JP3615857B2 - Photocathode and electron tube using the same - Google Patents

Photocathode and electron tube using the same Download PDF

Info

Publication number
JP3615857B2
JP3615857B2 JP2012196A JP2012196A JP3615857B2 JP 3615857 B2 JP3615857 B2 JP 3615857B2 JP 2012196 A JP2012196 A JP 2012196A JP 2012196 A JP2012196 A JP 2012196A JP 3615857 B2 JP3615857 B2 JP 3615857B2
Authority
JP
Japan
Prior art keywords
active layer
photocathode
layer
semiconductor substrate
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012196A
Other languages
Japanese (ja)
Other versions
JPH09213204A (en
Inventor
実 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2012196A priority Critical patent/JP3615857B2/en
Publication of JPH09213204A publication Critical patent/JPH09213204A/en
Application granted granted Critical
Publication of JP3615857B2 publication Critical patent/JP3615857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はIII−V族化合物半導体からなる光電面、特に被検出光の入射面から光電子を放出するいわゆる反射型光電面、及びそれを用いた電子管に関するものである。
【0002】
【従来の技術】
従来、活性層を構成するGaAsは負の電子親和力を有しているので、それを備えた光電面は高性能である。図7はその一例としてのいわゆる反射型光電面であって、GaAsからなる半導体基板10上にp型GaAsからなる活性層21がエピタキシャル成長される。そして、真空容器(図示せず)内で加熱清浄化された活性層21表面にはその仕事関数を低下させるためにCsOからなる表面層22が形成されることによって、波長900nmまで比較的高い感度を有した上記反射型光電面が得られており、それを備えた光電子増倍管も既に実用化されている。
【0003】
【発明が解決しようとする課題】
一方、GaAsよりもエネルギギャップの大きいGaAsPからなる活性層21を備えた光電面も開示され、900nmより短い波長、特に可視光領域の波長に感度を有している。しかしながら、活性層21を構成するGaAsPは、その組成を変化させてもそれと格子整合する適当な半導体基板10が存在しない。よって、GaAsP活性層21と格子整合しないGaAs又はGaPがその半導体基板10として用いられると、結果としてGaAsP活性層21の結晶性が低くなった光電面は期待される以上の感度を得ることはできない。実際に、図8に示すIII−V族化合物半導体及びその混晶のエネルギーギャップと格子定数の関係から明らかなように、活性層21をGaAsPとした場合、それと格子定数の一致する半導体基板10は存在せず、高品質なGaAsP活性層21を得ることは本質的に困難である。
【0004】
GaAsP活性層21と半導体基板10との間の格子不整を緩和するため、図9に示すように活性層21がGaAsPの組成を傾斜させたものにしたり、あるいは、図10に示すようにGaAs/GaAsP超格子層11を半導体基板10とGaAsP活性層21との間に介在させたものにしたりしているが、本質的な解決には至っていない。よって、上記のような問題点を持った光電面が光電子増倍管等の電子管に組込まれた場合には、微弱光を効率よく検出することは困難である。
【0005】
そこで本発明者は、半導体基板とエピタキシャル層との間に格子不整がほとんど存在しない材料構成について種々の組合わせを検討した結果、GaInP系の材料を用いることで、上記問題点を本質的に解決できることを見出した。本発明は、係る知見に基づき完成されたもので、可視光領域で高感度な光電面、及びそれを用いた電子管を提供するものである。
【0006】
【課題を解決するための手段】
本発明に係る光電面は、Ga及びAsを主成分とするIII−V族化合物半導体基板と、半導体基板上にGaIn1−xPからなるキャリア濃度が1×1018cm−3以上のp型化合物半導体によって形成され、検出対象である被検出光を吸収して光電子を発生させる活性層と、活性層中央部上にアルカリ金属又はその酸化物又はそのフッ化物によって形成され、活性層に仕事関数を低下させる表面層とを備えた光電面であって、活性層の原子組成比xの範囲は0<x≦0.75であることを特徴とする。これによって、半導体基板とこの上にエピタキシャル成長された活性層との間に格子不整合が生じることは少なく、しかも可視光によってGaInP活性層は効率良く光電子を生成させるので、係る光電面は高効率で光電子を外部に放出させることができる。
【0007】
また、半導体基板は上面に活性層よりもエネルギギャップが大きい(AlGa1−yx’In1−x’Pからなるバッファ層を有しており、バッファ層の原子組成比x’が活性層の原子組成比xと等しいことを特徴としてもよい。バッファ層によって、半導体基板の活性層に結晶欠陥が伝播されにくくなり、したがって活性層中の結晶欠陥を低減できる。
【0008】
また、活性層の原子組成比xの範囲は0.45<x<0.55であることを特徴としてもよい。これによって、活性層の結晶欠陥はさらに抑制される。
【0009】
本発明に係る上記光電面を用いた電子管は、光電面と、光電面を内部に収容して内部が真空状態に保たれた真空容器と、真空容器内部に設置され、光電面に対して正の電圧を保持する陽極とを少なくとも備える。これによって、光電面からの光電子信号を電気信号に変換することができる。
【0010】
【発明の実施の形態】
本発明の実施形態を図面を参照して実施形態毎に説明する。
【0011】
図1は本発明に係る光電面の第1実施形態の断面図である。キャリア濃度1×1019cm−3であるp型GaAsからなる、市販された厚さ350μmの半導体基板10上に、キャリア濃度1×1019cm−3であるp型GaIn1−xPからなる厚さ5μmの活性層21が0<x≦0.75の範囲で気相エピタキシャル成長して形成されており、検出対象である被検出光を吸収して光電子を発生させている。ここで上述したx=0.75という限界値は図2に示すように、GaIn1−xP活性層21が直接遷移半導体となり得る限界の組成であって、x>0.75となったGaIn1−xP活性層21は間接遷移半導体となるので吸収係数は急激に低下し、光電面の感度は急激に低下することが予想される。
【0012】
そこで、本発明者はGaIn1−xPの活性層21を試作し、光電感度の指標の一つである量子効率を測定した。図3は0≦x≦0.8の範囲対して、波長500nmにおける量子効率を測定した結果である。理論的に予想されるように、x=0.8でのGaIn1−xP活性層では光電子が発生しなくなり、x≧0.75では量子効率も急激に低下することが確認できた。
【0013】
しかも、図3の実験結果に示されるように、試作されたGaIn1−xP活性層21の量子効率は0.45≦x≦0.55の範囲で最大となることが明らかとなった。したがって、上記範囲内ではGaIn1−xP活性層21内に結晶欠陥がほとんど導入されることなく、可視光領域で非常に高感度な光電面が実現可能となっている。
【0014】
上記のようにGaIn1−xP活性層21の原子組成比xの値が変化すると、活性層21のエネルギーギャップがそれに応じて変化する。すなわち、分光感度特性の長波長側において光電面感度が落ち込む波長が任意に変化できる。しかしこのとき、GaIn1−xP活性層21とGaAs半導体基板10との間の格子不整の度合いが0.5%を超えると、それに起因した結晶欠陥が活性層21に導入され、光電面感度の低下は免れない。けれども、それらの間の格子不整の度合いが0.5%以内であれば、そのとき活性層21を構成する格子の内部に存在する歪応力は格子の変形によって緩和されるので、結晶欠陥が導入されないことがある。よって上記にしたがうと、本発明のGaIn1−xP活性層21のxの範囲は0.45<x<0.55となり、実験結果とよく一致している。
【0015】
なお本発明では、GaAs半導体基板10はp型に限らずn型でも構わない。また、p型GaIn1−xP活性層21のキャリア濃度は1×1018cm−3以上であれば実用上の問題はない。そして、活性層21の厚さは被検出光を十分吸収できる程度の厚さであればよく、実質的には約1μm以上厚さがあればよい。
【0016】
活性層21表面には仕事関数を低下させるためのCsOからなる表面層22が極薄く形成され、活性層からの光電子を容易に外部に放出させることができる。 図4は本発明に係る光電面の第2実施形態の断面図である。第1実施形態に述べた半導体基板10と活性層21(x=0.5)との間に、活性層21よりエネルギギャップが大きくてキャリア濃度1×1019cm−3のp型(AlGa1−yx’In1−x’Pからなるバッファ層12(x’=0.5,y=0.5)が厚さ2μmのエピタキシャル層として介在されており、半導体基板10の結晶欠陥が活性層21に伝播されないようにして、活性層21内の結晶欠陥を低減している。また、バッファ層12の原子組成比x’が活性層21の原子組成比xと等しいので、図2に示すようにバッファ層12と格子整合した高品質な活性層21が形成される。ここで、バッファ層12の原子組成比x’と活性層21の原子組成比xとは完全に等しくする必要はなく、第1実施形態に述べたことの類推から、ほぼ等しくさえすれば活性層21に結晶欠陥は導入されない。
【0017】
なお、p型(AlGa1−yx’In1−x’Pバッファ層12のキャリア濃度は1×1018cm−3以上あれば実用上の問題はなく、そして、その厚さは光電子が通り抜けられない程度であればよく、実質的には約1μm以上であればよい。またGaIn1−xP活性層21表面には、上記第1実施形態と同様にCsO表面層22が極薄く形成されている。
【0018】
このように構成された第2実施形態の光電面の電子放出機構を図5に示すエネルギーバンド図に基づいて述べると以下のようになる。
【0019】
被検出光(hν)が活性層21に入射すると、価電子帯(V.B.)から伝導帯(C.B.)に励起された光電子(e)は活性層21内を拡散して移動する。その際、活性層21よりもエネルギギャップが大きいバッファ層12は活性層21に対してポテンシャル障壁となるので、光電子は表面層22側に向かう。また、上記光電子が表面層22側に到達する確率は活性層21の平均自由行程、すなわち光電子の拡散長に依存する。拡散長は活性層21の再結合速度に依存し、さらに再結合速度は活性層21の結晶欠陥密度に依存する。したがって、光電子が表面層22側に到達する確率は活性層21の結晶欠陥密度に依存するので、本実施形態では表面層22近傍に多くの光電子が到達する。p型GaIn1−xPであるため禁制帯の下端までフェルミ準位(F.L.)が近づいた活性層21の表面は表面層22によって仕事関数が真空準位(V.L.)程度まで低下しているので、上述した光電子はそこから外部に容易に放出される。
【0020】
上記のように光電子が放出される本実施形態の光電面では、波長500nmにおいて量子効率が50%となり、第1実施形態と同様に高い値となっている。
【0021】
以上のように、半導体基板10上に結晶欠陥が抑制された高品質な活性層21がエピタキシャル成長して形成されることから、本発明の光電面は高い量子効率を有する。すなわち、本発明の光電面は同一の被検出光に対して従来より多くの光電子が放出される。
【0022】
つぎに、本発明に係る光電面を用いた電子管の実施形態について説明する。
【0023】
図6はいわゆるサーキュラケージ型の光電子増倍管の水平断面図を示したものである。図6において、透光性の真空容器30を構成する入射窓31付きの円筒形のガラスバルブ内には、入射窓31から入射される被検出光(hν)に対して一定の角度をもって傾斜配置された上記光電面20と、この光電面20から放出された光電子を順次増倍するための複数段のダイノード40a〜40hからなるダイノード部40と、出力信号を収集する陽極50とが配置されている。図示しないが、光電面20、ダイノード部40、そして陽極50には、ブリーダ回路及び電気リードを介して、光電面20に対して正のブリーダ電圧が陽極50に近づくにつれて段毎に増加するように分配して印加されている。
【0024】
上記光電子増倍管の真空容器30の入射窓31を通して被検出光はGaIn1−xP活性層21に入射し吸収され、光電子eが発生して真空中に放出される。真空中に放出された光電子eは加速されて第1ダイノード40aに入射し、光電子によって増倍された2次電子を生成し、再び真空中へ放出する。第1ダイノード40aから放出された2次電子は再び加速され、第2ダイノード40bへ入射し、さらに2次電子を生成、放出する。これを8回繰り返すことにより光電面20から放出された光電子は第8ダイノード40hにおいて約100万倍程度に最終的には2次電子増倍して放出される。そして、第8ダイノード40hから増倍して放出された2次電子が陽極50で集められ出力信号電流として取り出される。
【0025】
本実施形態は光電面20から放出される光電子が多くなるので、陽極50から最終的に出力される信号電流も大きくなって、従来のサーキュラケージ型光電子増倍管と比較してより感度よく微弱な被検出光を検出することができ、実際には従来より約5倍の感度を有した光電子増倍管が得られる。
【0026】
【発明の効果】
本発明の光電面によれば、適当な組成のGaIn1−xPからなる活性層又は(AlGa1−yx’In1−x’Pからなるバッファ層を用いることにより、活性層と半導体基板との格子不整を極力抑えることができるので、可視光領域で非常に高感度な光電面が得られる。
【0027】
本発明の光電面を用いた電子管によれば、本発明の光電面を用いた電子管は微弱な光を従来よりも感度よく検出できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る光電面の断面図である。
【図2】(AlGa1−yx’In1−x’P4元混晶の格子定数(破線)と禁制帯幅(実線)との関係を表した図である。
【図3】活性層の原子組成比xと、波長500nmにおける光電面の量子効率との関係を示した図である。
【図4】図1の光電面を備えた光電子増倍管の第2の実施形態の側断面図である。
【図5】本発明に係る光電面の第2実施形態のエネルギバンド図である。
【図6】図1の光電面を用いた光電子増倍管の実施形態の水平断面図である。
【図7】GaAs半導体基板上にp型GaAs活性層がエピタキシャル成長された反射型光電面の断面図である。
【図8】III−V族化合物半導体及びその混晶のエネルギギャップと格子定数の関係を示したものであり、また2種類のIII−V族化合物半導体の混晶は、直接遷移半導体を実線でもって、そして間接遷移半導体を点線でもってそれらの関係を示した図である。
【図9】GaAs半導体基板上にGaAsPの組成を傾斜させた活性層を備えた反射型光電面の断面図である。
【図10】GaAs/GaAsP超格子層を半導体基板とGaAsP活性層との間に介在させた反射型光電面の断面図である。
【符号の説明】
10・・・半導体基板、11・・・超格子層、12・・・バッファ層、20・・・光電面、21・・・活性層、22・・・表面層、30・・・真空容器、40・・・ダイノード部、40a・・・第1ダイノード、40b・・・第2ダイノード、40c・・・第3ダイノード、40d・・・第4ダイノード、40e・・・第5ダイノード、40f・・・第6ダイノード、40g・・・第7ダイノード、40h・・・第8ダイノード、50・・・陽極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocathode made of a group III-V compound semiconductor, in particular, a so-called reflective photocathode that emits photoelectrons from an incident surface of light to be detected, and an electron tube using the photocathode.
[0002]
[Prior art]
Conventionally, since GaAs constituting the active layer has a negative electron affinity, the photocathode provided with it has high performance. FIG. 7 shows a so-called reflection type photocathode as an example, and an active layer 21 made of p-type GaAs is epitaxially grown on a semiconductor substrate 10 made of GaAs. A surface layer 22 made of Cs 2 O is formed on the surface of the active layer 21 that has been heated and cleaned in a vacuum vessel (not shown) in order to lower its work function. The reflection type photocathode having high sensitivity has been obtained, and a photomultiplier tube having the same has already been put into practical use.
[0003]
[Problems to be solved by the invention]
On the other hand, a photocathode having an active layer 21 made of GaAsP having a larger energy gap than GaAs is also disclosed, and has sensitivity to wavelengths shorter than 900 nm, particularly in the visible light region. However, even if the composition of GaAsP constituting the active layer 21 is changed, there is no suitable semiconductor substrate 10 that lattice matches with that. Therefore, when GaAs or GaP that is not lattice-matched with the GaAsP active layer 21 is used as the semiconductor substrate 10, the photocathode whose crystallinity of the GaAsP active layer 21 is lowered as a result cannot obtain sensitivity higher than expected. . Actually, as is apparent from the relationship between the energy gap and the lattice constant of the III-V compound semiconductor and mixed crystal thereof shown in FIG. 8, when the active layer 21 is made of GaAsP, the semiconductor substrate 10 having the same lattice constant as that of the semiconductor substrate 10 is obtained. It is essentially difficult to obtain a high quality GaAsP active layer 21 that does not exist.
[0004]
In order to alleviate the lattice irregularity between the GaAsP active layer 21 and the semiconductor substrate 10, the active layer 21 may have a GaAsP composition inclined as shown in FIG. 9, or a GaAs / As shown in FIG. Although the GaAsP superlattice layer 11 is interposed between the semiconductor substrate 10 and the GaAsP active layer 21, no substantial solution has been achieved. Therefore, when a photocathode having the above-described problems is incorporated in an electron tube such as a photomultiplier tube, it is difficult to detect faint light efficiently.
[0005]
Therefore, as a result of studying various combinations of material configurations in which there is almost no lattice irregularity between the semiconductor substrate and the epitaxial layer, the inventor essentially solved the above problems by using a GaInP-based material. I found out that I can do it. The present invention has been completed based on such knowledge, and provides a highly sensitive photocathode in the visible light region and an electron tube using the photocathode.
[0006]
[Means for Solving the Problems]
The photocathode according to the present invention includes a group III-V compound semiconductor substrate containing Ga and As as main components, and a carrier concentration of Ga x In 1-x P on the semiconductor substrate of 1 × 10 18 cm −3 or more. An active layer formed of a p-type compound semiconductor, which absorbs light to be detected and generates photoelectrons, and is formed on the active layer central portion with an alkali metal or an oxide thereof or a fluoride thereof. A photocathode having a surface layer for lowering a work function, wherein the active composition has an atomic composition ratio x in a range of 0 <x ≦ 0.75. As a result, there is little lattice mismatch between the semiconductor substrate and the active layer epitaxially grown thereon, and the GaInP active layer efficiently generates photoelectrons by visible light, so that the photocathode has high efficiency. Photoelectrons can be emitted to the outside.
[0007]
Moreover, the semiconductor substrate has a buffer layer made of (Al y Ga 1-y ) x ′ In 1-x ′ P having an energy gap larger than that of the active layer on the upper surface, and the atomic composition ratio x ′ of the buffer layer is It may be characterized by being equal to the atomic composition ratio x of the active layer. The buffer layer makes it difficult for crystal defects to be propagated to the active layer of the semiconductor substrate, so that crystal defects in the active layer can be reduced.
[0008]
Further, the range of the atomic composition ratio x of the active layer may be 0.45 <x <0.55. Thereby, crystal defects in the active layer are further suppressed.
[0009]
An electron tube using the above photocathode according to the present invention includes a photocathode, a vacuum vessel that contains the photocathode inside and is kept in a vacuum state, and is installed inside the vacuum vessel and is positive with respect to the photocathode. And an anode that holds the voltage of at least. Thereby, the photoelectron signal from the photocathode can be converted into an electric signal.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described for each embodiment with reference to the drawings.
[0011]
FIG. 1 is a sectional view of a first embodiment of the photocathode according to the present invention. On a commercially available semiconductor substrate 10 made of p-type GaAs having a carrier concentration of 1 × 10 19 cm −3 and having a thickness of 350 μm, p-type Ga x In 1-x P having a carrier concentration of 1 × 10 19 cm −3. The active layer 21 having a thickness of 5 μm is formed by vapor phase epitaxial growth in the range of 0 <x ≦ 0.75, and absorbs light to be detected as a detection target to generate photoelectrons. As shown in FIG. 2, the limit value x = 0.75 described above is a limit composition in which the Ga x In 1-x P active layer 21 can be a direct transition semiconductor, and x> 0.75. In addition, since the Ga x In 1-x P active layer 21 is an indirect transition semiconductor, the absorption coefficient is abruptly decreased, and the photocathode sensitivity is expected to be rapidly decreased.
[0012]
Therefore, the inventor made a prototype of Ga x In 1-x P active layer 21 and measured the quantum efficiency, which is one of the indicators of photoelectric sensitivity. FIG. 3 shows the result of measuring the quantum efficiency at a wavelength of 500 nm with respect to the range of 0 ≦ x ≦ 0.8. As theoretically expected, it was confirmed that no photoelectron was generated in the Ga x In 1-x P active layer at x = 0.8, and the quantum efficiency was drastically decreased at x ≧ 0.75. .
[0013]
Moreover, as shown in the experimental results of FIG. 3, it is clear that the quantum efficiency of the prototype Ga x In 1-x P active layer 21 is maximized in the range of 0.45 ≦ x ≦ 0.55. It was. Therefore, within the above range, almost no crystal defects are introduced into the Ga x In 1-x P active layer 21, and a highly sensitive photocathode in the visible light region can be realized.
[0014]
As described above, when the value of the atomic composition ratio x of the Ga x In 1-x P active layer 21 changes, the energy gap of the active layer 21 changes accordingly. That is, the wavelength at which the photocathode sensitivity falls can be arbitrarily changed on the long wavelength side of the spectral sensitivity characteristic. However, at this time, if the degree of lattice mismatch between the Ga x In 1-x P active layer 21 and the GaAs semiconductor substrate 10 exceeds 0.5%, crystal defects due to the lattice imperfection are introduced into the active layer 21, A reduction in surface sensitivity is inevitable. However, if the degree of lattice irregularity between them is within 0.5%, the strain stress existing inside the lattice constituting the active layer 21 is relaxed by the deformation of the lattice, so that crystal defects are introduced. It may not be done. Therefore, according to the above, the x range of the Ga x In 1-x P active layer 21 of the present invention is 0.45 <x <0.55, which is in good agreement with the experimental results.
[0015]
In the present invention, the GaAs semiconductor substrate 10 is not limited to p-type and may be n-type. Moreover, if the carrier concentration of the p-type Ga x In 1-x P active layer 21 is 1 × 10 18 cm −3 or more, there is no practical problem. And the thickness of the active layer 21 should just be a thickness which can fully absorb to-be-detected light, and should just be about 1 micrometer or more substantially.
[0016]
A surface layer 22 made of Cs 2 O for reducing the work function is formed extremely thin on the surface of the active layer 21, and photoelectrons from the active layer can be easily emitted to the outside. FIG. 4 is a cross-sectional view of a second embodiment of the photocathode according to the present invention. A p-type (Al y ) having an energy gap larger than that of the active layer 21 and having a carrier concentration of 1 × 10 19 cm −3 between the semiconductor substrate 10 and the active layer 21 (x = 0.5) described in the first embodiment. A buffer layer 12 (x ′ = 0.5, y = 0.5) made of Ga 1-y ) x ′ In 1-x ′ P is interposed as an epitaxial layer having a thickness of 2 μm. Crystal defects in the active layer 21 are reduced by preventing the defects from propagating to the active layer 21. Further, since the atomic composition ratio x ′ of the buffer layer 12 is equal to the atomic composition ratio x of the active layer 21, a high quality active layer 21 lattice-matched with the buffer layer 12 is formed as shown in FIG. Here, the atomic composition ratio x ′ of the buffer layer 12 and the atomic composition ratio x of the active layer 21 do not have to be completely equal. From the analogy described in the first embodiment, as long as they are substantially equal, No crystal defects are introduced into 21.
[0017]
If the carrier concentration of the p-type (Al y Ga 1-y ) x ′ In 1-x ′ P buffer layer 12 is 1 × 10 18 cm −3 or more, there is no practical problem, and the thickness is It is only necessary that the photoelectron cannot pass through, and it may be substantially about 1 μm or more. Further, the Cs 2 O surface layer 22 is formed extremely thin on the surface of the Ga x In 1-x P active layer 21 as in the first embodiment.
[0018]
The electron emission mechanism of the photocathode of the second embodiment configured as described above will be described as follows based on the energy band diagram shown in FIG.
[0019]
When the detected light (hν) enters the active layer 21, the photoelectrons (e ) excited from the valence band (VB) to the conduction band (CB) diffuse in the active layer 21. Moving. At this time, the buffer layer 12 having an energy gap larger than that of the active layer 21 serves as a potential barrier with respect to the active layer 21, so that photoelectrons travel toward the surface layer 22. The probability of the photoelectrons reaching the surface layer 22 side depends on the mean free path of the active layer 21, that is, the diffusion length of the photoelectrons. The diffusion length depends on the recombination speed of the active layer 21, and the recombination speed depends on the crystal defect density of the active layer 21. Therefore, since the probability that the photoelectrons reach the surface layer 22 side depends on the crystal defect density of the active layer 21, many photoelectrons reach the vicinity of the surface layer 22 in this embodiment. Since the surface of the active layer 21 where the Fermi level (F.L.) has approached to the lower end of the forbidden band because it is p-type Ga x In 1-x P, the work function is reduced to the vacuum level (V.L. ), The photoelectrons mentioned above are easily emitted from there.
[0020]
As described above, the photocathode of the present embodiment from which photoelectrons are emitted has a quantum efficiency of 50% at a wavelength of 500 nm, which is a high value as in the first embodiment.
[0021]
As described above, since the high-quality active layer 21 in which crystal defects are suppressed is formed on the semiconductor substrate 10 by epitaxial growth, the photocathode of the present invention has high quantum efficiency. That is, the photocathode of the present invention emits more photoelectrons than the prior art for the same detected light.
[0022]
Next, an embodiment of an electron tube using the photocathode according to the present invention will be described.
[0023]
FIG. 6 shows a horizontal sectional view of a so-called circular cage type photomultiplier tube. In FIG. 6, a cylindrical glass bulb with an entrance window 31 constituting the translucent vacuum vessel 30 is inclined with a certain angle with respect to the detected light (hν) incident from the entrance window 31. The above-described photocathode 20, a dynode unit 40 including a plurality of dynodes 40 a to 40 h for sequentially multiplying photoelectrons emitted from the photocathode 20, and an anode 50 for collecting output signals are disposed. Yes. Although not shown, the photocathode 20, the dynode unit 40, and the anode 50 have a positive bleeder voltage with respect to the photocathode 20 through the bleeder circuit and the electrical lead so as to increase step by step as the anode 50 is approached. Applied in a distributed manner.
[0024]
The light to be detected enters the Ga x In 1-x P active layer 21 through the incident window 31 of the vacuum container 30 of the photomultiplier tube, is absorbed, and photoelectrons e are generated and emitted into the vacuum. The photoelectrons e emitted into the vacuum are accelerated and incident on the first dynode 40a, generate secondary electrons multiplied by the photoelectrons, and are emitted again into the vacuum. The secondary electrons emitted from the first dynode 40a are accelerated again, enter the second dynode 40b, and further generate and emit secondary electrons. By repeating this eight times, the photoelectrons emitted from the photocathode 20 are emitted at the eighth dynode 40h by a secondary electron multiplication of about 1 million times. The secondary electrons multiplied and emitted from the eighth dynode 40h are collected by the anode 50 and taken out as an output signal current.
[0025]
In this embodiment, since more photoelectrons are emitted from the photocathode 20, the signal current finally output from the anode 50 also becomes larger, and is more sensitive and weaker than a conventional circular cage photomultiplier tube. Therefore, a photomultiplier tube having a sensitivity about 5 times that of the prior art can be obtained.
[0026]
【The invention's effect】
According to the photocathode of the present invention, by using an active layer composed of Ga x In 1-x P having an appropriate composition or a buffer layer composed of (Al y Ga 1-y ) x ′ In 1-x ′ P, Since the lattice irregularity between the active layer and the semiconductor substrate can be suppressed as much as possible, a highly sensitive photocathode can be obtained in the visible light region.
[0027]
According to the electron tube using the photocathode of the present invention, the electron tube using the photocathode of the present invention can detect weak light with higher sensitivity than before.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a photocathode according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a relationship between a lattice constant (broken line) and a forbidden band width (solid line) of (Al y Ga 1-y ) x ′ In 1-x ′ P quaternary mixed crystal.
FIG. 3 is a graph showing the relationship between the atomic composition ratio x of the active layer and the quantum efficiency of the photocathode at a wavelength of 500 nm.
4 is a side sectional view of a second embodiment of a photomultiplier tube provided with the photocathode of FIG. 1. FIG.
FIG. 5 is an energy band diagram of the second embodiment of the photocathode according to the present invention.
6 is a horizontal sectional view of an embodiment of a photomultiplier tube using the photocathode of FIG.
FIG. 7 is a cross-sectional view of a reflective photocathode obtained by epitaxially growing a p-type GaAs active layer on a GaAs semiconductor substrate.
FIG. 8 shows the relationship between the energy gap and the lattice constant of a III-V compound semiconductor and its mixed crystal, and the mixed crystal of two types of III-V compound semiconductors shows a direct transition semiconductor with a solid line. It is a diagram showing the relationship between the indirect transition semiconductors with dotted lines.
FIG. 9 is a cross-sectional view of a reflective photocathode having an active layer in which the composition of GaAsP is inclined on a GaAs semiconductor substrate.
FIG. 10 is a sectional view of a reflective photocathode in which a GaAs / GaAsP superlattice layer is interposed between a semiconductor substrate and a GaAsP active layer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 11 ... Superlattice layer, 12 ... Buffer layer, 20 ... Photocathode, 21 ... Active layer, 22 ... Surface layer, 30 ... Vacuum container, 40 ... dynode part, 40a ... 1st dynode, 40b ... 2nd dynode, 40c ... 3rd dynode, 40d ... 4th dynode, 40e ... 5th dynode, 40f ... Sixth dynode, 40g ... seventh dynode, 40h ... eighth dynode, 50 ... anode.

Claims (4)

Ga及びAsを主成分とするIII−V族化合物半導体基板と、前記半導体基板上にキャリア濃度が1×1018cm−3以上のp型GaIn1−xPによって形成され、検出対象である被検出光を吸収して光電子を発生させる活性層と、
前記活性層上にアルカリ金属又はその酸化物又はそのフッ化物によって形成され、前記活性層に仕事関数を低下させる表面層と、
を備え、前記表面層を介して入射された前記被検出光に応答して光電子を前記表面層を介して放出する光電面であって、前記活性層の原子組成比xの範囲は0<x≦0.75であることを特徴とする光電面。
A group III-V compound semiconductor substrate mainly composed of Ga and As, and p-type Ga x In 1-x P having a carrier concentration of 1 × 10 18 cm −3 or more on the semiconductor substrate, An active layer that absorbs certain detected light and generates photoelectrons;
A surface layer formed on the active layer by an alkali metal or an oxide thereof or a fluoride thereof and lowering a work function to the active layer;
A photocathode that emits photoelectrons through the surface layer in response to the light to be detected incident through the surface layer, wherein the range of the atomic composition ratio x of the active layer is 0 <x A photocathode characterized by ≦ 0.75.
前記半導体基板は上面に前記活性層よりもエネルギギャップが大きい(AlGa1−yx’In1−x’Pからなるバッファ層を有しており、前記バッファ層の原子組成比x’が前記活性層の原子組成比xとほぼ等しいことを特徴とする請求項1に記載の光電面The semiconductor substrate has a buffer layer made of (Al y Ga 1-y ) x ′ In 1-x ′ P having an energy gap larger than that of the active layer on the upper surface, and the atomic composition ratio x ′ of the buffer layer The photocathode according to claim 1, wherein is substantially equal to an atomic composition ratio x of the active layer. 前記活性層の原子組成比xの範囲は0.45<x<0.55であることを特徴とする請求項1又は2に記載の光電面。3. The photocathode according to claim 1, wherein the range of the atomic composition ratio x of the active layer is 0.45 <x <0.55. 被検出光の入射窓を有し、内部が真空状態に保たれた真空容器と、
前記真空容器内部の前記入射窓を臨む位置に収容された請求項1〜3のいずれかに記載の光電面と、
前記真空容器内部に設置され、前記光電面に対して正の電圧を保持する陽極と、
を少なくとも備えた電子管。
A vacuum vessel having an incident window for the light to be detected and maintained in a vacuum state;
The photocathode according to any one of claims 1 to 3, housed in a position facing the entrance window inside the vacuum vessel,
An anode installed inside the vacuum vessel and holding a positive voltage relative to the photocathode;
At least an electron tube.
JP2012196A 1996-02-06 1996-02-06 Photocathode and electron tube using the same Expired - Fee Related JP3615857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196A JP3615857B2 (en) 1996-02-06 1996-02-06 Photocathode and electron tube using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196A JP3615857B2 (en) 1996-02-06 1996-02-06 Photocathode and electron tube using the same

Publications (2)

Publication Number Publication Date
JPH09213204A JPH09213204A (en) 1997-08-15
JP3615857B2 true JP3615857B2 (en) 2005-02-02

Family

ID=12018297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196A Expired - Fee Related JP3615857B2 (en) 1996-02-06 1996-02-06 Photocathode and electron tube using the same

Country Status (1)

Country Link
JP (1) JP3615857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080799A (en) * 2005-09-16 2007-03-29 Hamamatsu Photonics Kk Photo cathode and electron tube
JP5291378B2 (en) 2008-05-15 2013-09-18 スタンレー電気株式会社 Photocathode device

Also Published As

Publication number Publication date
JPH09213204A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US11081310B2 (en) Photocathode including silicon substrate with boron layer
Martinelli et al. The application of semiconductors with negative electron affinity surfaces to electron emission devices
JP4365255B2 (en) Luminescent body, electron beam detector, scanning electron microscope and mass spectrometer using the same
US5747826A (en) Photoemitter electron tube, and photodetector
JP2004131567A (en) Illuminant, and electron beam detector, scanning electron microscope and mass spectrometer using the same
JP3954478B2 (en) Semiconductor photocathode and photoelectric tube using the same
JP3524249B2 (en) Electron tube
JPH05234501A (en) Photoelectron emitting surface and electron tube using the same
JP3615857B2 (en) Photocathode and electron tube using the same
US4749903A (en) High-performance photocathode
JPH11135003A (en) Photoelectric surface and electron tube using it
US6563264B2 (en) Photocathode and electron tube
JP3565526B2 (en) Photoemission surface and electron tube using the same
JP7227230B2 (en) Thermally assisted negative electron affinity photocathode
JP3615856B2 (en) Photoelectric surface and photoelectric conversion tube using the same
JP3429671B2 (en) Photocathode and electron tube
JPH08255580A (en) Photocathode and electronic tube
JPH1196897A (en) Photoelectric cathode and electron tube using the same
Zwicker Photoemissive detectors
JP3565535B2 (en) Photocathode and electron tube
US5138191A (en) Photoemitter
JP2009272102A (en) Photocathode and electron tube having the same
JP2719098B2 (en) Photoelectron emission surface, electron tube and photodetector using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees