JP3614196B2 - Pneumatic tire and manufacturing method thereof - Google Patents
Pneumatic tire and manufacturing method thereof Download PDFInfo
- Publication number
- JP3614196B2 JP3614196B2 JP30399494A JP30399494A JP3614196B2 JP 3614196 B2 JP3614196 B2 JP 3614196B2 JP 30399494 A JP30399494 A JP 30399494A JP 30399494 A JP30399494 A JP 30399494A JP 3614196 B2 JP3614196 B2 JP 3614196B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- tire
- tread
- raw
- vulcanization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Description
【0001】
【産業上の利用分野】
本発明は空気入りタイヤおよび空気入りタイヤの製造法に関する。
【0002】
【従来の技術】
タイヤは、種々のゴム練り生地を切断したり、重ね合わせたり、つなぎ合わせたりしてタイヤ形状に生造りした加硫前の生造りタイヤ(生タイヤ)を加硫機に装着、内側をブラダーなどで膨らまし、高内圧、高温下で一定時間成型加硫することにより製造される。この際、生タイヤとタイヤ金型間のエアを外部に放出しないとタイヤ表面にベアが生じ不良品となり、特に近年増加した複雑な凹凸のある高性能用タイヤなどでその発生が著しい。このため、通常つぎの方法により前記エアの外部放出が一般的に行われている。
a.金型の外側に通じるベントホールを設ける。
b.セクショナル型割金型化もしくはスモールセグメント化
しかしながら、a.は勿論のこと、b.においても金型間に薄いゴムはみ出しが発生するため、これをトリミングする作業が行われている。特にフラッシュなどトリミングしにくいはみ出しはより工数を必要とする作業として問題となる。
一方、通常の金型による加硫法では金型が汚れやすく、そのクリーニングに多大の労力と費用がかかることが問題となっていた。
【0003】
このゴムのはみ出しの抑止手段として、前記セクショナル型割金型化もしくはトレッドパターン部のスモールセグメント化が目的の一つとして提案されているが、必ずしも完全なものではなく、微小なフラッシュは更にトリミングしにくく、工数はかえって従来以上に必要となる。
また、このはみ出しの抑止手段として、つぎのような流動しにくいゴム質化が考えられるがそれぞれ問題がある。
a.カーボンブラックなどの充填量を増量することにより硬質化:
混練作業上も困難を伴ない、タイヤの要求性能から考えられる配合量などから考えて実用化は極めて難しく実用性に乏しい。
b.加硫速度を速める方法:
ゴムのはみ出しが加硫開始時のゴムの流動であるところから、金型に接するゴム質の加硫速度を速めるため、硫黄の量や加硫促進剤の種類の選択と増量の手段が考えられるが、その効果が期待したほど得られないこと、混練中や押出しもしくは圧延中にいわゆるヤケ現象が発生しやすくなることなどから実用化が極めて難しい。
c.ゴム用硬化剤の利用:
未加硫ゴムを硬くして型くずれを防止するための配合としての硬化剤の利用が考えられるが、混練及び以後の加工工程中での硬化発生のため、またタイヤ性能の面より実用化は極めて困難である。
d.架橋剤の表面塗布:
加硫前に架橋剤を表面に塗布することゴム表面を硬化できるが、工程がふえる上、材料費がかかるなどの問題がある。
e.予備加硫手段としての電子照射線の利用:
前記ベントスピューやフラッシュの発生を抑止する手段の一つとして電子照射によるゴム分子間の炭素−炭素結合反応を予備加硫手段の一つとして利用が例えば、特公昭56−11605に提案されている。
しかしながら、電子照射線処理によりスピュー、フラッシュなどのゴムのはみ出し抑制には非常に効果があるものの、装置が高価であること、X線を防ぐのが困難であるなどの安全性の問題に加えて、電子照射線によるゴム性能の低下の不具合(特に耐摩耗性が5〜10%低下)があり実用化が可能であるが大きなスペースが必要である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、これらの従来技術の問題点に鑑み、タイヤなどの加硫の際、(a.セクショナル型割金型間、b.トレッド部のスモールセグメンタル金型、c.マイクロベントホールなど細径、)などで発生するゴムのはみ出し(フラッシュおよびベントスピュー)を抑制された空気入りタイヤおよびその製造法を提供することである。
【0005】
【課題を解決するための手段】
本発明者は上記の課題を解決するため検討を重ねた結果、ゴム配合練り生地の押出加工、生造り加工などの後の未加硫ゴム配合体の外表面のみを加熱し架橋化する方法を見いだし本発明の空気入りタイヤおよびその製造法を完成するに至った。
【0006】
本発明は次の1及び2項の構成を有する。
(1)ゴム配合練り生地を組み合わせた未加硫の生造りタイヤを表面予備加硫して後、成型加硫してなる空気入りタイヤであって、ゴム配合練り生地を組み合わせた未加硫の生造りタイヤを、500℃〜6000℃の熱源による遠赤外線または赤外線を照射し外表面温度が250℃〜350℃となるように熱源もしくは光源の出力や焦点を調整し、照射時間3秒未満で外表面の予備加硫を行って後、成型加硫することを特徴とする空気入りタイヤの製造法。
(2)トレッド部材用ゴム配合練り生地を押出し加工した未加硫ゴム配合材を表面予備加硫してなるトレッド材をトレッド部に用いた空気入りタイヤであって、トレッド部材用ゴム配合練り生地を押出し加工した未加硫ゴム配合材を、500℃〜6000℃の熱源による遠赤外線または赤外線を照射し外表面温度が250℃〜350℃となるように熱源もしくは光源の出力や焦点を調整し、照射時間3秒未満で外表面の予備加硫を行なって得られる表面熱処理された生トレッド材をトレッド部に用いて成型加硫することを特徴とする空気入りタイヤの製造法。
【0007】
本発明に係わる未加硫の生造りタイヤとは、各種混練り機を用いて所定の配合剤、充填剤を原料ゴム中に均一に分散させる混練り作業後の練り生地、加硫前のタイヤトレッド材などを、切断したり重ね合わせたりあるいは各種形状につなぎ合わせたりして、タイヤ形状に近いものに作り上げた通常生タイヤと呼ばれるものである。具体例としてはラジアルタイヤ、バイアスタイヤなどの加硫前のタイヤの生加工品のことである。
【0008】
本発明に係わる空気入りタイヤは、未加硫の生造りタイヤの外表面を加熱し外表面のみを架橋化する予備加硫を行って後、所定の成型加硫を行うことにより得られる。その加熱方法としては、赤外線ヒーターが示される。通常、ハロゲンランプなどのランプを用いたヒーター、セラミックヒーター、ニクロム線ヒーターなどの赤外線又は遠赤外線を発生する熱源を未加硫ゴム配合体の外表面までの距離0.1〜100cmにセットして加熱する。通常、熱源温度(ハロゲンヒーターの場合、色温度)を500〜6000℃とし、未加硫ゴム配合体の外表面の温度が250〜350℃で照射時間が3秒未満で処理する。特にタイヤトレッド生部材の場合、表面温度が250℃〜350℃で処理時間3秒未満が良い。3秒以上の処理では発泡して外観が悪くなることがある。本発明における未加硫の生造りタイヤの未加硫のタイヤトレッド生部材の外表面を架橋化する加硫は、上記の加熱方法で外表面の厚み1.0mm以下のみを加硫することができる。厚み1.0mmをこえる外表面の架橋化(加硫)は著しい表面硬化のため加硫時に所要の形を得ることが困難である。また、いわゆるベアーを生ずるおそれがある。
【0009】
本発明に係わる生造りタイヤのゴム配合組成は、トレッド、カーカスなどタイヤを構成する部分によって多種多様の組成となるが、合成ゴム、天然ゴム、カーボンブラック、亜鉛華、ステアリン酸、老化防止剤、加硫促進剤、硫黄、アロマオイル、スピンドルオイルなどの軟化剤などからなり、熱架橋が可能な配合である。
特にトレッドタイヤ配合の場合は、たとえば、原料ゴムがSBR100重量部に対して、カーボンブラック85重量部、オイル20重量部、ZnOの3重量部、硫黄1.5重量部、加硫促進剤の1.2重量部、老化防止剤1.0重量部の割合の配合が示される。
生造りタイヤは、これら種々の配合により得られる未加硫のトレッド材、未加硫のカーカス材などを切断したり重ね合わせたりあるいは各種形状につなぎ合わせたりしてタイヤ形状に近いものに作り上げたものである。
【0010】
【作用】
本発明の方法による外表面のみを表面処理した(予備加硫した)未加硫の生タイヤは、タイヤとして本加硫する際の加硫開始時に未加硫生タイヤ内部のゴムの流動よりも外表面の流動が抑制されるため加硫後のフラッシャ、ベンスピューなどのゴムのはみだしが著しく抑制される。そのため、加硫機から見いだした加硫済タイヤの外観が良好なものとなる。
【0011】
【実施例】
以下、実施例にて本願発明を説明する。
実施例、比較例に用いたゴム練り生地の配合組成などは次のとおりである。
タイヤトレッド用に配合したゴム練り生地:
SBR 100重量部
カーボンブラック 85重量部
プロセスオイル 20重量部
亜鉛華 3重量部
硫黄 1.5重量部
加硫促進剤 1.2重量部
老化防止剤 1.0重量部
スラブシート:
上記ゴム練り生地を厚さ2mmにシーテイングして、加硫条件165℃,20kgf/cm2,10minで加硫したスラブシートを作製した。
破断強度(Tb)と破断伸び(Eb)は、JIS3号のダンベルで試験シートを打ち抜き、JISK6301の試験方法により行った。
【0012】
実施例1
タイヤトレッド用に配合したゴム練り生地を押出加工することによって得られた未加硫の生トレッド材(幅300mm、厚み10mm)を表面温度が300℃になるようにしてトレース速度30m/minで、熱源温度が約3000℃のハロゲンヒーター(ヒーターゾーン:幅0.2m,長さ1m)で照射して(照射時間2秒)表面を加硫するゴム表面処理加工を行った(図1参照)。該生トレッド材の表面層約100μmのみが加硫され内部は未加硫の生トレッドのままであった。
【0013】
実施例2
種々のゴム練り生地を切断したり、重ね合わせたり、つなぎ合わせたりしてタイヤ形状に生造りした加硫前の生造りタイヤ(生タイヤ)を、回転しながらハロゲンヒーター(ハロゲンランプを6本使用、熱源温度3000℃)で照射して表面温度が300℃、照射時間2.5秒の条件で表面を加硫するゴム表面処理加工を行った(図2参照)。
この表面処理した生タイヤを従来の方法で加硫(条件:165℃、10min)を行った。はみ出しは表面処理しないものより著しく減少した。
【0014】
実施例1に準拠して生トレッド材を製作し、表面温度、照射時間、金型の穴の大きさが加硫時のスピュー発生にどのように影響するかを調べた。その結果を図3〜5に示す。
生トレッドの表面処理条件:
実施例1に準拠して製作した生タイヤトレッドゴムを所定の表面処理温度(175℃,200℃,300℃)、所定の照射時間(1〜4秒)でハロゲンヒーターを照射し表面処理した生タイヤトレッドゴムを得た。
この表面処理生タイヤトレッドゴムを所定の径(0.2,0.3,0.4mmψ)の穴をあけた金型を用いて、165℃、20Kgf/cm2,10minの加硫を行った後、金型の穴に入り込んだゴム(スピュー)の長さを測定した。
なお、その長さが短いほど表面処理による架橋効果がよいことを示す。
図3は表面処理温度が175℃、図4は表面処理温度が200℃、図5は表面処理温度が300℃の場合を示す。
この結果、表面処理温度が300℃で、照射時間が2秒が最もよかった。ただし、300℃で3秒処理したものは表面に少し気泡が発生して外観に問題があった。
【0015】
前述の所定の方法で作製した厚み2mmのスラブシートをゴム表面までの距離4cmところからハロゲンヒーター〔70ボルト(60Hz)〕で所定の照射時間(20秒、40秒、60秒)照射して表面処理を施した。これを165℃、20Kgf/cm2,10minで加硫後、所定の方法で破断強度(Tb)と破断伸び(Eb)を測定した。その結果を図6に示す。
【0016】
比較例1
上記のスラブシートと同様のスラブシートを電子照射線処理(加速電圧200KV,電流10mA)で,所定の照射量(20〜400Mrad)の表面処理を行った。これを165℃、20Kgf/cm2,10minで加硫後、所定の方法で破断強度(Tb)と破断伸び(Eb)を測定した。その結果を図7に示す。照射量増加にともなって、著しい物性低下を示す。また、照射量40Mrad以上ではゴム引っ張り時に細かい亀裂が生じた。
【0017】
【発明の効果】
本発明による空気入りタイヤは金型成形加硫時のバリ、フラッシュ、スピューなどのゴムのはみ出しが抑制されるので、加硫後の製品タイヤのバリ除去などの仕上げ作業や修正作業が軽減され、外観、品質に優れた製品タイヤが得られると共に、タイヤの生産性が向上する。さらに金型の汚れが著しく軽減されるので、金型の洗浄作業も軽減される。
また、従来知られている電子照射線の処理方法に比べて加硫後のゴムの破断強度、破断伸びなどの低下が少ないこと、本発明の製造方法の生タイヤの予備加硫は簡単に処理装置が作製できてコンパクトのため既存の製造ラインへの取り付けが容易で従来の電子照射線の処理方法のような高価な装置が必要でないこと、X線防御などの装置が必要がなく安全性が良いことなどの利点がある。
【図面の簡単な説明】
【図1】押出加工された未加硫トレッドゴム材の表面処理の模式図である。
【図2】生造りのゴムタイヤの表面処理の模式図である。
【図3】ハロゲンヒーター照射時間とスピューの関係〔表面処理温度(175℃)〕を示す図である。
【図4】ハロゲンヒーター照射時間とスピューの関係〔表面処理温度(200℃)〕を示す図である。
【図5】ハロゲンヒーター照射時間とスピューの関係〔表面処理温度(300℃)〕を示す図である。
【図6】ハロゲンヒーター照射時間とトレッドゴムの破断強度、破断伸びとの関係を示す図である。
【図7】電子照射線の照射量とトレッドゴムの破断強度、破断伸びとの関係を示す図である。
【符号の簡単な説明】
1、ハロゲンヒーター
2、押出加工機
3、生トレッド材
4、カレンダーロール
5、生タイヤ[0001]
[Industrial application fields]
The present invention relates to a pneumatic tire and a method for manufacturing a pneumatic tire.
[0002]
[Prior art]
For tires, various rubber-kneaded fabrics are cut, stacked, or joined together, and the raw tires (raw tires) before vulcanization that have been made into tire shapes are attached to the vulcanizer, and the inside is a bladder, etc. It is manufactured by molding and vulcanizing for a certain period of time under high internal pressure and high temperature. At this time, if the air between the raw tire and the tire mold is not released to the outside, the tire surface becomes bare and becomes a defective product, which is particularly noticeable in high performance tires with complex irregularities that have increased in recent years. For this reason, the air is generally discharged outside by the following method.
a. Provide a vent hole that leads to the outside of the mold.
b. Sectional type split mold or small segment, however, a. B. In this case, since a thin rubber sticks out between the molds, an operation for trimming the rubber is performed. In particular, protrusion that is difficult to trim such as flash becomes a problem as work that requires more man-hours.
On the other hand, in the vulcanization method using a normal mold, the mold is easily soiled, and it requires a lot of labor and cost to clean the mold.
[0003]
As a means for suppressing the protrusion of rubber, one of the objectives is to make the sectional mold or the small segment of the tread pattern part, but it is not always perfect. It is difficult, and man-hours are required more than before.
Further, as a means for preventing the protrusion, the following rubberization which is difficult to flow can be considered, but each has a problem.
a. Hardening by increasing the filling amount of carbon black etc .:
There is difficulty in kneading work, and it is extremely difficult to put into practical use in consideration of the blending amount considered from the required performance of the tire, and the practicality is poor.
b. How to speed up vulcanization:
From the fact that rubber bulge is the flow of rubber at the start of vulcanization, in order to increase the vulcanization speed of the rubber material in contact with the mold, it is conceivable to select the amount of sulfur and the type of vulcanization accelerator and increase the amount. However, it is extremely difficult to put it to practical use because the effect cannot be obtained as expected, and so-called burn phenomenon is likely to occur during kneading, extrusion, or rolling.
c. Use of rubber curing agents:
It is conceivable to use a curing agent as a composition to harden the unvulcanized rubber and prevent mold breakage, but it is extremely practical due to the occurrence of curing in the kneading and subsequent processing steps and from the viewpoint of tire performance. Have difficulty.
d. Cross-linking agent surface application:
Although the rubber surface can be cured by applying a crosslinking agent to the surface before vulcanization, there are problems such as an increase in process and material costs.
e. Use of electron irradiation as a pre-curing means:
For example, Japanese Patent Publication No. 56-11605 proposes the use of a carbon-carbon bond reaction between rubber molecules by electron irradiation as one of the pre-vulcanization means as one of the means for suppressing the occurrence of the vent spew and flash. .
However, although it is extremely effective in suppressing the protrusion of rubber such as spew and flash by electron irradiation treatment, in addition to safety problems such as expensive equipment and difficulty in preventing X-rays In addition, there is a problem that the rubber performance is deteriorated due to the electron irradiation beam (particularly, the wear resistance is reduced by 5 to 10%), which can be put into practical use, but requires a large space.
[0004]
[Problems to be solved by the invention]
In view of these problems of the prior art, the object of the present invention is to (a. Between sectional mold molds, b. Small segmental molds in the tread portion, c. It is to provide a pneumatic tire in which the protrusion (flash and vent spew) of rubber generated at a small diameter is suppressed, and a method for producing the same.
[0005]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the present inventor has developed a method of heating and crosslinking only the outer surface of the unvulcanized rubber compounded body after extrusion processing, raw processing, etc. of the rubber compounded kneaded dough. As a result, the present inventors have completed the pneumatic tire of the present invention and the manufacturing method thereof.
[0006]
The present invention has the following
(1) After the raw build tire unvulcanized combining rubber kneading dough surface precured, a pneumatic tire made by molding vulcanization, the unvulcanized that combines rubber kneading dough The raw tire is irradiated with far infrared rays or infrared rays from a heat source of 500 ° C. to 6000 ° C., and the output and focus of the heat source or light source are adjusted so that the outer surface temperature becomes 250 ° C. to 350 ° C., and the irradiation time is less than 3 seconds. A method for producing a pneumatic tire, characterized in that the outer surface is pre-vulcanized and then molded and vulcanized.
(2) a tread material an unvulcanized rubber material of the rubber kneading dough tread member is extruded formed by surface precured A pneumatic tire using the tread portion, a tread member for a rubber kneading The unvulcanized rubber compounding material obtained by extruding the dough is irradiated with far infrared rays or infrared rays from a heat source of 500 ° C. to 6000 ° C., and the output and focus of the heat source or light source are adjusted so that the outer surface temperature becomes 250 ° C. to 350 ° C. A method for producing a pneumatic tire, comprising molding and vulcanizing a surface-heat treated raw tread material obtained by performing preliminary vulcanization of the outer surface with an irradiation time of less than 3 seconds in a tread portion.
[0007]
The unvulcanized green tire according to the present invention is a kneaded dough after kneading work in which predetermined compounding agents and fillers are uniformly dispersed in raw rubber using various kneaders, and a tire before vulcanization. A tread material or the like is cut, overlapped, or joined to various shapes to form a tire that is close to the tire shape. Specific examples include raw processed products of tires before vulcanization such as radial tires and bias tires.
[0008]
The pneumatic tire according to the present invention can be obtained by heating the outer surface of an unvulcanized green tire and performing preliminary vulcanization for crosslinking only the outer surface, followed by predetermined molding vulcanization. As the heating method, an infrared heater is shown. Usually, a heat source that generates infrared rays or far infrared rays such as a heater using a lamp such as a halogen lamp, a ceramic heater, or a nichrome wire heater is set at a distance of 0.1 to 100 cm to the outer surface of the unvulcanized rubber compound. Heat. Normally, (in the case of halogen heater, color temperature) heat source temperature was between 500 to 6000 ° C., the irradiation time at temperature is 250 to 350 ° C. of the outer surface of the unvulcanized rubber body that processes in less than 3 seconds. For tire tread producing member, especially, the surface temperature of a good than the processing time of 3 seconds at 250 ° C. to 350 ° C.. In the treatment for 3 seconds or more, foaming may occur and the appearance may be deteriorated. In the present invention, the vulcanization for crosslinking the outer surface of the unvulcanized tire tread raw member of the unvulcanized raw tire may be performed by vulcanizing only the outer surface thickness of 1.0 mm or less by the above heating method. it can. Crosslinking (vulcanization) of the outer surface exceeding 1.0 mm in thickness makes it difficult to obtain the required shape during vulcanization due to significant surface hardening. In addition, there is a risk of generating a so-called bear.
[0009]
The rubber compounding composition of the raw tire according to the present invention has various compositions depending on the part constituting the tire such as tread and carcass, but synthetic rubber, natural rubber, carbon black, zinc white, stearic acid, anti-aging agent, It is composed of softening agents such as vulcanization accelerators, sulfur, aroma oil, spindle oil, etc., and is capable of thermal crosslinking.
Particularly in the case of blending tread tires, for example, the raw rubber is 85 parts by weight of carbon black, 20 parts by weight of oil, 3 parts by weight of ZnO, 1.5 parts by weight of sulfur and 1 part of vulcanization accelerator with respect to 100 parts by weight of SBR. .2 parts by weight, mixing of 1.0 part by weight of anti-aging agent is shown.
Raw tires were made close to the tire shape by cutting, stacking, or joining various shapes to unvulcanized tread materials, uncured carcass materials, etc., obtained by these various formulations. Is.
[0010]
[Action]
An unvulcanized raw tire that has been surface-treated only on the outer surface by the method of the present invention (preliminarily vulcanized) is less than the flow of rubber inside the unvulcanized raw tire at the start of vulcanization when the main vulcanization is performed as a tire. Since the flow of the outer surface is suppressed, the protrusion of rubber such as flasher and benspu after vulcanization is remarkably suppressed. Therefore, the appearance of the vulcanized tire found from the vulcanizer becomes good.
[0011]
【Example】
Hereinafter, the present invention will be described with reference to examples.
The composition of the rubber kneaded dough used in the examples and comparative examples is as follows.
Rubber-kneaded fabric formulated for tire tread:
The rubber kneaded dough was sheeted to a thickness of 2 mm, and a slab sheet vulcanized under vulcanization conditions of 165 ° C., 20 kgf / cm 2 and 10 min was produced.
The breaking strength (Tb) and breaking elongation (Eb) were measured by punching out a test sheet with a JIS No. 3 dumbbell and using the test method of JIS K6301.
[0012]
Example 1
An unvulcanized raw tread material (
[0013]
Example 2
Halogen heaters (six halogen lamps) are used while rotating raw tires (raw tires) before vulcanization that have been made into tire shapes by cutting, stacking, and joining various rubber-kneaded fabrics. The rubber surface treatment was performed by irradiating at a heat source temperature of 3000 ° C. and vulcanizing the surface under conditions of a surface temperature of 300 ° C. and an irradiation time of 2.5 seconds (see FIG. 2).
This surface-treated raw tire was vulcanized (conditions: 165 ° C., 10 min) by a conventional method. The protrusions were significantly reduced from those without surface treatment.
[0014]
A raw tread material was produced in accordance with Example 1, and it was examined how the surface temperature, irradiation time, and the size of the hole in the mold affect the spew generation during vulcanization. The results are shown in FIGS.
Raw tread surface treatment conditions:
The raw tire tread rubber produced according to Example 1 was surface treated by irradiating with a halogen heater at a predetermined surface treatment temperature (175 ° C., 200 ° C., 300 ° C.) and a predetermined irradiation time (1 to 4 seconds). Tire tread rubber was obtained.
This surface-treated raw tire tread rubber was vulcanized at 165 ° C., 20 Kgf / cm 2 , 10 min using a mold having holes with predetermined diameters (0.2, 0.3, 0.4 mmψ). Thereafter, the length of the rubber (spy) that entered the hole of the mold was measured.
In addition, it shows that the crosslinking effect by surface treatment is so good that the length is short.
3 shows the case where the surface treatment temperature is 175 ° C., FIG. 4 shows the case where the surface treatment temperature is 200 ° C., and FIG. 5 shows the case where the surface treatment temperature is 300 ° C.
As a result, the surface treatment temperature was 300 ° C. and the irradiation time was 2 seconds. However, those treated for 3 seconds at 300 ° C. had a problem in appearance due to the generation of bubbles on the surface.
[0015]
Previous mentioned predetermined methods fabricated thickness 2mm slab sheet halogen heater [70 volts (60 Hz)] from a distance 4cm far rubber surface with predetermined irradiation time (20 seconds, 40 seconds, 60 seconds) was irradiated Surface treatment was applied. This was vulcanized at 165 ° C., 20 kgf / cm 2 , 10 min, and then the breaking strength (Tb) and breaking elongation (Eb) were measured by a predetermined method. The result is shown in FIG.
[0016]
Comparative Example 1
The slab sheet of the slab sheet the same way an electron irradiation treatment (accelerating
[0017]
【The invention's effect】
Since the pneumatic tire according to the present invention suppresses the protrusion of rubber such as burrs, flashes, spews, etc. during mold molding vulcanization, finishing work and correction work such as burring removal of the product tire after vulcanization are reduced, A product tire excellent in appearance and quality is obtained, and the productivity of the tire is improved. Furthermore, since the dirt on the mold is remarkably reduced, the cleaning work of the mold is also reduced.
In addition, there is less decrease in the breaking strength, breaking elongation, etc. of rubber after vulcanization compared to the conventionally known electron irradiation treatment methods, and the preliminary vulcanization of raw tires in the production method of the present invention is easily handled. Since the device can be manufactured and is compact, it can be easily attached to an existing production line, and an expensive device such as a conventional electron beam processing method is not required, and there is no need for an X-ray protection device or the like. There are advantages such as good things.
[Brief description of the drawings]
FIG. 1 is a schematic view of surface treatment of an extruded unvulcanized tread rubber material.
FIG. 2 is a schematic view of surface treatment of a raw rubber tire.
FIG. 3 is a graph showing the relationship between the halogen heater irradiation time and spew [surface treatment temperature (175 ° C.)].
FIG. 4 is a graph showing the relationship between the halogen heater irradiation time and spew [surface treatment temperature (200 ° C.)].
FIG. 5 is a diagram showing the relationship between the halogen heater irradiation time and spew [surface treatment temperature (300 ° C.)].
FIG. 6 is a diagram showing the relationship between halogen heater irradiation time, tread rubber breaking strength, and breaking elongation.
FIG. 7 is a diagram showing the relationship between the irradiation dose of electron irradiation rays and the breaking strength and breaking elongation of tread rubber.
[Brief description of symbols]
1,
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30399494A JP3614196B2 (en) | 1994-12-07 | 1994-12-07 | Pneumatic tire and manufacturing method thereof |
US08/569,010 US5686505A (en) | 1994-12-07 | 1995-12-07 | Process and apparatus for surface treatment of unvulcanized rubber sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30399494A JP3614196B2 (en) | 1994-12-07 | 1994-12-07 | Pneumatic tire and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08156511A JPH08156511A (en) | 1996-06-18 |
JP3614196B2 true JP3614196B2 (en) | 2005-01-26 |
Family
ID=17927775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30399494A Expired - Fee Related JP3614196B2 (en) | 1994-12-07 | 1994-12-07 | Pneumatic tire and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3614196B2 (en) |
-
1994
- 1994-12-07 JP JP30399494A patent/JP3614196B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08156511A (en) | 1996-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4176702A (en) | Tire treads and their manufacture | |
US3933566A (en) | Tires, etc. | |
CA1079220A (en) | Radiation cure of rubber sheets | |
US3933553A (en) | Tires, etc | |
EP0976534B1 (en) | A process for manufacturing, moulding and curing tyres for vehicle wheels | |
US20240208170A1 (en) | Methods for retreading tires employing cushion gum with stable dinitrile oxide cure system | |
EP1454732B1 (en) | Production method for unvulcanized rubber member and tire | |
US3372078A (en) | Process for manufacturing rubber strips to be used in pneumatic tires | |
EP0194375B1 (en) | Method of crosslinking rubber and plastic moldings | |
JP3614196B2 (en) | Pneumatic tire and manufacturing method thereof | |
US3959053A (en) | Surface treatment of tires to reduce flash | |
JP3267818B2 (en) | Surface treatment method for unvulcanized tire | |
US4139405A (en) | Selective electron irradiation precuring of treads in tire making processes | |
US4851063A (en) | Radiation cure of tire plies in a continuous operation | |
CA1068460A (en) | Irradiation of rubber in the manufacture of tires | |
JPH0233486B2 (en) | ||
JP3534857B2 (en) | Continuous heat treatment equipment | |
JP3091264B2 (en) | Manufacturing method for pneumatic tires | |
US5686505A (en) | Process and apparatus for surface treatment of unvulcanized rubber sheet | |
EP1109664B1 (en) | Induction curable tire components and methods of selectively curing such components | |
CA1336969C (en) | Process for the production of rubber products | |
JP2539227B2 (en) | Rubber product manufacturing method | |
JPH03193312A (en) | Elastmeric article and manufacture thereof | |
JP4131646B2 (en) | Two-stage rubber vulcanization method | |
JPH0747552A (en) | Production of pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041026 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091112 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |