JP3615584B2 - Discharge type exhaust gas purification device and method for manufacturing the same - Google Patents

Discharge type exhaust gas purification device and method for manufacturing the same Download PDF

Info

Publication number
JP3615584B2
JP3615584B2 JP03097795A JP3097795A JP3615584B2 JP 3615584 B2 JP3615584 B2 JP 3615584B2 JP 03097795 A JP03097795 A JP 03097795A JP 3097795 A JP3097795 A JP 3097795A JP 3615584 B2 JP3615584 B2 JP 3615584B2
Authority
JP
Japan
Prior art keywords
discharge
metal foil
electrode
cell
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03097795A
Other languages
Japanese (ja)
Other versions
JPH0814028A (en
Inventor
保 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP03097795A priority Critical patent/JP3615584B2/en
Publication of JPH0814028A publication Critical patent/JPH0814028A/en
Application granted granted Critical
Publication of JP3615584B2 publication Critical patent/JP3615584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、触媒コンバータ,集塵装置等に使用される放電型排気ガス浄化装置及びその製造方法に関する。
【0002】
【従来の技術】
従来、コロナ放電等を利用して、排気ガス中の窒素酸化物,炭化水素を処理することにより排気ガスを浄化する放電型排気ガス浄化装置として、特開平5−59934号公報に示すものが図12,図13に示すように知られている。
図12において、符号101はエンジンで、このエンジン101には排気管102が装着され、この排気管102の途中に放電型排気ガス浄化装置103が装着されている。この放電型排気ガス浄化装置103の電極構成を示す断面図が図13に示されている。
【0003】
図において、放電型排気ガス浄化装置103は1本の直線状のタングステン線104Aからなる放電電極104と、円筒状の受電極105とで構成され、円筒状の受電極105の中心軸に放電電極104が位置している。
そして、放電電極104を負極にし、受電極105を正極にして放電電極104と受電極105の間に、直流高圧電圧をかけると、両電極104,105の間の空間106には、電界が形成される。受電極105内に処理すべき排気ガスを導くと、排気ガス中の窒素酸化物,炭化水素等は、負のイオン107(例えばNO )に帯電して受電極105に吸着分解され、排気ガスが浄化される。
【0004】
【発明が解決しようとする課題】
ところが、一般に、図14に示すように、放電電極104を構成する放電線としてのタングステン線104Aの線径は、100μmのものが用いられる。タングステン線104Aの線径は放電効率と機械的強度とのバランスから決められている。放電効率の点からはタングステン線104Aの線径の細いものが良いが、耐久的強度の点で劣る。即ち、タングステン線104Aの使用に伴い表面が放電によって摩耗し、線径が細くなり、タングステン線104Aは途中で切れ易く、寿命が短くなる。勿論、タングステン線104Aの線径を太くすれば、切れ難くなるが、放電効率が悪くなる。
【0005】
そこで、かかる放電電極の放電効率を良くするとともに機械的強度を確保できる放電型排気ガス浄化装置が要求されるが、かかる放電型排気ガス浄化装置は、簡単な工程で製造することが要求される。
【0006】
本発明は、上述の問題点を解決するためになされたもので、その目的は、放電電極の放電効率を良くするとともに機械的強度を確保でき、製造工程を簡単にできる放電型排気ガス浄化装置及びその製造方法を提供することである。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、放電端から電荷を放射する所定の長さの金属製箔板を多層状に配置してなる放電電極と、放電電極にその下流側に位置して対向配置され、多層状の金属製箔板の間にセル空間を形成してなるセル状受電極とを備えていることを特徴とする。
【0008】
請求項2記載の発明は、放電端から電荷を放射する所定の長さの金属製箔板を多層状に配置してなる放電電極と、放電電極にその下流側に位置して対向配置され、多層状の金属製箔板の間にセル空間を形成してなるセル状受電極と、放電電極及びセル状受電極を収容する容器とを備えていることを特徴とする。
請求項3記載の発明は、対向配置された2つの外筒と、一方の外筒に嵌挿され、放電端から電荷を放射する所定の長さの金属製箔板を多層状に配置してなる放電電極と、他方の外筒に嵌挿され、放電電極にその下流側に位置して対向配置されるとともに多層状の金属製箔板の間にセル空間を形成してなるセル状受電極と、セラミックス系接着剤により放電電極側とセル状受電極側を接合する筒状絶縁材とを備えていることを特徴とする。
【0009】
請求項4記載の発明は、請求項1,2,3のいずれか記載の放電型排気ガス浄化装置において、セル状受電極は平板状の金属製箔板と波板状の金属製箔板を重ね螺旋状に多重に巻き回してなり、平板状の金属製箔板と波板状の金属製箔板の間にセル空間が形成されていることを特徴とする。
請求項5記載の発明は、請求項1,2,3,4のいずれか記載の放電型排気ガス浄化装置において、セル状受電極における金属製箔板には触媒が付着されていることを特徴とする。
【0010】
請求項6記載の発明は、請求項1,2,3,4,5のいずれか記載の放電型排気ガス浄化装置において、放電電極における金属製箔板の板厚は、24μmより大きく100μm未満であることを特徴とする。
請求項7記載の発明は、請求項1,2,3,4,5,6のいずれか記載の放電型排気ガス浄化装置において、金属製箔板は少なくともアルミニウム2〜6%,クロム12〜25%を含有し、残部に鉄を含有してなるステンレス鋼であることを特徴とする。
【0011】
請求項8記載の発明は、第1外筒に嵌挿されて放電端から電荷を放射する所定の長さの金属製箔板を多層状に配置してなる放電電極と、他方の外筒に嵌挿されて放電電極の下流側に位置するとともに多層状の金属製箔板の間にセル空間を形成してなるセル状受電極を対向配置し、放電電極とセル状受電極の間に筒状絶縁材を配置し、高温に加熱して、金属製箔板の拡散接合及び放電電極,セル状受電極と両外筒のろう付け接合を行なうとともにセラミックス系接着剤により放電電極の放電端とセル状受電極の端縁を筒状絶縁材を介して接合することを特徴とする。
【0012】
【作用】
請求項1記載の発明において、放電電極とセル状受電極の間に電圧がかけられる。
放電電極の放電端から負または正の電荷が放出され、この負または正の電荷は気体中の分子に衝突して帯電し、負または正のガスイオンが生成される。
【0013】
放電電極とセル状受電極の間に印加された電圧及び気体の流れにより、この正または負のガスイオンは放電電極からセル状受電極内へ流れる。
セル状受電極では、セル空間を通る正または負のガスイオンは、クーロン力で金属製箔板に引っ張られ、金属製箔板に吸着し、分解する。
【0014】
そして、放電電極における金属製箔板の放射端が放電により摩耗するが、金属製箔板の摩耗量は、金属製箔板の長さに比して無視できる程小さい。
請求項2記載の発明において、請求項1記載の発明と同様の作用が生じる。
請求項3記載の発明において、請求項1記載の発明と同様の作用が生じる。
加えて、放電電極側とセル状受電極側はセラミックス系接着剤により筒状絶縁材を介して接合されているので、放電電極側とセル状受電極側が電気的に絶縁されるとともに放電電極側とセル状受電極側が接合される。
【0015】
請求項4記載の発明において、セル状受電極は平板状の金属製箔板と波板状の金属製箔板を重ね螺旋状に多重に巻き回してなり、平板状の金属製箔板と波板状の金属製箔板の間にセル空間が形成されているので、セル状受電極の波板状の金属製箔板と平板状の金属製箔板の間にセル空間が細長通路状に形成され、セル状受電極に引っ張られるガスイオンと触媒の接触の可能性が高くなくる。
【0016】
請求項5記載の発明において、セル状受電極における金属製箔板には触媒が付着されているので、触媒活性の向上を図ることができ、また、触媒により、ガスイオンのイオン化エネルギーが、該ガスイオンを分解するエネルギーとして利用される率が高くなるので、ガスイオンの分解の反応速度が速くなる。
請求項6記載の発明において、放電電極における金属製箔板の板厚は24μmより大きく100μm未満であるので、放電効率が高くなる。
【0017】
請求項7記載の発明において、金属製箔板は少なくともアルミニウム2〜6%,クロム12〜25%を含有し、残部に鉄を含有してなるステンレス鋼であるので、耐酸化性が大きく、また、高温の排気ガス中でも充分に耐久性が確保される。
請求項8記載の発明において、第1外筒に嵌挿されて放電端から電荷を放射する所定の長さの金属製箔板を多層状に配置してなる放電電極と、他方の外筒に嵌挿されて放電電極の下流側に位置するとともに多層状の金属製箔板の間にセル空間を形成してなるセル状受電極が対向配置され、放電電極とセル状受電極の間に筒状絶縁材が配置され、同一工程で、高温に加熱して、金属製箔板の拡散接合及び放電電極,セル状受電極と両外筒のろう付け接合が行なわれるとともにセラミックス系接着剤により放電電極の放電端とセル状受電極の端縁が筒状絶縁材を介して接合される。
【0018】
【実施例】
以下、図面により本発明の実施例について説明する。
請求項1,2記載の発明の実施例に係わる放電型排気ガス浄化装置を、排気ガスの浄化用として使用される触媒コンバータに適用して説明する。
図1ないし図4において、符号1は触媒コンバータで、この触媒コンバータ1は密閉容器2を有している。密閉容器2は金属製で半割り型に構成され、その中央部は断面楕円形状になっている。密閉容器2内に放電型金属触媒担体3が収容されている。
【0019】
密閉容器2内に放電型金属触媒担体3からなるセル状受電極4及び放電電極5が収容されている。放電電極5にその下流側に位置してセル状受電極4が対向・配置されている。セル状受電極4と放電電極5との間隔は1mm〜10mmとされている。
セル状受電極4は、平板状の金属製箔板4A,波板状の金属製箔板4Bを交互に重ね、これらを多重に巻き回して拡散接合で固着したものである。平板状の金属製箔板4A,波板状の金属製箔板4Bは排気ガスの流れに平行になっており、その表面には触媒が付着されている。平板状の金属製箔板4A,波板状の金属製箔板4Bの材料としては、アルミニウム5%,鉄75%,クロム20%を含有したステンレス鋼が用いられている。平板状の金属製箔板4A,波板状の金属製箔板4Bの間に多数のセル空間4Cが形成されている。セル空間4Cは、高さH=1.2mm,底長さL=2.5mmの略3角形状の断面を有して排気ガスの流れ方向に沿った細長い排気通路として形成されている。
【0020】
一方、放電電極5は、平板状の金属製箔板5A,波板状の金属製箔板5Bを交互に重ね、これらを多重に巻き回して拡散接合で固着したものである。平板状の金属製箔板5A,波板状の金属製箔板5Bは排気ガスの流れに平行になっている。平板状の金属製箔板5A,波板状の金属製箔板5Bの材料としては、アルミニウム5%,鉄75%,クロム20%を含有したステンレス鋼が用いられている。そして、平板状の金属製箔板5A,波板状の金属製箔板5Bの間にセル空間5Cが形成されている。
【0021】
放電電極5における平板状の金属製箔板5A,波板状の金属製箔板5Bの板厚は、約24〜100μmで、機械的強度と放電効率のバランスの取れるように決められた図14のタングステン線104Aの線径である100μmよりも薄くなっている。ここで、下限として25μmを設定した理由は、板材の素材の圧延の限界値とされ、板厚の上限として100μmにした理由は、100μm以上では電界強度が小さく、放電効率が悪いからである。
【0022】
そして、セル状受電極4は密閉容器2の内側に配置された第1下流側絶縁支持部材6と第2下流側絶縁支持部材7により保持されている。第1下流側絶縁支持部材6と第2下流側絶縁支持部材7はセラミック可撓製部材で構成されている。セル状受電極4の図面上の下側に第2棒状電極8が固設され、第2棒状電極8の周囲に第2セラミック環状体9が外装されている。第2セラミック環状体9は第2棒状電極8と密閉容器2を絶縁している。
【0023】
また、放電電極5は密閉容器2の内側に配置された第1上流側絶縁支持部材10と第2上流側絶縁支持部材11により保持されている。第1上流側絶縁支持部材10と第2上流側絶縁支持部材11はセラミック可撓製部材で構成されている。放電電極5の図面上の下側に第1棒状電極12が固設され、第1棒状電極12の周囲に第1セラミック環状体13が外装されている。第1セラミック環状体13は第1棒状電極12と密閉容器2を絶縁している。
【0024】
そして、セル状受電極4と放電電極5は高圧直流電源14に接続されている。
しかして、本実施例においては、放電電極5とセル状受電極4の間に直流高圧電圧がかけられる。ここで、その電圧は、放電電極5とセル状受電極4との間隔が1mmのとき、5000ボルト程度とされている。
放電電極5の放電端5Dから例えば負の電荷が放出され、この負の電荷は排気ガス中の窒素酸化物,炭化水素等の分子に衝突して帯電し、負のガスイオン(例えばNO )が生成される。
【0025】
放電電極5とセル状受電極4の間に印加された電圧及び排気ガスの流れにより、この負のガスイオンは放電電極5からセル状受電極4内へ流れる。
セル状受電極4では、セル空間4Cを通る負のガスイオンは、クーロン力で平板状の金属製箔板4A,波板状の金属製箔板4Bに引っ張られ、平板状の金属製箔板4A,波板状の金属製箔板4Bに吸着され、続いて分解される。例えば、NO はN,Oに分解され、炭化水素のガスイオンは酸化され、排気ガスが浄化される。
【0026】
そして、セル状受電極4の平板状の金属製箔板4A,波板状の金属製箔板4B間にセル空間4Cが形成され、また、セル状受電極4に引っ張られるガスイオンと平板状の金属製箔板4A,波板状の金属製箔板4Bに付着された触媒の接触の可能性が高いことから、触媒活性の向上が図られる。
また、触媒により、ガスイオンのイオン化エネルギーが、該ガスイオンを分解するエネルギーとして利用される率が高くなる。
【0027】
従って、触媒により、ガスイオンの分解の反応速度が速くなる。
そして、放電電極5における平板状の金属製箔板5A,波板状の金属製箔板5Bの板厚は、24〜100μmで、機械的強度と放電効率のバランスの取れたように決められた放電線としてのタングステン線104Aの線径100μmよりも薄いので、電界強度が大であり、放電効率が増加する。
【0028】
ここで、放電効率とは、コロナ放電に係わる電圧と電流の比率である。
そして、放電電極5の放電端5Dから電子が放射されるので、使用に伴って、放電端5Dが摩耗して図2の状態から図3の状態に変化するが、図3の摩耗した状態の放電端5Dの形状は、従来におけるタングステン線104Aの断面の形状より尖っているので、電界強度が大であり、放電効率は高く維持される。
【0029】
以上の如き構成によれば、放電電極5における平板状の金属製箔板5A,波板状の金属製箔板5Bの、セル状受電極4と対向する側の放電端5Dが放電により摩耗しても、平板状の金属製箔板5A,波板状の金属製箔板5Bの摩耗量は、平板状の金属製箔板5A,波板状の金属製箔板5Bの長さに比して無視できる程小さく、従って、放電電極5の耐久性を実質的に確保したのと同等の効果を奏し、放電電極5の交換頻度を少なくできる。
【0030】
また、放電電極5における平板状の金属製箔板5A,波板状の金属製箔板5Bの板厚は、機械的強度と放電効率のバランスの取れたように決められた放電線としてのタングステン線104Aの線径よりも薄いので、従来よりも放電効率を増加させることができる。
放電効率が増加することにより、排気ガス中のNO,炭化水素の分子のイオン化する量を増加することができる。
【0031】
そして、放電電極5における平板状の金属製箔板5A,波板状の金属製箔板5Bの板厚は約25〜100μmであるので、放電電極5が摩耗しても、放電端5Dの曲率が大きく尖っており、放電効率を高く維持することができる。
さらに、平板状の金属製箔板5A,波板状の金属製箔板5Bの材料としては、アルミニウム5%,鉄75%,クロム20%を含有したステンレス鋼が用いられているので、タングステン線104Aに比して、安価で、耐久性が大きく、交換を不要にできる効果を有している。
【0032】
なお、本実施例においては、放電電極5を負極側にし、且つ、セル状受電極4の側を正極側にしているが、放電電極5の側を正極の側にするとともにセル状受電極4を負極の側にすることもできる。
【0033】
また、本実施例においては、放電電極5とセル状受電極4の間に直流電圧をかけているが、直流に限定されることはない。例えば、交流,周期的な波形の電流,非周期的な波形の電流を使用することもできる。
そして、本実施例においては、放電電極5の材料として、アルミニウム5%,鉄75%,クロム20%を含有したステンレス鋼を用いているが、かかる材料に限定されないことは勿論であり、導電体であれば適用できる。導電体として、銅,鉄等の良導体を始め、モリブデン,ニッケルを含有する金属の導体抵抗体、酸化シリコン等の半導体を挙げることができる。また、ニクロム線,鉄−ニッケル合金,鉄−クロム合金等にも適用できる。
【0034】
そして、また、本実施例においては、放電電極5は、平板状の金属製箔板5A,波板状の金属製箔板5Bを交互に重ね、これらを多重に巻き回してろう付け接合で固着したものであるが、図5に示すように金属製箔板21で蛇行断面に構成して多層状に構成することもでき、また、図6に示すように金属製箔板22で螺旋断面に構成することもできる。
【0035】
さらに、本実施例においては、セル状受電極4の平板状の金属製箔板4A,波板状の金属製箔板4Bの材料としては、アルミニウム5%,鉄75%,クロム20%を含有したステンレス鋼を用いているが、かかる材料に限定されないことは勿論である。例えば、アルミニウム2〜6%,クロム12〜25%,残部に鉄を含有してなるステンレス鋼を用いることもできる。また、Niを含有することもできる。
【0036】
そして、さらに、本実施例においては、セル空間4Cは、高さH=1.2mm,底長さL=2.5mmの略3角形状の断面に構成されているが、セル空間4Cは、高さH=1〜5mm,底長さL=1〜4mmにすることもできる。
加えて、本実施例におけるセル状受電極4の平板状の金属製箔板4A,波板状の金属製箔板4Bに誘電体物質で被覆することもできる。誘電体物質として、例えば酸化アルミニウム及びその混合物,酸化セリウム,或いは、Pt,Pd,Rh等の触媒作用のある物質を挙げることもできる。この場合には、吸着面積が増大し、イオン化したNO,炭化水素の分子に対して吸着機能,分解機能が増大する。
【0037】
その上、本実施例においては、放電型排気ガス浄化装置を触媒コンバータに適用した例を説明したが、これに限定されることなく、例えば、集塵装置に適用することもできる。
請求項1,3,8記載の発明の実施例に係わる放電型排気ガス浄化装置及びその製造方法を、排気ガスの浄化用として使用される触媒コンバータに適用して説明する。
【0038】
請求項1,3記載の発明の実施例に係わる放電型排気ガス浄化装置は、請求項1,2記載の発明の実施例に係わる放電型排気ガス浄化装置に比して放電電極,セル状受電極が対向配置している点で基本構成が同じであり、放電電極,セル状受電極の構造も同様に構成され、少なくとも同様の作用,効果を奏する。該請求項1,2記載の発明の実施例に係わる放電型排気ガス浄化装置と相違する点についてのみ説明する。
【0039】
図7において、符号23は放電型排気ガス浄化装置で、この放電型排気ガス浄化装置23は対向配置された第1外筒23A,第2外筒23Bを有している。第2外筒23Bにディフューザ24が固設されている。第1外筒23Aに後述する筒状絶縁材35を介してディフューザ25が接合されている。
ここで、第1外筒23A,第2外筒23B,ディフューザ24,ディフューザ25は金属製で、その断面は楕円形状になっており、ディフューザ24,ディフューザ25は図示しない排気管に連結されている。
【0040】
第1外筒23Aに放電電極27が嵌挿されている。放電電極27は放電端27Dから電荷を放射するもので、平板状の金属製箔板27A,波板状の金属製箔板27Bを交互に重ね、これらを多重に巻き回して拡散接合で固着したものである。平板状の金属製箔板27A,波板状の金属製箔板27Bの間に、セル空間27Cが形成されている。第1外筒23Aと放電電極27とで放電電極側Yが構成されている。
【0041】
第2外筒23Bに放電型金属触媒担体からなるセル状受電極28が嵌挿され、セル状受電極28は放電電極27にその下流側に位置して対向配置され、平板状の金属製箔板28A,波板状の金属製箔板28Bを交互に重ね、これらを多重に巻き回して拡散接合で固着したものである。平板状の金属製箔板28A,波板状の金属製箔板28Bの間にセル空間28Cが形成されている。第2外筒23Bとセル状受電極28とでセル状受電極側Sが構成されている。
【0042】
第1外筒23A,第2外筒23Bの間に筒状絶縁材29が配置され、筒状絶縁材29の両端に環状溝部26,30が形成され、環状溝部26の底面26A及び壁面26Bと放電電極27の放電端27Dはセラミックス系接着剤31により接合されている。セラミックス系接着剤31は、例えばシリカ,シリカ・アルミナ,アルミナ,ジルコニア等を主成分とする100%無機質からなる水系塗料とされて、その耐熱温度は1200℃〜2000℃となっている。
【0043】
また、環状溝部30の底面30A及び壁面30Bとセル状受電極28の端縁28Dはセラミックス系接着剤31により接合されている。
上述の放電電極27とセル状受電極28は筒状絶縁材29により絶縁され、且つ、接合されている。
放電電極27の図面上の下側に第1棒状電極32が固設され、第1棒状電極32は第1外筒23Aを貫通して外部に突出している。
【0044】
セル状受電極28の図面上の下側に第2棒状電極33が固設されている。第2棒状電極33は第2外筒23Bを貫通して外部に突出し、ボディアースされている。
【0045】
そして、放電電極27とセル状受電極28は高圧直流電源34を介して接続されている。
そして、ディフューザ25と第1外筒23Aの間に筒状絶縁材35が配置され、筒状絶縁材35の両端には環状溝部36,37が形成されている。環状溝部36と放電電極27の排気ガス流入端27Eはセラミックス系接着剤38により接合されている。また、環状溝部37とディフューザ25はセラミックス系接着剤38により接合されている。
【0046】
以上の如き構成によれば、請求項1,2記載の発明の実施例に係わる放電型排気ガス浄化装置による効果に加えて、放電電極17とセル状受電極28はセラミックス系接着剤31により筒状絶縁材29を介して接合されているので、放電電極27とセル状受電極28を絶縁できるとともに放電電極27とセル状受電極28を接合でき、放電型排気ガス浄化装置の構造を簡単にできる。
【0047】
次に、請求項8記載の発明の実施例に係わる放電型排気ガス浄化装置の製造方法を、図10により説明する。この製造方法は、請求項1,3記載の発明の実施例に係わる放電型排気ガス浄化装置を製造する方法である。
第1工程S1において、平板状の金属製箔板27Aと波板状の金属製箔板27Bを重ね螺旋状に多重に巻き回すことにより、放電電極27が形成される。
【0048】
平板状の金属製箔板28Aと波板状の金属製箔板28Bを重ね螺旋状に多重に巻き回すことにより、セル状受電極28が形成される。
第2工程S2において、放電電極27の外周面27F,セル状受電極28の外周面28Fにそれぞれろう材が添付される。また、第1棒状電極32の底面32A,第2棒状電極33の底面33Aにそれぞれろう材が添付される。
【0049】
第3工程S3において、第1外筒23Aに放電電極27が嵌挿される。また、第2外筒23Bにセル状受電極28が嵌挿される。
第4工程S4において、筒状絶縁材29,35が準備される。
第5工程S5において、筒状絶縁材29にセラミックス系接着剤31が塗布され、筒状絶縁材35にセラミックス系接着剤38が塗布される。
【0050】
第6工程S6において、第1外筒23Aに嵌挿された放電電極27と、第2外筒23Bに嵌挿されたセル状受電極28が対向配置され、放電電極27とセル状受電極28の間にセラミックス系接着剤31を塗布した筒状絶縁材29,35が組み付けられる。同時に、ディフューザ24が第2外筒23Bに組み付けられる。また、ディフューザ25は筒状絶縁材35を介して第1外筒23Aに組み付けられ、図7に示す状態となる。
【0051】
第7工程S7において、第6工程S6の状態のアッセンブリは、例えば、次の条件で行なわれる。
(1)加熱条件は1200℃以上とされる。この温度は、セラミックス系接着剤31,37の硬化条件を満足するとともに、拡散接合の加熱温度1150℃〜1200℃,ろう付け接合の加熱温度1150℃〜1200℃を満足している。
(2)加熱時間は5分以上とされる。
【0052】
(3)圧力条件は10Paより低い圧力の真空度とされる。
そして、放電型排気ガス浄化装置が以下のように造られる。
放電電極27の平板状の金属製箔板27A,波板状の金属製箔板27Bが拡散接合され、固着される。セル状受電極28の平板状の金属製箔板28A,波板状の金属製箔板28Bが拡散接合され、固着される。
【0053】
同時に、第1外筒23Aに放電電極27の外周面27Fがろう付け接合され、第2外筒23Bにセル状受電極28の外周面28Fがろう付け接合される。
また、放電電極27の放電端27Dとセル状受電極28の端縁28Dはセラミックス系接着剤31の硬化により、筒状絶縁材29を介して一体化される。同時に、ディフューザ24が第2外筒23Bにろう付け接合される。また、ディフューザ25は筒状絶縁材35を介して第1外筒23Aに一体化される。
【0054】
また、第1棒状電極32の底面32A,第2棒状電極33の底面33Aは、放電電極27の外周面27F,セル状受電極28の外周面28Fにそれぞれろう付け接合される。
以上の如き構成によれば、同一工程で、(1)放電電極27における平板状の金属製箔板27Aと波板状の金属製箔板27Bとの拡散接合、セル状受電極28における平板状の金属製箔板28Aと波板状の金属製箔板28Bとの拡散接合、(2)放電電極27,セル状受電極28と両外筒23A,23Bのろう付け接合、(3)セラミックス系接着剤31の硬化による放電電極27の放電端27Dとセル状受電極28の端縁28Dとの筒状絶縁材29を介しての接着剤接合の3つの接合を行なうことができ、(1)の拡散接合、(2)のろう付け接合、(3)の接着剤接合を別々の工程で行なう必要がなく、放電型排気ガス浄化装置の製造工程を簡単にできる。
【0055】
ここで、一般的に、請求項1,3記載の発明の実施例に係わる放電型排気ガス浄化装置を製造するに際しては、上記の(1)の拡散接合が行なわれた後、(3)の接着剤接合が行なわれるので、工程数が多くなり、放電型排気ガス浄化装置の製造工程が複雑となるが、上述のように、同一工程で3つの接合が可能になり、放電型排気ガス浄化装置の製造工程を簡単にできる。
【0056】
なお、本実施例においては、第1棒状電極32の底面32A,第2棒状電極33の底面33Aは、放電電極27の外周面27F,セル状受電極28の外周面28Fにそれぞれろう付け接合されるが、ろう付け接合に代えて拡散接合することもできる。
また、本実施例においては、放電電極側Yの放電電極27とセル状受電極側Sのセル状受電極28はセラミックス系接着剤31により接合されることにより、放電電極側Yとセル状受電極側Sが一体化されているが、図11に示すように、筒状絶縁材41と第1外筒23A,第2外筒23Bをセラミックス系接着剤31を介して接合することにより、放電電極側Yとセル状受電極側Sを一体化することもできる。
【0057】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、放電電極における金属製箔板の放射端が放電により摩耗しても、金属製箔板の摩耗量は、金属製箔板の長さに比して無視できる程小さく、従って、放電電極の耐久性を実質的に確保したのと同等の効果を奏する。
【0058】
請求項2記載の発明によれば、請求項1記載の発明と同様の効果を奏する。
請求項3記載の発明によれば、請求項1記載の発明と同様の効果を奏する。
加えて、放電電極側とセル状受電極側はセラミックス系接着剤により筒状絶縁材を介して接合されているので、放電電極側とセル状受電極側を絶縁できるとともに放電電極側とセル状受電極側を接合でき、放電型排気ガス浄化装置の構造を簡単にできる。
【0059】
請求項4記載の発明によれば、セル状受電極は平板状の金属製箔板と波板状の金属製箔板を重ね螺旋状に多重に巻き回してなり、平板状の金属製箔板と波板状の金属製箔板の間にセル空間が形成されているので、セル状受電極の波板状の金属製箔板と平板状の金属製箔板の間にセル空間が細長通路状に形成され、セル状受電極に引っ張られるガスイオンと触媒の接触の可能性を高くできる効果を奏する。
【0060】
請求項5記載の発明によれば、セル状受電極における金属製箔板には触媒が付着されているので、触媒活性の向上を図ることができ、また、触媒により、ガスイオンのイオン化エネルギーが、該ガスイオンを分解するエネルギーとして利用される率を高くできるので、ガスイオンの分解の反応速度を速くできる効果を奏する。
【0061】
請求項6記載の発明によれば、放電電極における金属製箔板の板厚は24μmより大きく100μm未満であるので、放電効率を高くすることができる効果を奏する。
請求項7記載の発明によれば、金属製箔板は少なくともアルミニウム2〜6%,クロム12〜25%を含有し、残部に鉄を含有してなるステンレス鋼であるので、耐酸化性が大きく、また、高温の排気ガス中でも充分に耐久性を確保できる効果を奏する。
【0062】
請求項8記載の発明によれば、同一工程で、(1)金属製箔板の拡散接合、(2)放電電極,セル状受電極と両外筒のろう付け接合、(3)セラミックス系接着剤の硬化による放電電極の放電端とセル状受電極の端縁の筒状絶縁材を介しての接着剤接合の3つの接合を行なうことができ、放電型排気ガス浄化装置の製造工程を簡単にできる効果を奏する。
【図面の簡単な説明】
【図1】請求項1,2記載の発明の実施例に係わる放電型排気ガス浄化装置の放電電極,セル状電極を示す斜視図である。
【図2】放電電極における平板状の金属製箔板,波板状の金属製箔板の局部拡大断面図である。
【図3】放電電極における平板状の金属製箔板,波板状の金属製箔板の摩耗した場合の局部拡大断面図である。
【図4】同放電型排気ガス浄化装置の縦断面図である。
【図5】放電電極の第1変形例を示す斜視図である。
【図6】放電電極の第2変形例を示す斜視図である。
【図7】請求項1,3記載の発明の実施例に係わる放電型排気ガス浄化装置を示す断面図である。
【図8】図7における放電型排気ガス浄化装置の放電電極,セル状電極を示す斜視図である。
【図9】図7の筒状絶縁材を示す拡大断面図である。
【図10】請求項8記載の発明の実施例に係わり、放電型排気ガス浄化装置の製造方法を示す工程系統図である。
【図11】請求項1,3記載の発明の実施例に係わる放電型排気ガス浄化装置の変形例を示す断面図である。
【図12】従来における放電型排気ガス浄化装置の構成図である。
【図13】同放電型排気ガス浄化装置の電極構成を示す横断面図である。
【図14】同放電型排気ガス浄化装置の放電線の断面図である。
【符号の説明】
1 放電型排気ガス浄化装置
2 密閉容器(容器)
3 放電型金属触媒担体
4 セル状受電極
4A 平板状の金属製箔板
4B 波板状の金属製箔板
4C セル空間
5 放電電極
5A 平板状の金属製箔板
5B 波板状の金属製箔板
5D 放電端
23 放電型排気ガス浄化装置
23A 第1外筒
23B 第2外筒
27 放電電極
27A 平板状の金属製箔板
27B 波板状の金属製箔板
27D 放電端
28 セル状受電極
28A 平板状の金属製箔板
28B 波板状の金属製箔板
28C セル空間
28D 端縁
29 筒状絶縁材
31 セラミックス系接着剤
Y 放電電極側
S セル状受電極側
[0001]
[Industrial application fields]
The present invention relates to a discharge-type exhaust gas purification device used in a catalytic converter, a dust collector, and the like, and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, a discharge type exhaust gas purifying apparatus that purifies exhaust gas by treating nitrogen oxides and hydrocarbons in exhaust gas using corona discharge or the like is shown in Japanese Patent Laid-Open No. 5-59934. 12, as shown in FIG.
In FIG. 12, reference numeral 101 denotes an engine, and an exhaust pipe 102 is attached to the engine 101, and a discharge type exhaust gas purifying device 103 is attached in the middle of the exhaust pipe 102. A cross-sectional view showing the electrode configuration of the discharge type exhaust gas purifying apparatus 103 is shown in FIG.
[0003]
In the figure, the discharge type exhaust gas purifying device 103 is composed of a discharge electrode 104 composed of one straight tungsten wire 104 A and a cylindrical receiving electrode 105, and the discharge electrode is disposed on the central axis of the cylindrical receiving electrode 105. 104 is located.
When a DC high voltage is applied between the discharge electrode 104 and the receiving electrode 105 with the discharge electrode 104 as the negative electrode and the receiving electrode 105 as the positive electrode, an electric field is formed in the space 106 between the electrodes 104 and 105. Is done. When exhaust gas to be processed is introduced into the receiving electrode 105, nitrogen oxides, hydrocarbons, etc. in the exhaust gas are negative ions 107 (for example, NOx ) And is adsorbed and decomposed by the receiving electrode 105 to purify the exhaust gas.
[0004]
[Problems to be solved by the invention]
However, generally, as shown in FIG. 14, the wire diameter of the tungsten wire 104A as the discharge wire constituting the discharge electrode 104 is 100 μm. The wire diameter of the tungsten wire 104A is determined from the balance between discharge efficiency and mechanical strength. From the viewpoint of discharge efficiency, a tungsten wire 104A having a thin wire diameter is preferable, but it is inferior in terms of durability. That is, with the use of the tungsten wire 104A, the surface is worn by discharge, the wire diameter is reduced, and the tungsten wire 104A is easily cut off in the middle and the life is shortened. Of course, if the wire diameter of the tungsten wire 104A is increased, it becomes difficult to cut, but the discharge efficiency is deteriorated.
[0005]
Therefore, there is a demand for a discharge type exhaust gas purification device that can improve the discharge efficiency of the discharge electrode and ensure mechanical strength. However, such a discharge type exhaust gas purification device is required to be manufactured by a simple process. .
[0006]
The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the discharge efficiency of the discharge electrode, ensure the mechanical strength, and simplify the manufacturing process. And a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a discharge electrode formed by arranging a metal foil plate of a predetermined length that radiates electric charge from the discharge end in a multilayer shape, and is disposed opposite to the discharge electrode on the downstream side thereof, It has a cell-shaped receiving electrode formed by forming a cell space between multilayer metal foil plates.
[0008]
The invention according to claim 2 is a discharge electrode formed by arranging a metal foil plate of a predetermined length that radiates electric charge from the discharge end in a multilayer shape, and is disposed opposite to the discharge electrode on the downstream side, A cell-shaped receiving electrode formed by forming a cell space between multi-layered metal foil plates, and a container for accommodating the discharge electrode and the cell-shaped receiving electrode are provided.
In the invention according to claim 3, two outer cylinders arranged opposite to each other and a metal foil plate having a predetermined length that is inserted into one outer cylinder and emits an electric charge from the discharge end are arranged in a multilayer shape. A discharge electrode, and a cell-shaped receiving electrode that is inserted into the other outer cylinder, is positioned opposite to the discharge electrode and is disposed opposite to the discharge electrode, and forms a cell space between the multilayer metal foil plates; A cylindrical insulating material that joins the discharge electrode side and the cell-shaped receiving electrode side with a ceramic adhesive is provided.
[0009]
According to a fourth aspect of the present invention, in the discharge exhaust gas purifying device according to any one of the first, second, and third aspects, the cell-shaped receiving electrode comprises a flat metal foil plate and a corrugated metal foil plate. The cell space is formed between a flat metal foil plate and a corrugated metal foil plate.
The invention according to claim 5 is the discharge exhaust gas purifying device according to any one of claims 1, 2, 3 and 4, characterized in that a catalyst is attached to the metal foil plate in the cellular receiving electrode. And
[0010]
The invention according to claim 6 is the discharge exhaust gas purifying device according to any one of claims 1, 2, 3, 4 and 5, wherein the thickness of the metal foil plate in the discharge electrode is greater than 24 μm and less than 100 μm. It is characterized by being.
A seventh aspect of the present invention is the discharge exhaust gas purifying device according to any one of the first, second, third, fourth, and sixth aspects, wherein the metal foil plate is at least 2 to 6% aluminum and 12 to 25 chromium. % And stainless steel containing iron in the balance.
[0011]
According to the eighth aspect of the present invention, there is provided a discharge electrode in which a metal foil plate having a predetermined length that is inserted into the first outer cylinder and emits electric charges from the discharge end is arranged in a multilayer shape, and the other outer cylinder. A cell-shaped receiving electrode that is inserted and located downstream of the discharge electrode and that forms a cell space between the multilayer metal foil plates is arranged oppositely, and a cylindrical insulation is provided between the discharge electrode and the cell-shaped receiving electrode. The material is placed and heated to a high temperature to perform diffusion bonding of the metal foil plate and brazing bonding of the discharge electrode, the cell-shaped receiving electrode and both outer cylinders, and the discharge end of the discharge electrode and the cell shape by a ceramic adhesive. The edge of a receiving electrode is joined via a cylindrical insulating material.
[0012]
[Action]
In the invention according to claim 1, a voltage is applied between the discharge electrode and the cell-shaped receiving electrode.
A negative or positive charge is released from the discharge end of the discharge electrode, and the negative or positive charge collides with a molecule in the gas to be charged, and negative or positive gas ions are generated.
[0013]
The positive or negative gas ions flow from the discharge electrode into the cellular receiving electrode by the voltage and gas flow applied between the discharge electrode and the cellular receiving electrode.
In the cell-shaped receiving electrode, positive or negative gas ions passing through the cell space are pulled to the metal foil plate by Coulomb force, adsorbed on the metal foil plate, and decomposed.
[0014]
And although the radiation edge of the metal foil board in a discharge electrode is worn out by discharge, the wear amount of a metal foil board is so small that it can be disregarded compared with the length of a metal foil board.
In the invention of the second aspect, the same operation as that of the first aspect of the invention occurs.
In the invention of the third aspect, the same action as that of the first aspect of the invention occurs.
In addition, since the discharge electrode side and the cell-shaped receiving electrode side are joined together by a ceramic adhesive via a cylindrical insulating material, the discharge electrode side and the cell-shaped receiving electrode side are electrically insulated and the discharge electrode side And the cell-shaped receiving electrode side are joined.
[0015]
In a fourth aspect of the invention, the cell-shaped receiving electrode is formed by laminating a flat metal foil plate and a corrugated metal foil plate in a spiral manner. Since the cell space is formed between the plate-shaped metal foil plates, the cell space is formed in the shape of an elongated passage between the corrugated metal foil plate and the flat metal foil plate of the cell-shaped receiving electrode. The possibility of contact between the gas ions pulled by the electrode and the catalyst and the catalyst is reduced.
[0016]
In the invention according to claim 5, since the catalyst is attached to the metal foil plate in the cellular receiving electrode, the catalytic activity can be improved, and the ionization energy of gas ions is reduced by the catalyst. Since the rate used as energy for decomposing gas ions increases, the reaction rate of the gas ion decomposition increases.
In the invention of claim 6, since the plate thickness of the metal foil plate in the discharge electrode is greater than 24 μm and less than 100 μm, the discharge efficiency is increased.
[0017]
In the invention according to claim 7, the metal foil plate is stainless steel containing at least aluminum 2 to 6%, chromium 12 to 25% and iron in the balance, so that the oxidation resistance is high, Durability is sufficiently ensured even in high-temperature exhaust gas.
In the invention of claim 8, a discharge electrode in which a metal foil plate having a predetermined length that is inserted into the first outer cylinder and emits electric charges from the discharge end is arranged in a multilayer shape, and the other outer cylinder. A cell-shaped receiving electrode that is inserted and positioned downstream of the discharge electrode and that forms a cell space between the multi-layered metal foil plates is disposed oppositely, and a cylindrical insulation is provided between the discharge electrode and the cell-shaped receiving electrode. In the same process, the material is placed and heated to a high temperature to perform diffusion bonding of the metal foil plate and brazing of the discharge electrode, cell-shaped receiving electrode and both outer cylinders, and the discharge electrode of the discharge electrode by a ceramic adhesive. The discharge end and the edge of the cell-shaped receiving electrode are joined via a cylindrical insulating material.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
The discharge type exhaust gas purifying apparatus according to the embodiments of the present invention is applied to a catalytic converter used for purifying exhaust gas.
In FIG. 1 to FIG. 4, reference numeral 1 is a catalytic converter, and this catalytic converter 1 has a sealed container 2. The hermetic container 2 is made of metal and is formed in a half-divided shape, and its central part has an elliptical cross section. A discharge-type metal catalyst carrier 3 is accommodated in the sealed container 2.
[0019]
A cell-shaped receiving electrode 4 and a discharge electrode 5 made of a discharge-type metal catalyst carrier 3 are accommodated in the sealed container 2. A cell-shaped receiving electrode 4 is disposed opposite to the discharge electrode 5 on the downstream side. The distance between the cell-shaped receiving electrode 4 and the discharge electrode 5 is 1 mm to 10 mm.
The cell-shaped receiving electrode 4 is obtained by alternately stacking flat metal foil plates 4A and corrugated metal foil plates 4B, and winding them in multiple layers and fixing them by diffusion bonding. The flat metal foil plate 4A and the corrugated metal foil plate 4B are parallel to the flow of the exhaust gas, and a catalyst is attached to the surface thereof. As a material for the flat metal foil plate 4A and the corrugated metal foil plate 4B, stainless steel containing 5% aluminum, 75% iron, and 20% chromium is used. A large number of cell spaces 4C are formed between the flat metal foil plate 4A and the corrugated metal foil plate 4B. The cell space 4C has a substantially triangular cross section with a height H = 1.2 mm and a bottom length L = 2.5 mm, and is formed as an elongated exhaust passage along the exhaust gas flow direction.
[0020]
On the other hand, the discharge electrode 5 is obtained by alternately stacking flat metal foil plates 5A and corrugated metal foil plates 5B, and winding them multiple times to fix them by diffusion bonding. The flat metal foil plate 5A and the corrugated metal foil plate 5B are parallel to the flow of the exhaust gas. As a material for the flat metal foil plate 5A and the corrugated metal foil plate 5B, stainless steel containing 5% aluminum, 75% iron, and 20% chromium is used. A cell space 5C is formed between the flat metal foil plate 5A and the corrugated metal foil plate 5B.
[0021]
The plate thickness of the flat metal foil plate 5A and the corrugated metal foil plate 5B in the discharge electrode 5 is about 24 to 100 μm, and is determined so as to balance the mechanical strength and the discharge efficiency. The tungsten wire 104A is thinner than 100 μm, which is the wire diameter. Here, the reason why the lower limit is set to 25 μm is the limit value for rolling the material of the plate material, and the reason why the upper limit of the plate thickness is set to 100 μm is that the electric field strength is small and the discharge efficiency is low at 100 μm or more.
[0022]
The cellular receiving electrode 4 is held by a first downstream insulating support member 6 and a second downstream insulating support member 7 disposed inside the sealed container 2. The first downstream insulating support member 6 and the second downstream insulating support member 7 are composed of ceramic flexible members. A second rod-shaped electrode 8 is fixed on the lower side of the cell-shaped receiving electrode 4 in the drawing, and a second ceramic annular body 9 is sheathed around the second rod-shaped electrode 8. The second ceramic annular body 9 insulates the second rod-shaped electrode 8 from the sealed container 2.
[0023]
In addition, the discharge electrode 5 is held by a first upstream insulating support member 10 and a second upstream insulating support member 11 that are disposed inside the sealed container 2. The first upstream insulating support member 10 and the second upstream insulating support member 11 are made of a flexible ceramic member. A first rod-like electrode 12 is fixed on the lower side of the discharge electrode 5 in the drawing, and a first ceramic annular body 13 is sheathed around the first rod-like electrode 12. The first ceramic annular body 13 insulates the first rod-shaped electrode 12 and the sealed container 2.
[0024]
The cellular receiving electrode 4 and the discharge electrode 5 are connected to a high-voltage DC power supply 14.
Therefore, in this embodiment, a DC high voltage is applied between the discharge electrode 5 and the cellular receiving electrode 4. Here, the voltage is about 5000 volts when the interval between the discharge electrode 5 and the cell-shaped receiving electrode 4 is 1 mm.
For example, negative charges are discharged from the discharge end 5D of the discharge electrode 5, and the negative charges collide with molecules such as nitrogen oxides and hydrocarbons in the exhaust gas and are charged, and negative gas ions (for example, NO)X ) Is generated.
[0025]
Due to the voltage applied between the discharge electrode 5 and the cellular receiving electrode 4 and the flow of the exhaust gas, the negative gas ions flow from the discharge electrode 5 into the cellular receiving electrode 4.
In the cell-shaped receiving electrode 4, negative gas ions passing through the cell space 4C are pulled by the flat metal foil plate 4A and the corrugated metal foil plate 4B by Coulomb force, and the flat metal foil plate 4A is adsorbed on the corrugated metal foil plate 4B and then decomposed. For example, NOX Is N2, O2The hydrocarbon gas ions are oxidized and the exhaust gas is purified.
[0026]
Then, a cell space 4C is formed between the flat metal foil plate 4A and the corrugated metal foil plate 4B of the cell-shaped receiving electrode 4, and the gas ions and flat plate that are pulled by the cell-shaped receiving electrode 4 are formed. Since there is a high possibility of contact of the catalyst attached to the metal foil plate 4A and the corrugated metal foil plate 4B, the catalytic activity is improved.
Further, the catalyst increases the rate at which the ionization energy of gas ions is used as energy for decomposing the gas ions.
[0027]
Therefore, the reaction rate of decomposition of gas ions is increased by the catalyst.
The plate thickness of the flat metal foil plate 5A and the corrugated metal foil plate 5B in the discharge electrode 5 was 24 to 100 μm, and was determined so that the mechanical strength and the discharge efficiency were balanced. Since the wire diameter of the tungsten wire 104A as the discharge wire is thinner than 100 μm, the electric field strength is high and the discharge efficiency is increased.
[0028]
Here, the discharge efficiency is a ratio of voltage and current related to corona discharge.
And since an electron is radiated | emitted from the discharge end 5D of the discharge electrode 5, with use, the discharge end 5D will wear and it will change from the state of FIG. 2 to the state of FIG. Since the shape of the discharge end 5D is sharper than the cross-sectional shape of the conventional tungsten wire 104A, the electric field strength is high and the discharge efficiency is maintained high.
[0029]
According to the configuration as described above, the discharge end 5D of the flat metal foil plate 5A and the corrugated metal foil plate 5B of the discharge electrode 5 on the side facing the cell-shaped receiving electrode 4 is worn by the discharge. However, the wear amount of the flat metal foil plate 5A and the corrugated metal foil plate 5B is larger than the length of the flat metal foil plate 5A and the corrugated metal foil plate 5B. Therefore, the same effect as that of substantially ensuring the durability of the discharge electrode 5 can be obtained, and the replacement frequency of the discharge electrode 5 can be reduced.
[0030]
The plate thickness of the flat metal foil plate 5A and the corrugated metal foil plate 5B in the discharge electrode 5 is tungsten as a discharge line determined so as to balance mechanical strength and discharge efficiency. Since it is thinner than the wire diameter of the wire 104A, the discharge efficiency can be increased as compared with the conventional case.
As discharge efficiency increases, NO in exhaust gasX, The amount of hydrocarbon molecules ionized can be increased.
[0031]
And since the plate | board thickness of the flat metal foil board 5A and the corrugated metal foil board 5B in the discharge electrode 5 is about 25-100 micrometers, even if the discharge electrode 5 is worn out, the curvature of the discharge end 5D Is sharply pointed, and the discharge efficiency can be kept high.
Further, as the material for the flat metal foil plate 5A and the corrugated metal foil plate 5B, stainless steel containing 5% aluminum, 75% iron, and 20% chromium is used. Compared with 104A, it is inexpensive, has high durability, and has the effect of eliminating the need for replacement.
[0032]
In the present embodiment, the discharge electrode 5 is on the negative electrode side and the cell-like receiving electrode 4 side is on the positive electrode side, but the discharge electrode 5 side is on the positive electrode side and the cell-like receiving electrode 4 is on the positive electrode side. Can also be on the negative electrode side.
[0033]
In this embodiment, a DC voltage is applied between the discharge electrode 5 and the cell-shaped receiving electrode 4, but the present invention is not limited to DC. For example, an alternating current, a periodic waveform current, or an aperiodic waveform current can be used.
In the present embodiment, stainless steel containing 5% aluminum, 75% iron, and 20% chromium is used as the material of the discharge electrode 5. However, the material is not limited to such a material. If applicable. Examples of the conductor include good conductors such as copper and iron, conductor conductors of metals containing molybdenum and nickel, and semiconductors such as silicon oxide. It can also be applied to nichrome wire, iron-nickel alloy, iron-chromium alloy, and the like.
[0034]
In this embodiment, the discharge electrode 5 is formed by alternately stacking flat metal foil plates 5A and corrugated metal foil plates 5B, and winding them in multiple layers to fix them by brazing. However, as shown in FIG. 5, the metal foil plate 21 can be formed in a meandering cross section so as to have a multi-layered shape. In addition, as shown in FIG. It can also be configured.
[0035]
Furthermore, in this embodiment, the flat metal foil plate 4A and corrugated metal foil plate 4B of the cell-shaped receiving electrode 4 contain 5% aluminum, 75% iron, and 20% chromium. Of course, the stainless steel is used, but it is not limited to such a material. For example, stainless steel made of 2 to 6% aluminum, 12 to 25% chromium, and iron in the balance can be used. Ni can also be contained.
[0036]
Further, in the present embodiment, the cell space 4C is configured to have a substantially triangular cross section having a height H = 1.2 mm and a bottom length L = 2.5 mm. The height H can be 1 to 5 mm, and the bottom length L can be 1 to 4 mm.
In addition, the flat metal foil plate 4A and the corrugated metal foil plate 4B of the cellular receiving electrode 4 in this embodiment can be coated with a dielectric substance. Examples of the dielectric substance include aluminum oxide and a mixture thereof, cerium oxide, or a substance having a catalytic action such as Pt, Pd, Rh. In this case, the adsorption area increases and ionized NO.X, Adsorption function and decomposition function increase for hydrocarbon molecules.
[0037]
In addition, in the present embodiment, the example in which the discharge type exhaust gas purification device is applied to the catalytic converter has been described. However, the present invention is not limited to this, and can be applied to, for example, a dust collector.
The discharge type exhaust gas purifying apparatus and the manufacturing method thereof according to the embodiments of the first, third, and eighth aspects of the present invention will be described by applying it to a catalytic converter used for purifying exhaust gas.
[0038]
The discharge type exhaust gas purifying apparatus according to the embodiments of the invention described in claims 1 and 3 has a discharge electrode and a cell-shaped receiving device as compared with the discharge type exhaust gas purification apparatus according to the embodiments of the inventions as defined in claims 1 and 2. The basic configuration is the same in that the electrodes are opposed to each other, the structures of the discharge electrode and the cell-shaped receiving electrode are also configured in the same manner, and at least exhibit the same actions and effects. Only the differences from the discharge type exhaust gas purifying apparatus according to the embodiments of the present invention will be described.
[0039]
In FIG. 7, reference numeral 23 denotes a discharge type exhaust gas purifying device, and this discharge type exhaust gas purifying device 23 has a first outer cylinder 23A and a second outer cylinder 23B which are arranged to face each other. A diffuser 24 is fixed to the second outer cylinder 23B. A diffuser 25 is joined to the first outer cylinder 23A via a cylindrical insulating material 35 described later.
Here, the first outer cylinder 23A, the second outer cylinder 23B, the diffuser 24, and the diffuser 25 are made of metal, and their cross sections are elliptical, and the diffuser 24 and the diffuser 25 are connected to an exhaust pipe (not shown). .
[0040]
A discharge electrode 27 is fitted into the first outer cylinder 23A. The discharge electrode 27 emits electric charges from the discharge end 27D, and the flat metal foil plates 27A and the corrugated metal foil plates 27B are alternately stacked, and these are wound in multiple layers and fixed by diffusion bonding. Is. A cell space 27C is formed between the flat metal foil plate 27A and the corrugated metal foil plate 27B. The first outer cylinder 23A and the discharge electrode 27 constitute a discharge electrode side Y.
[0041]
A cell-shaped receiving electrode 28 made of a discharge-type metal catalyst carrier is fitted into the second outer cylinder 23B, and the cell-shaped receiving electrode 28 is positioned opposite to the discharge electrode 27 on the downstream side, and is a flat metal foil. Plates 28A and corrugated metal foil plates 28B are alternately stacked, and these are wound in multiple and fixed by diffusion bonding. A cell space 28C is formed between the flat metal foil plate 28A and the corrugated metal foil plate 28B. The second outer cylinder 23B and the cellular receiving electrode 28 constitute a cellular receiving electrode side S.
[0042]
A cylindrical insulating material 29 is disposed between the first outer cylinder 23A and the second outer cylinder 23B, annular grooves 26 and 30 are formed at both ends of the cylindrical insulating material 29, and a bottom surface 26A and a wall surface 26B of the annular groove 26 are formed. The discharge end 27 </ b> D of the discharge electrode 27 is joined by a ceramic adhesive 31. The ceramic adhesive 31 is a water-based paint made of 100% inorganic material mainly composed of silica, silica-alumina, alumina, zirconia, etc., and has a heat-resistant temperature of 1200 ° C. to 2000 ° C.
[0043]
Further, the bottom surface 30 </ b> A and the wall surface 30 </ b> B of the annular groove 30 and the edge 28 </ b> D of the cellular receiving electrode 28 are joined by a ceramic adhesive 31.
The discharge electrode 27 and the cell-shaped receiving electrode 28 are insulated and joined by a cylindrical insulating material 29.
A first rod-like electrode 32 is fixed on the lower side of the discharge electrode 27 in the drawing, and the first rod-like electrode 32 penetrates the first outer cylinder 23A and protrudes to the outside.
[0044]
A second rod-shaped electrode 33 is fixed on the lower side of the cellular receiving electrode 28 in the drawing. The second rod-shaped electrode 33 penetrates the second outer cylinder 23B and protrudes to the outside, and is grounded.
[0045]
The discharge electrode 27 and the cellular receiving electrode 28 are connected via a high-voltage DC power supply 34.
A cylindrical insulating material 35 is disposed between the diffuser 25 and the first outer cylinder 23 </ b> A, and annular grooves 36 and 37 are formed at both ends of the cylindrical insulating material 35. The annular groove 36 and the exhaust gas inflow end 27 </ b> E of the discharge electrode 27 are joined by a ceramic adhesive 38. Further, the annular groove portion 37 and the diffuser 25 are joined by a ceramic adhesive 38.
[0046]
According to the above configuration, in addition to the effect of the discharge type exhaust gas purifying apparatus according to the embodiments of the first and second aspects of the invention, the discharge electrode 17 and the cell-shaped receiving electrode 28 are cylindrically formed by the ceramic adhesive 31. Since the discharge electrode 27 and the cell-shaped receiving electrode 28 can be insulated and the discharge electrode 27 and the cell-shaped receiving electrode 28 can be bonded together, the structure of the discharge type exhaust gas purification device can be simplified. it can.
[0047]
Next, a method for manufacturing a discharge type exhaust gas purifying apparatus according to an embodiment of the invention described in claim 8 will be described with reference to FIG. This manufacturing method is a method for manufacturing a discharge type exhaust gas purifying apparatus according to the embodiments of the present invention.
In the first step S1, the discharge electrode 27 is formed by overlapping and winding a flat metal foil plate 27A and a corrugated metal foil plate 27B in a spiral manner.
[0048]
The cell-shaped receiving electrode 28 is formed by overlapping the flat metal foil plate 28 </ b> A and the corrugated metal foil plate 28 </ b> B in multiple spirals.
In the second step S2, brazing materials are attached to the outer peripheral surface 27F of the discharge electrode 27 and the outer peripheral surface 28F of the cellular receiving electrode 28, respectively. Further, brazing materials are attached to the bottom surface 32A of the first rod-shaped electrode 32 and the bottom surface 33A of the second rod-shaped electrode 33, respectively.
[0049]
In the third step S3, the discharge electrode 27 is inserted into the first outer cylinder 23A. Further, the cell-shaped receiving electrode 28 is fitted into the second outer cylinder 23B.
In the fourth step S4, cylindrical insulating materials 29 and 35 are prepared.
In the fifth step S <b> 5, the ceramic adhesive 31 is applied to the cylindrical insulating material 29, and the ceramic adhesive 38 is applied to the cylindrical insulating material 35.
[0050]
In the sixth step S6, the discharge electrode 27 inserted into the first outer cylinder 23A and the cell-shaped receiving electrode 28 inserted into the second outer cylinder 23B are arranged to face each other. Between these, cylindrical insulating materials 29 and 35 coated with ceramic adhesive 31 are assembled. At the same time, the diffuser 24 is assembled to the second outer cylinder 23B. Moreover, the diffuser 25 is assembled | attached to the 1st outer cylinder 23A via the cylindrical insulating material 35, and will be in the state shown in FIG.
[0051]
In the seventh step S7, the assembly in the state of the sixth step S6 is performed, for example, under the following conditions.
(1) The heating condition is 1200 ° C. or higher. This temperature satisfies the curing conditions of the ceramic adhesives 31 and 37, and also satisfies the heating temperature of diffusion bonding 1150 ° C to 1200 ° C and the heating temperature of brazing bonding 1150 ° C to 1200 ° C.
(2) The heating time is 5 minutes or more.
[0052]
(3) The pressure condition is a degree of vacuum with a pressure lower than 10 Pa.
Then, the discharge type exhaust gas purifying device is constructed as follows.
The flat metal foil plate 27A and the corrugated metal foil plate 27B of the discharge electrode 27 are diffusion-bonded and fixed. The flat metal foil plate 28A and the corrugated metal foil plate 28B of the cell-shaped receiving electrode 28 are diffusion-bonded and fixed.
[0053]
At the same time, the outer peripheral surface 27F of the discharge electrode 27 is brazed and joined to the first outer cylinder 23A, and the outer peripheral surface 28F of the cellular receiving electrode 28 is brazed and joined to the second outer cylinder 23B.
Further, the discharge end 27 </ b> D of the discharge electrode 27 and the end edge 28 </ b> D of the cellular receiving electrode 28 are integrated with each other through the cylindrical insulating material 29 by the hardening of the ceramic adhesive 31. At the same time, the diffuser 24 is brazed to the second outer cylinder 23B. Further, the diffuser 25 is integrated with the first outer cylinder 23 </ b> A via a cylindrical insulating material 35.
[0054]
The bottom surface 32A of the first rod-shaped electrode 32 and the bottom surface 33A of the second rod-shaped electrode 33 are brazed and joined to the outer peripheral surface 27F of the discharge electrode 27 and the outer peripheral surface 28F of the cell-shaped receiving electrode 28, respectively.
According to the above configuration, in the same step, (1) diffusion bonding between the flat metal foil plate 27A and the corrugated metal foil plate 27B in the discharge electrode 27, and the flat shape in the cellular receiving electrode 28. (2) Discharge bonding between the metal foil plate 28A and the corrugated metal foil plate 28B, (2) brazing bonding between the discharge electrode 27, the cell-shaped receiving electrode 28 and both outer cylinders 23A, 23B, and (3) ceramics. By bonding the adhesive 31, the discharge end 27D of the discharge electrode 27 and the edge 28D of the cell-shaped receiving electrode 28 can be joined to each other through three adhesive bonds via the cylindrical insulating material 29. (1) Diffusion bonding, brazing bonding (2), and adhesive bonding (3) need not be performed in separate steps, and the manufacturing process of the discharge type exhaust gas purifying apparatus can be simplified.
[0055]
Here, in general, when manufacturing the discharge type exhaust gas purifying apparatus according to the embodiments of the first and third aspects of the present invention, after the diffusion bonding (1) is performed, the (3) Since adhesive bonding is performed, the number of processes increases and the manufacturing process of the discharge type exhaust gas purification apparatus becomes complicated. However, as described above, three bonds can be made in the same process, and discharge type exhaust gas purification is achieved. The manufacturing process of the device can be simplified.
[0056]
In this embodiment, the bottom surface 32A of the first rod-shaped electrode 32 and the bottom surface 33A of the second rod-shaped electrode 33 are brazed and joined to the outer peripheral surface 27F of the discharge electrode 27 and the outer peripheral surface 28F of the cell-shaped receiving electrode 28, respectively. However, diffusion bonding can be performed instead of brazing bonding.
Further, in this embodiment, the discharge electrode 27 on the discharge electrode side Y and the cell-shaped reception electrode 28 on the cell-shaped reception electrode side S are joined together by the ceramic adhesive 31, so Although the electrode side S is integrated, as shown in FIG. 11, by connecting the cylindrical insulating material 41, the first outer cylinder 23A, and the second outer cylinder 23B via the ceramic adhesive 31, discharge occurs. The electrode side Y and the cell-shaped receiving electrode side S can also be integrated.
[0057]
【The invention's effect】
As described above, according to the first aspect of the present invention, even if the radiation edge of the metal foil plate in the discharge electrode is worn by discharge, the wear amount of the metal foil plate is the length of the metal foil plate. Therefore, it has an effect equivalent to that of substantially ensuring the durability of the discharge electrode.
[0058]
According to invention of Claim 2, there exists an effect similar to the invention of Claim 1.
According to invention of Claim 3, there exists an effect similar to invention of Claim 1.
In addition, since the discharge electrode side and the cell-shaped receiving electrode side are joined together by a ceramic adhesive via a cylindrical insulating material, the discharge electrode side and the cell-shaped receiving electrode side can be insulated and the discharge electrode side and the cell-shaped receiving electrode side can be insulated. The receiving electrode side can be joined, and the structure of the discharge type exhaust gas purification device can be simplified.
[0059]
According to a fourth aspect of the present invention, the cell-shaped receiving electrode is formed by laminating a flat metal foil plate and a corrugated metal foil plate, and winding them in a spiral manner. Since a cell space is formed between the corrugated metal foil plate and the corrugated metal foil plate, a cell space is formed in the shape of an elongated passage between the corrugated metal foil plate and the flat metal foil plate of the cellular receiving electrode. There is an effect that the possibility of contact between the gas ions pulled by the cell-shaped receiving electrode and the catalyst can be increased.
[0060]
According to the invention described in claim 5, since the catalyst is attached to the metal foil plate in the cellular receiving electrode, the catalytic activity can be improved, and the ionization energy of gas ions can be increased by the catalyst. Since the rate used as the energy for decomposing the gas ions can be increased, the reaction rate of the gas ion decomposition can be increased.
[0061]
According to invention of Claim 6, since the plate | board thickness of the metal foil board in a discharge electrode is larger than 24 micrometers and less than 100 micrometers, there exists an effect which can make discharge efficiency high.
According to the invention of claim 7, since the metal foil plate is a stainless steel containing at least 2 to 6% aluminum, 12 to 25% chromium, and iron in the balance, the oxidation resistance is large. In addition, there is an effect that sufficient durability can be secured even in high-temperature exhaust gas.
[0062]
According to the invention described in claim 8, in the same step, (1) diffusion bonding of metal foil plate, (2) brazing bonding of discharge electrode, cell-shaped receiving electrode and both outer cylinders, (3) ceramic-based bonding It is possible to perform three types of bonding, that is, adhesive bonding through a cylindrical insulating material at the discharge end of the discharge electrode and the edge of the cell-shaped receiving electrode by curing the agent, thus simplifying the manufacturing process of the discharge-type exhaust gas purification device. There is an effect that can be made.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a discharge electrode and a cell-like electrode of a discharge type exhaust gas purifying apparatus according to an embodiment of the first and second aspects of the present invention.
FIG. 2 is a partially enlarged sectional view of a flat metal foil plate and a corrugated metal foil plate in a discharge electrode.
FIG. 3 is a partially enlarged sectional view of a discharge electrode when a flat metal foil plate and a corrugated metal foil plate are worn.
FIG. 4 is a longitudinal sectional view of the discharge type exhaust gas purification device.
FIG. 5 is a perspective view showing a first modification of the discharge electrode.
FIG. 6 is a perspective view showing a second modification of the discharge electrode.
FIG. 7 is a sectional view showing a discharge type exhaust gas purifying apparatus according to an embodiment of the present invention as set forth in claims 1 and 3;
8 is a perspective view showing a discharge electrode and a cell electrode of the discharge type exhaust gas purifying apparatus in FIG. 7. FIG.
9 is an enlarged cross-sectional view showing the cylindrical insulating material of FIG.
FIG. 10 is a process flow diagram showing a method for manufacturing a discharge type exhaust gas purifying apparatus according to an embodiment of the invention as set forth in claim 8;
FIG. 11 is a sectional view showing a modification of the discharge type exhaust gas purifying apparatus according to the embodiments of the first and third aspects of the present invention.
FIG. 12 is a configuration diagram of a conventional discharge-type exhaust gas purification device.
FIG. 13 is a transverse sectional view showing an electrode configuration of the discharge type exhaust gas purifying apparatus.
FIG. 14 is a cross-sectional view of a discharge line of the discharge type exhaust gas purifying apparatus.
[Explanation of symbols]
1 Discharge type exhaust gas purification device
2 Airtight container (container)
3 Discharge type metal catalyst carrier
4 Cellular receiving electrode
4A flat metal foil
4B corrugated metal foil
4C cell space
5 Discharge electrode
5A flat metal foil plate
5B corrugated metal foil
5D discharge end
23 Discharge type exhaust gas purification device
23A first outer cylinder
23B second outer cylinder
27 Discharge electrode
27A Flat metal foil plate
27B corrugated metal foil plate
27D discharge end
28 Cellular receiving electrode
28A Flat metal foil plate
28B corrugated metal foil plate
28C cell space
28D edge
29 Tubular insulation
31 Ceramic adhesive
Y discharge electrode side
S Cell receiving electrode side

Claims (8)

放電端(5D,27D)から電荷を放射する所定の長さの金属製箔板(5A,5B,27A,27B)を多層状に配置してなる放電電極(5,27)と、
放電電極(5,27)にその下流側に位置して対向配置され、多層状の金属製箔板(4A,4B,28A,28B)の間にセル空間(4C,28C)を形成してなるセル状受電極(4,28)とを備えていることを特徴とする放電型排気ガス浄化装置。
Discharge electrodes (5, 27) in which metal foil plates (5A, 5B, 27A, 27B) having a predetermined length for radiating charges from the discharge ends (5D, 27D) are arranged in a multilayer shape;
The discharge electrode (5, 27) is located on the downstream side of the discharge electrode (5, 27) and is opposed to the cell, and a cell space (4C, 28C) is formed between the multilayer metal foil plates (4A, 4B, 28A, 28B). A discharge-type exhaust gas purification device comprising a cell-shaped receiving electrode (4, 28).
放電端(5D)から電荷を放射する所定の長さの金属製箔板(5A,5B)を多層状に配置してなる放電電極(5)と、
放電電極(5)にその下流側に位置して対向配置され、多層状の金属製箔板(4A,4B)の間にセル空間(4C)を形成してなるセル状受電極(4)と、
放電電極(5)及びセル状受電極(4)を収容する容器(2)とを備えていることを特徴とする放電型排気ガス浄化装置。
A discharge electrode (5) in which metal foil plates (5A, 5B) having a predetermined length for radiating electric charge from the discharge end (5D) are arranged in a multilayer shape;
A cell-shaped receiving electrode (4) which is disposed opposite to the discharge electrode (5) on the downstream side thereof and which forms a cell space (4C) between the multilayer metal foil plates (4A, 4B); ,
A discharge-type exhaust gas purification device comprising a discharge electrode (5) and a container (2) for accommodating a cell-shaped receiving electrode (4).
対向配置された2つの外筒(23A,23B)と、
一方の外筒(23A)に嵌挿され、放電端(27D)から電荷を放射する所定の長さの金属製箔板(27A,27B)を多層状に配置してなる放電電極(27)と、
他方の外筒(23B)に嵌挿され、放電電極(27)にその下流側に位置して対向配置されるとともに多層状の金属製箔板(28A,28B)の間にセル空間(28C)を形成してなるセル状受電極(28)と、
セラミックス系接着剤(31)により放電電極側(Y)とセル状受電極側(S)を接合する筒状絶縁材(29)とを備えていることを特徴とする放電型排気ガス浄化装置。
Two outer cylinders (23A, 23B) arranged opposite to each other;
A discharge electrode (27) in which metal foil plates (27A, 27B) of a predetermined length that are inserted into one outer cylinder (23A) and radiate electric charge from the discharge end (27D) are arranged in multiple layers ,
The cell space (28C) is inserted into the other outer cylinder (23B), is disposed opposite to the discharge electrode (27) on the downstream side, and is disposed between the multilayer metal foil plates (28A, 28B). A cellular receiving electrode (28) formed of
A discharge type exhaust gas purifying apparatus comprising a cylindrical insulating material (29) for joining the discharge electrode side (Y) and the cell-shaped receiving electrode side (S) with a ceramic adhesive (31).
セル状受電極(4,28)は平板状の金属製箔板(4A,28A)と波板状の金属製箔板(4B,28B)を重ね螺旋状に多重に巻き回してなり、平板状の金属製箔板(4A,28A)と波板状の金属製箔板(4B,28B)の間にセル空間(4C,28C)が形成されていることを特徴とする請求項1,2,3のいずれか記載の放電型排気ガス浄化装置。The cell-shaped receiving electrode (4, 28) is formed by laminating a flat metal foil plate (4A, 28A) and a corrugated metal foil plate (4B, 28B), and winding them in a spiral manner. A cell space (4C, 28C) is formed between the metal foil plate (4A, 28A) and the corrugated metal foil plate (4B, 28B). 4. The discharge-type exhaust gas purification device according to any one of 3 above. セル状受電極(4,28)における金属製箔板(4A,4B,28A,28B)には触媒が付着されていることを特徴とする請求項1,2,3,4のいずれか記載の放電型排気ガス浄化装置。The catalyst is attached to the metal foil plates (4A, 4B, 28A, 28B) in the cellular receiving electrodes (4, 28), according to any one of claims 1, 2, 3, and 4. Discharge type exhaust gas purification device. 放電電極(5,27)における金属製箔板(5A,5B,27A,27B)の板厚は、24μmより大きく100μm未満であることを特徴とする請求項1,2,3,4,5のいずれか記載の放電型排気ガス浄化装置。The thickness of the metal foil plate (5A, 5B, 27A, 27B) in the discharge electrode (5, 27) is greater than 24 µm and less than 100 µm, characterized in that Any one of the discharge type exhaust gas purification apparatuses. 金属製箔板(4A,4B,5A,5B,27A,27B,28A,28B)は少なくともアルミニウム2〜6%,クロム12〜25%を含有し、残部に鉄を含有してなるステンレス鋼であることを特徴とする請求項1,2,3,4,5,6のいずれか記載の放電型排気ガス浄化装置。Metal foil plates (4A, 4B, 5A, 5B, 27A, 27B, 28A, 28B) are stainless steels containing at least 2 to 6% aluminum, 12 to 25% chromium, and iron in the balance. The discharge type exhaust gas purifying device according to any one of claims 1, 2, 3, 4, 5, and 6. 第1外筒(23A)に嵌挿されて放電端(27D)から電荷を放射する所定の長さの金属製箔板(27A,27B)を多層状に配置してなる放電電極(27)と、他方の外筒(23B)に嵌挿されて放電電極(27)の下流側に位置するとともに多層状の金属製箔板(28A,28B)の間にセル空間(28C)を形成してなるセル状受電極(28)を対向配置し、
放電電極(27)とセル状受電極(28)の間に筒状絶縁材(29)を配置し、
高温に加熱して、金属製箔板(27A,27B,28A,28B)の拡散接合及び放電電極(27),セル状受電極(28)と両外筒(23A,23B)のろう付け接合を行なうとともにセラミックス系接着剤(31)により放電電極(27)の放電端(27D)とセル状受電極(28)の端縁(28D)を筒状絶縁材(29)を介して接合することを特徴とする放電型排気ガス浄化装置の製造方法。
A discharge electrode (27) in which metal foil plates (27A, 27B) of a predetermined length, which are inserted into the first outer cylinder (23A) and radiate electric charge from the discharge end (27D), are arranged in multiple layers; In addition, the cell space (28C) is formed between the multilayer metal foil plates (28A, 28B) while being inserted into the other outer cylinder (23B) and positioned downstream of the discharge electrode (27). A cell-shaped receiving electrode (28) is arranged oppositely,
A cylindrical insulating material (29) is disposed between the discharge electrode (27) and the cellular receiving electrode (28),
Heating to high temperature, diffusion bonding of metal foil plates (27A, 27B, 28A, 28B) and brazing bonding of discharge electrode (27), cellular receiving electrode (28) and both outer cylinders (23A, 23B) At the same time, the discharge end (27D) of the discharge electrode (27) and the edge (28D) of the cell-shaped receiving electrode (28) are joined to each other via the cylindrical insulating material (29) by the ceramic adhesive (31). A manufacturing method of a discharge type exhaust gas purifying device.
JP03097795A 1994-04-25 1995-02-20 Discharge type exhaust gas purification device and method for manufacturing the same Expired - Fee Related JP3615584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03097795A JP3615584B2 (en) 1994-04-25 1995-02-20 Discharge type exhaust gas purification device and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8663794 1994-04-25
JP6-86637 1994-04-25
JP03097795A JP3615584B2 (en) 1994-04-25 1995-02-20 Discharge type exhaust gas purification device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0814028A JPH0814028A (en) 1996-01-16
JP3615584B2 true JP3615584B2 (en) 2005-02-02

Family

ID=26369429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03097795A Expired - Fee Related JP3615584B2 (en) 1994-04-25 1995-02-20 Discharge type exhaust gas purification device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3615584B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128674A (en) 1997-10-31 1999-05-18 Toshiba Corp Electric discharge exhaust gas cleaning device of internal combustion engine
DE10027409C1 (en) * 2000-06-02 2001-06-13 Emitec Emissionstechnologie Apparatus for purifying IC engine exhaust gas comprises a first and a second component electrically insulated from each other having a sleeve and a core through which the gas flows
KR101044783B1 (en) * 2009-02-20 2011-06-29 크린시스템스코리아(주) Electric precipitator for processing semiconductor dust and scrubber with the same

Also Published As

Publication number Publication date
JPH0814028A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
JP3636471B2 (en) Honeycomb body with a plurality of flow paths having different flow resistances flowed through by a fluid
EP1675156B1 (en) Plasma generating electrode and plasma reactor
EP0490222A1 (en) Structure for electrically heatable catalytic core
US6338827B1 (en) Stacked shape plasma reactor design for treating auto emissions
US5382774A (en) Electrically heatable honeycomb body
US9623373B2 (en) Electrically heatable honeycomb body assembly having an electrical connection of a plurality of sheet metal layers
EP0735797B1 (en) Electrically heatable honeycomb body
EP0419906A1 (en) Core element and core for electrically heatable catalytic converter
US9488084B2 (en) Device for the treatment of exhaust gases and motor vehicle having the device
US7261865B2 (en) Heatable honeycomb body with two different coatings
US20120097659A1 (en) Honeycomb body heatable in multiple stages, method for heating a honeycomb body and motor vehicle
JPH0673634B2 (en) An electrically heatable honeycomb body with a support structure inside, especially a catalyst carrier
US20100196224A1 (en) Plasma reactor
US20100329940A1 (en) Plasma reactor
JP2004533312A (en) Reactor for plasma-based treatment of gaseous media
WO2000071866A1 (en) Dielectric barrier gas reactors with non-axial flow
WO2005083241A1 (en) Plasma reactor power source, plasma reactor, exhaust gas purification device and exhaust gas purifying method
EP0755171B1 (en) Electrically heatable honeycomb body and honeycomb unit comprising said honeycomb body
US5546746A (en) Core element useful in a combined electrically heatable and light-off converter
JP3615584B2 (en) Discharge type exhaust gas purification device and method for manufacturing the same
JP6680698B2 (en) Honeycomb type heating device and method of using the same
US5852274A (en) Electrically heatable catalytic converter
JPH05179939A (en) Electrifying heating type catalytic converter
US6800256B2 (en) Scaleable inter-digitized tine non-thermal plasma reactor
JP3289484B2 (en) Discharge type exhaust gas purification device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees