas atmosphere. Then, boron / carbon / nitrogen (BCN) nanotubes having different constituent element ratios in the length direction can be obtained by thermal decomposition reaction. The above temperature range is also a common-sense fluctuation range of the optimum reaction temperature, that is, 1100 ° C. ± 100 ° C.
[0008]
Boron / carbon / nitrogen (BCN) nanotubes are observed with a transmission electron microscope and have a nanotube structure with a hollow portion inside, and it is confirmed that there is a portion filled with iron inside. The Further, it is confirmed that the hollow portion of the nanotube does not penetrate in the length direction of the nanotube, and a partitioned compartment is formed. There are long and short compartments within a single nanotube. From the result of the electron energy loss spectrum analysis, it is confirmed that the component composition of the long compartment is rich in boron nitride (BN), and the component composition of the short compartment is rich in carbon (C). On the other hand, boron-carbon-nitrogen (BCN) nanotubes filled with iron have different constituent element ratios in the radial direction from the center, and the outermost layer is a layer containing a large amount of boron nitride (BN). The layer is a layer having a high carbon (C) content.
[0009]
Boron / carbon / nitrogen (BCN) nanotubes synthesized using (CH 3 ) 2 NH · BH 3 as a precursor are observed with a scanning electron microscope, and the nanotubes are intertwined and bent to form a coil. It is confirmed.
[0010]
Any boron / carbon / nitrogen (BCN) nanotubes are produced in large quantities and are produced by the method as described above, so that the cost is low.
[0011]
【Example】
(Example 1)
Nitrogen gas was blown into a 0.05 molar aqueous solution of ferric nitrate, transferred into flowing carbon black, and heated to about 1400 ° C. to generate carbon monoxide gas. After that, carbon monoxide gas and nitrogen gas are introduced into the vertical induction furnace, B 4 N 3 O 2 H is decomposed at 1700 ° C. to generate gaseous boron oxide, and carbon monoxide gas and nitrogen gas are used. Reduction was performed to obtain a large amount of boron / carbon / nitrogen (BCN) nanotubes and boron / carbon / nitrogen (BCN) nanotubes filled with iron.
[0012]
FIG. 1 <a> and <b> are microscopic images obtained by observing the boron, carbon, and nitrogen (BCN) nanotubes with a transmission electron microscope, respectively. It is confirmed that the nanotube structure has a hollow portion. The portion of the microscopic image that is dark is filled with iron. Further, as shown in FIG. 1 <b>, the hollow portion of the nanotube does not penetrate in the length direction of the nanotube, and is partitioned by the compartment. When observed in more detail, as shown in FIGS. 2 <a><b>, it is confirmed that a long compartment and a short compartment exist in one nanotube.
[0013]
When the electron energy loss spectrum was measured for each of the compartments, the long compartment has a high boron nitride (BN) composition, and the short compartment has a carbon (C) rich composition. In addition, from the measurement results of the electron energy loss spectrum, boron-carbon-nitrogen (BCN) nanotubes filled with iron have different constituent element ratios in the radial direction from the center, and the outermost layer contains boron nitride (BN). The amount is large and the inner layer is rich in carbon (C).
[0014]
(Example 2)
Using alumina holding iron nanoparticles as a catalyst, the precursor (CH 3 ) 2 NH · BH 3 is heated to 1050 ° C. in a nitrogen gas stream using a horizontal adjustment furnace to cause a thermal decomposition reaction, Boron / carbon / nitrogen (BCN) nanotubes were obtained.
[0015]
FIGS. 3 <a> and <b> are microscopic images obtained by observing the obtained boron / carbon / nitrogen (BCN) nanotubes using a scanning electron microscope. Boron / carbon / nitrogen (BCN) nanotubes are intertwined and bent to form a coiled shape and are obtained in large quantities.
[0016]
Of course, the invention of this application is not limited by the above embodiments and examples. Various details are possible for the details.
[0017]
【The invention's effect】
As described above in detail, according to the invention of this application, it is a nanotube whose constituent elements are boron, carbon, and nitrogen, and has a special form in which the constituent element ratio is different in the length direction of the nanotube. Nanotubes having stable physical properties that are not easily transformed can be provided in large quantities at a low cost.
[Brief description of the drawings]
1 is a transmission electron microscope image of boron, carbon, and nitrogen nanotubes obtained in Example 1, respectively.
<a><b> are transmission electron microscope images of boron, carbon, and nitrogen nanotubes obtained in Example 1, respectively.
3 is a scanning electron microscope image of boron, carbon, and nitrogen nanotubes obtained in Example 2, respectively.

Claims (1)

構成元素がホウ素、炭素及び窒素であるナノチューブであり、ナノチューブの長さ方向に構成元素比率が異なっているホウ素・炭素・窒素ナノチューブの製造方法であって、鉄のナノ粒子を保持したアルミナを触媒とし、(CH 3 2 NH・BH 3 を窒素気流中で横型調整炉を用いて1000℃〜1200℃の温度域に加熱し、熱分解反応させることを特徴とするホウ素・炭素・窒素ナノチューブの製造方法。 A method for producing boron / carbon / nitrogen nanotubes in which the constituent elements are nanotubes of boron, carbon, and nitrogen, and the constituent element ratios are different in the length direction of the nanotubes, and the catalyst is alumina that holds iron nanoparticles And (CH 3 ) 2 NH · BH 3 is heated to a temperature range of 1000 ° C. to 1200 ° C. using a horizontal adjustment furnace in a nitrogen stream, and is subjected to a thermal decomposition reaction. Production method.
JP2002331409A 2002-11-14 2002-11-14 Method for producing boron / carbon / nitrogen nanotubes Expired - Lifetime JP3616819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331409A JP3616819B2 (en) 2002-11-14 2002-11-14 Method for producing boron / carbon / nitrogen nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331409A JP3616819B2 (en) 2002-11-14 2002-11-14 Method for producing boron / carbon / nitrogen nanotubes

Publications (2)

Publication Number Publication Date
JP2004161571A JP2004161571A (en) 2004-06-10
JP3616819B2 true JP3616819B2 (en) 2005-02-02

Family

ID=32808773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331409A Expired - Lifetime JP3616819B2 (en) 2002-11-14 2002-11-14 Method for producing boron / carbon / nitrogen nanotubes

Country Status (1)

Country Link
JP (1) JP3616819B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103996A (en) * 2004-10-01 2006-04-20 National Institute For Materials Science Nitrogen atom-containing carbon nanotube and method for manufacturing the same
CN100390046C (en) * 2004-12-17 2008-05-28 清华大学 Synthesis method of iron nanotube array
JP5448067B2 (en) * 2009-12-09 2014-03-19 独立行政法人物質・材料研究機構 Method for producing boron nitride nanotubes
CN114146719B (en) * 2021-11-22 2023-10-24 武汉科技大学 Carbon plate-non-split-phase boron carbon nitrogen in-plane heterostructure and preparation method thereof
CN113976163A (en) * 2021-11-22 2022-01-28 武汉科技大学 Non-heterogeneous boron-carbon-nitrogen photocatalytic material and preparation method thereof

Also Published As

Publication number Publication date
JP2004161571A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
Vakifahmetoglu et al. Growth of one‐dimensional nanostructures in porous polymer‐derived ceramics by catalyst‐assisted pyrolysis. Part I: iron catalyst
Deepak et al. Boron nitride nanotubes and nanowires
Bystrzejewski et al. Continuous synthesis of carbon-encapsulated magnetic nanoparticles with a minimum production of amorphous carbon
Wang et al. Inorganic polymer-derived tubular SiC arrays from sacrificial alumina templates
EP3708535A1 (en) Method of manufacturing mos2 having 1t crystal structure
JP3616819B2 (en) Method for producing boron / carbon / nitrogen nanotubes
Li et al. Synthesis of boron nitride nanotubes, bamboos and nanowires
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
Jeong et al. Preparation of conductive Si/C/N/Ni ceramic nanocomposites using phenyl-substituted polysilazane and nickelocene as precursors
Zhong et al. Novel coaxial SiC–SiO2–BN nanocable: large-scale synthesis, formation mechanism and photoluminescence property
JP2004231455A (en) Manufacturing method of boron nitride nanotube
JP2002097004A (en) Method for manufacturing boron nitride nanotube by using oxide catalyst
JP2000281323A (en) Production of carbon nanotube containing boron
KR100593268B1 (en) A manufacturing process of Fe nano powder with carbide coating by Chemical Vapor Condensation
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
Bai et al. Controlling the catalytic synthesis of SiC nanowires, carbon nanotubes, and graphene from a multilayer film precursor
JP3616818B2 (en) Method for producing ternary nanotube comprising boron-carbon-nitrogen atoms
Guo et al. Solvothermal synthesis of Si3N4 nanomaterials at a low temperature
JP4000371B2 (en) Silicon nitride (Si3N4) nanorods and manufacturing method thereof
Chesnokov et al. Effect of the carbon nanomaterials structure on silica carbothermal reduction
JP3658622B2 (en) Method for producing boron carbide nanowire
JP2004182547A (en) Galium oxide nanowire and its manufacturing method
Wang et al. Synthesis and carbothermal nitridation mechanism of ultra-long single crystal α-Si3N4 nanobelts
JP3834661B2 (en) Method for producing silicon carbide-silicon dioxide-carbon coaxial nanocable and nanochain in which silicon carbide nanorods and carbon nanotubes are alternately joined at the tips
TWI290910B (en) Method for producing alpha-Fe2O3 nanomaterials and the product made therefrom

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Ref document number: 3616819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term