JP3613891B2 - Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier - Google Patents

Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier Download PDF

Info

Publication number
JP3613891B2
JP3613891B2 JP15934296A JP15934296A JP3613891B2 JP 3613891 B2 JP3613891 B2 JP 3613891B2 JP 15934296 A JP15934296 A JP 15934296A JP 15934296 A JP15934296 A JP 15934296A JP 3613891 B2 JP3613891 B2 JP 3613891B2
Authority
JP
Japan
Prior art keywords
rolling
exhaust gas
alloy foil
less
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15934296A
Other languages
Japanese (ja)
Other versions
JPH108215A (en
Inventor
和秀 石井
雅昭 河野
毅 横田
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP15934296A priority Critical patent/JP3613891B2/en
Publication of JPH108215A publication Critical patent/JPH108215A/en
Application granted granted Critical
Publication of JP3613891B2 publication Critical patent/JP3613891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Fe−Cr−Al合金箔の製造方法に関し、とくに排ガス浄化触媒の担体に用いるFe−Cr−Al合金箔の製造方法に関する。
【0002】
【従来の技術】
大気汚染の発生源のひとつとして、自動車等から排出される汚染物質が問題視され、それら汚染物質の軽減のために触媒が使用されるようになった。排ガス浄化用触媒コンバータは、自動車等で燃料と空気とを混合し燃焼させたときに発生するNO、HC、COなどの有害ガスを無害化するために使用されている。この触媒を支える担体には、従来セラミックが用いられていた。しかし、排ガス浄化効率を上げるために触媒をエンジンに近い場所に搭載する必要が生じ、担体はより高温の排ガスにさらされることになり、セラミック担体では構造面から使用が困難となった。これに代わり、浄化特性向上や通気抵抗低減が可能となる、Fe−Cr−Al合金箔を組み立てた金属担体が使用されるようになってきている。
【0003】
このような合金箔は通常50μm 程度の厚みで使用されているが、最近では、特に自動車用触媒コンバータに利用されるものについては、さらなる通気抵抗低減と浄化特性向上を目的として、厚さ35μm 程度の極薄箔の使用が検討されている。
排ガス浄化用触媒コンバータは、高温の排気ガスと触媒反応熱とにより加熱されるため、使用する材料には優れた耐酸化性が要求される。このコンバータに用いられる担体用材料として、例えば、特開昭64−11946号公報および特開平5−202449号公報に、La、Zrを添加したFe−Cr−Al合金が提案されている。
【0004】
しかし、上記した材料は、50μm 程度の厚さまでは何の支障もなく圧延ができるが、さらに薄い厚みへの圧延は困難となる。
例えば、厚みが40μm 程度より薄くなると冷間圧延中に素材が破断し、それ以上の圧延が困難となったり、圧延できても歩留りが低く少量の製品しか得られないという問題があった。Fe−Cr−Al合金は、熱間加工性が低く、熱延時に発生した微小割れが原因で、ヘゲ等の表面欠陥が多発する。表面欠陥がある熱延板を冷間圧延すると製品箔に穴が生じたり、また、その穴が起点となって箔圧延時に素材が破断したりする。そのため、表面欠陥がある場合には、グラインダー等で表面を研摩し、除去しなければならない。しかし、このような研摩手入は、コストアップとなるうえ、研摩量が多いと素材の形状が悪くなり、箔圧延時に素材が破断しすく、箔の製造ができなくなる等の問題があった。
【0005】
また、触媒担体の厚さを薄くすると、表面積に対する体積比が減少し、より短時間で異常酸化を受け担体が破壊されやすくなる。このため、極薄箔担体に用いる材料は従来以上に耐酸化性が要求されている。
さらに、浄化特性の向上、すなわち、触媒反応促進のためには排ガス浄化用触媒コンバータは、エンジンに近い場所に設置するのが好ましいが、エンジンに近づくほど担体は高温に加熱される。そのため、担体が縮み、外筒との間に隙間を生じる。この隙間を通る排ガスは、浄化されないため、有害物質の排出量が増加するという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題点を有利に解決し、加工性に優れ極薄箔とすることができ、また、極薄箔としても異常酸化を生ぜず耐酸化性に優れ、かつ使用中縮みの少ない排ガス浄化触媒担体用Fe−Cr−Al合金箔の製造方法を提案することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、Fe−Cr−Al合金箔の冷間圧延における破断が、素材中に存在する析出物に起因することを突き止め、Fe−Cr−Al合金箔における析出物の生成を抑える成分組成、製造条件を新規に見いだし、さらに、排ガス浄化触媒コンバータで使用中に発生する担体の縮みについて鋭意検討した結果、Tiの添加が使用中縮みの減少には有効であることを新規に知見し、本発明を構成した。
【0008】
すなわち、本発明は、重量%で、Cr:15.0〜25.0%、Al:4.0 〜6.5 %、Zr:0.005 〜0.10%、Ti:0.005 〜0.05%を含み、かつ、Ti/Zr :2以下で、さらに、希土類元素のうちから選ばれた1種または2種以上を合計で0.01〜0.20%含有し、残部がFeおよび不可避的不純物からなる素材を、1050℃超え1150℃未満の温度範囲に加熱し熱間圧延したのち、焼鈍および冷間圧延を施し合金箔とする耐酸化性に優れた排ガス浄化触媒担体用Fe−Cr−Al合金箔の製造方法であり、前記熱間圧延が、最初の3パスまでの少なくとも1パスの圧延を圧下率:10%以下とするのが好ましく、また、前記素材は、重量%で、Cr:15.0〜25.0%、Al:4.0 〜6.5 %、Zr:0.005 〜0.05%、Ti:0.005 〜0.05%を含み、かつ、Ti/Zr :0.2 〜2で、さらに、希土類元素のうちから選ばれた1種または2種以上を合計で0.01〜0.20%含有し、残部がFeおよび不可避的不純物からなるのが好ましい。
【0009】
【発明の実施の形態】
まず、本発明の限定理由について説明する。
Cr:15.0〜25.0%
Crは、耐酸化性を向上させる元素であるが、15.0%未満ではその効果が少なく、一方、25.0%を超えると靱性が劣化し、冷間圧延が困難となる。このため、Crは 15.0 〜25.0%の範囲とする。なお、好ましくは、18.0〜22.0%である。
【0010】
Al:4.0 〜6.5 %
Alは、合金箔表面に保護性の高いAl皮膜を形成し、耐酸化性を向上する。しかし、 4.0%未満では、有効なAl皮膜の形成が少なく耐酸化性が劣り、極薄箔の場合には、短時間の酸化で消耗し異常酸化を生じ担体の破壊を導くため、Al含有量の下限は 4.0%とした。また、6.5 %を超えると、靱性が劣化し、圧延が困難となるため、6.5 %をAl含有量の上限とした。なお、好ましくは、4.5 〜6.0 %である。
【0011】
Zr:0.005 〜0.10%
Zrは、耐酸化性を向上させる元素であるが、0.005 %未満では、その効果が少なく、また、0.10%を超えると、酸化速度を増加させ、かえって耐酸化性が低下するため、Zrは 0.005〜0.10%の範囲とした。なお、0.05%を超えると、使用中縮みが大きくなり、Tiを添加しても縮みを防止できなくなるため、使用中縮みを考慮する場合には、Zrは 0.005〜0.05%の範囲が好ましい。さらに好ましくは、0.01〜0.03%である。
【0012】
Ti:0.005 〜0.05%
Tiは、合金中のN、Cを、TiN 、TiC として固定し、箔圧延中に有害なZrN 、ZrC の析出を防ぐ。さらに、Tiは、使用中に表面に生成するAl皮膜中に侵入し、使用中に発生する縮みを防止する。0.005 %未満では、これらの効果が少なく、また、0.05%を超えると耐酸化性を低下させるため、Tiは 0.005〜0.05%の範囲とした。なお、好ましくは、0.01〜0.03%である。
【0013】
Ti/Zr :2以下
本発明では、さらに、TiはZr含有量との関係で規制される。Ti/Zr が2を超えると、耐酸化性が低下するため、Ti/Zr=2を上限とした。さらに、使用中の縮みを防止するために、Ti/Zr は0.2 以上が好ましい。なお、さらに好ましくは、Ti/Zr は、0.5 以上1.5 以下である。
【0014】
希土類元素の合計:0.01〜0.20%
希土類元素は、本発明では、Yを含み、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Yb、Luをいう。希土類元素群の中から選ばれた1種または2種以上を添加できる。希土類元素は、耐酸化性を向上させる元素であり、その効果は、0.01%以上の添加で認められるが、0.20%を超えると熱間加工性が劣化し、圧延時に耳割れが生じる。そのため、希土類元素は、0.01〜0.20%の範囲とした。希土類元素を2種以上添加する場合には、それら元素量の合計がこの範囲内であればよい。
【0015】
希土類元素群の中では、Laがもっとも好ましい。Ceは、熱間加工性の低下を著しく助長するため、その添加は0.05%以下とするのが好ましい。なお、希土類元素の添加量は、合計で0.05〜0.12%がより好ましい。
残部はFeであり、上記成分以外は不純物である。不純物元素として、C、Si、Mn、P、S、Nは、それぞれC:0.02%以下、Si:1.0 %以下、Mn:1.0 %以下、P:0.05%以下、S:0.01%以下、N:0.02%以下とする。
【0016】
また、HfはZr中に不純物として含有されているため、Zrの添加とともに混入し、0.01〜0.05%程度含有する場合がある。Hfは、耐酸化性を向上させる元素であり、含有しても本発明の目的を害さない。
上記組成を有する素材は、通常の溶製方法、転炉、電気炉、あるいは真空溶解炉等で溶製し、RH脱ガス法、AOD法、VOD法などが好適である。鋳造法としては、生産性、品質上から連鋳法が望ましいが、造塊法も適用できる。
【0017】
上記した方法で製造した素材を、熱間圧延したのち、焼鈍、冷間圧延を施し、合金箔とする。
熱間圧延の加熱温度は、1050℃超え1150℃未満の温度範囲とする。
1050℃以下では、熱間圧延時に素材に割れが生じ圧延が困難となり、また、1150℃以上では大型のZrC 、ZrN が析出し、箔圧延時に素材が破断するため、熱間圧延の加熱温度は、1050℃超え1150℃未満の温度範囲とした。なお、加熱時間は、長時間となるほど析出物の成長が進むため1〜3hrが好ましい。
【0018】
熱間圧延の最初の3パスまでの少なくとも1パスの圧延を圧下率:10%以下とする。
最初の3パスまで、すべてのパスのパスあたりの圧下量が10%を超えると、表面欠陥の原因となる微小割れが多発する。このような微小割れは、表面欠陥となり、冷間圧延時の素材の破断を誘起する。最初の3パスまでの少なくとも1パスの圧延を圧下率:10%以下とすることにより、表面の良好な熱延板を得ることができ、極薄箔圧延が可能となる。
【0023】
【実施例】
に示す組成のFe−Cr−Al合金をVOD炉で溶製し、連鋳によりスラブとした。これらスラブ(200mm 厚×1000mm×7000mm) に表に示す熱間圧延条件で熱間圧延を施し、3mm厚の熱延コイルとした。表に示す熱間圧延条件のうち熱延圧下率は熱間圧延の最初の3パスのそれぞれの圧下量を示す。つぎに、これら熱延コイルを900 ℃で焼鈍し、酸洗し端部をトリミングしたのち、冷間圧延し、100 μm 厚の冷延コイルとした。さらに、これら冷延コイルを窒素ガス雰囲気中の850 ℃で焼鈍した後、さらに端部をトリミングして冷間圧延を行い、35μm 厚の箔とした。
【0024】
100 μm 厚の冷延コイルから35μm 厚の箔への冷間圧延中に素材コイルが破断した回数を箔圧延性とし、素材コイルの圧延性を評価した。その結果を表に示す。
また、これら箔について、耐酸化性、耐縮み性を次の試験により評価し、その結果を表に示す。
(1)耐酸化性試験
箔から 20 × 30mm の試験片を採取し、大気中で 1150 ℃の温度で 72hr の酸化試験を行い、酸化試験前後の重量を測定し、酸化増量を求めた。酸化増量が 1.0mg/cm 2 以下の場合を○、酸化増量が 1.0mg/cm 2 超え 2.0mg/cm 2 以下の場合を△、酸化増量が 2.0mg/cm 2 超えの場合を×として評価した。
(2)耐縮み性試験
箔から 50 × 50mm の試験片を採取し、この試験片を図1に示す形状(約5 mm φの円筒状)で、圧延方向が円筒の長手方向に一致するように約5 mm φの大きさに巻き、端部をスポット溶接により固定し、縮み測定試験片とした。この縮み測定試験片を 1100 ℃で 100hr 保持し、長手方向の縮み量(%)を測定した。
【0025】
【表1】

Figure 0003613891
【0026】
【表2】
Figure 0003613891
【0027】
から本発明例のNo.1〜3は、熱延コイルの表面状態は良好であり、箔圧延性、耐酸化性も良好であった。一方、本発明の範囲を外れる比較例のNo.4、No.5、No.7は、箔圧延性が5〜8と高く、極薄箔への圧延中に破断が多発している。また、比較例のNo.5は熱間圧延時の圧下率が高すぎ表面欠陥が多発し長時間のグラインダ研摩を必要とした。また、No.6はスラブ加熱温度が低すぎ表面欠陥、耳割れが多発し、製品にすることができなかった。
【0028】
【発明の効果】
本発明によれば、排ガス浄化触媒担体に用いて好適な耐酸化性に優れ、使用中の耐縮み性に優れた極薄のFe−Cr−Al合金箔が、コイル破断も少なく歩留り良く製造でき、著しい産業上の効果が期待できる。
【図面の簡単な説明】
【図1】縮み測定試験片形状と製作方法を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a Fe-Cr-Al alloy foil, in particular a method of manufacturing a Fe-Cr-Al alloy foil used for the carrier of the exhaust gas purifying catalyst.
[0002]
[Prior art]
As one of the sources of air pollution, pollutants discharged from automobiles have been regarded as problems, and catalysts have been used to reduce these pollutants. An exhaust gas purifying catalyst converter is used NO X generated when mixing the fuel and air is burned in an automobile or the like, HC, to detoxify harmful gases such as CO. Conventionally, a ceramic has been used as a support for supporting the catalyst. However, in order to increase the exhaust gas purification efficiency, it is necessary to mount the catalyst close to the engine, and the carrier is exposed to a higher temperature exhaust gas, making it difficult to use the ceramic carrier from the structural aspect. Instead, metal carriers assembled from Fe-Cr-Al alloy foils that can improve purification characteristics and reduce airflow resistance have been used.
[0003]
Such an alloy foil is usually used with a thickness of about 50 μm, but recently, particularly for those used in catalytic converters for automobiles, a thickness of about 35 μm is used for the purpose of further reducing airflow resistance and improving purification characteristics. The use of ultrathin foil is being studied.
Since the exhaust gas purifying catalytic converter is heated by high-temperature exhaust gas and catalytic reaction heat, the material used is required to have excellent oxidation resistance. As a carrier material used for this converter, for example, Fe-Cr-Al alloys to which La and Zr are added have been proposed in Japanese Patent Application Laid-Open Nos. 64-11946 and 5-202449.
[0004]
However, the above-mentioned material can be rolled without any trouble at a thickness of about 50 μm, but it is difficult to roll to a thinner thickness.
For example, if the thickness is less than about 40 μm, the material breaks during cold rolling, and further rolling becomes difficult, and even if rolling can be performed, the yield is low and only a small amount of product can be obtained. Fe—Cr—Al alloys have low hot workability, and surface defects such as baldness occur frequently due to microcracks that occur during hot rolling. When a hot-rolled sheet having a surface defect is cold-rolled, a hole is formed in the product foil, or the material is broken during foil rolling starting from the hole. Therefore, when there is a surface defect, the surface must be polished and removed with a grinder or the like. However, such polishing care increases costs, and when the amount of polishing is large, the shape of the material deteriorates, the material is easily broken during foil rolling, and the foil cannot be produced.
[0005]
Further, when the thickness of the catalyst carrier is reduced, the volume ratio with respect to the surface area is decreased, and the carrier is easily destroyed due to abnormal oxidation in a shorter time. For this reason, the material used for the ultra-thin foil carrier is required to have higher oxidation resistance than before.
Further, in order to improve the purification characteristics, that is, to promote the catalytic reaction, the exhaust gas purification catalytic converter is preferably installed at a location close to the engine, but the carrier is heated to a higher temperature as it approaches the engine. As a result, the carrier shrinks and a gap is formed between the carrier and the outer cylinder. Since the exhaust gas passing through the gap is not purified, there is a problem that the amount of harmful substances discharged increases.
[0006]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems, can be made into an ultrathin foil with excellent workability, and also has excellent oxidation resistance without causing abnormal oxidation as an ultrathin foil, and has little shrinkage during use. It aims at proposing the manufacturing method of the Fe-Cr-Al alloy foil for exhaust gas purification catalyst carriers.
[0007]
[Means for Solving the Problems]
The present inventors have determined that the fracture in cold rolling of Fe—Cr—Al alloy foil is caused by precipitates present in the material, and suppresses the formation of precipitates in the Fe—Cr—Al alloy foil. As a result of finding a new composition and manufacturing conditions, and intensively examining the shrinkage of the carrier that occurs during use in the exhaust gas purification catalytic converter, it was discovered that the addition of Ti is effective in reducing shrinkage during use. The present invention is configured.
[0008]
That is , the present invention includes, by weight, Cr: 15.0 to 25.0%, Al: 4.0 to 6.5%, Zr: 0.005 to 0.10%, Ti: 0.005 to 0.05%, and Ti / Zr: 2 or less. Furthermore, a material containing one or more selected from rare earth elements in a total of 0.01 to 0.20% and the balance consisting of Fe and unavoidable impurities is heated to a temperature range between 1050 ° C. and less than 1150 ° C. This is a method for producing an Fe-Cr-Al alloy foil for an exhaust gas purifying catalyst carrier having excellent oxidation resistance after annealing and cold rolling to form an alloy foil. The hot rolling is the first 3 It is preferable that rolling of at least one pass up to the pass is a reduction ratio: 10% or less, and the material is wt%, Cr: 15.0 to 25.0%, Al: 4.0 to 6.5%, Zr: 0.005 to 0.05 %, Ti: 0.005 to 0.05%, Ti / Zr: 0.2 to 2, and one or more selected from rare earth elements It is preferable that the total content is 0.01 to 0.20%, with the balance being Fe and inevitable impurities.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the present invention will be described.
Cr: 15.0-25.0%
Cr is an element that improves the oxidation resistance. However, if it is less than 15.0%, its effect is small. On the other hand, if it exceeds 25.0%, toughness deteriorates and cold rolling becomes difficult. For this reason, Cr is taken as 15.0 to 25.0% of range. In addition, Preferably, it is 18.0-22.0%.
[0010]
Al: 4.0 to 6.5%
Al forms a highly protective Al 2 O 3 film on the surface of the alloy foil, and improves oxidation resistance. However, if it is less than 4.0%, the formation of an effective Al 2 O 3 film is small and the oxidation resistance is inferior, and in the case of an ultrathin foil, it is consumed in a short period of oxidation and abnormal oxidation occurs, leading to the destruction of the support. Therefore, the lower limit of the Al content is set to 4.0%. Further, if it exceeds 6.5%, the toughness deteriorates and rolling becomes difficult, so 6.5% was made the upper limit of the Al content. In addition, Preferably, it is 4.5 to 6.0%.
[0011]
Zr: 0.005 to 0.10%
Zr is an element that improves the oxidation resistance. However, if it is less than 0.005%, its effect is small, and if it exceeds 0.10%, the oxidation rate is increased and the oxidation resistance is lowered. , Zr was in the range of 0.005 to 0.10%. If it exceeds 0.05%, shrinkage during use increases, and even if Ti is added, shrinkage cannot be prevented. Therefore, when considering shrinkage during use, Zr is 0.005 to 0.05%. The range of is preferable. More preferably, it is 0.01 to 0.03%.
[0012]
Ti: 0.005 to 0.05%
Ti fixes N and C in the alloy as TiN and TiC, and prevents the precipitation of harmful ZrN and ZrC during foil rolling. Furthermore, Ti penetrates into the Al 2 O 3 film formed on the surface during use, and prevents shrinkage that occurs during use. If it is less than 0.005%, these effects are small, and if it exceeds 0.05%, the oxidation resistance is lowered. Therefore, Ti is set in the range of 0.005 to 0.05%. In addition, Preferably, it is 0.01 to 0.03%.
[0013]
Ti / Zr: 2 or less In the present invention, Ti is further restricted in relation to the Zr content. When Ti / Zr 2 exceeds 2, the oxidation resistance decreases, so Ti / Zr = 2 was set as the upper limit. Further, in order to prevent shrinkage during use, Ti / Zr is preferably 0.2 or more. More preferably, Ti / Zr is 0.5 or more and 1.5 or less.
[0014]
Total of rare earth elements: 0.01-0.20%
In the present invention, the rare earth element includes Y, and refers to La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu. One or more selected from the group of rare earth elements can be added. A rare earth element is an element that improves oxidation resistance, and its effect is recognized by addition of 0.01% or more. However, when it exceeds 0.20%, hot workability deteriorates and ear cracks occur during rolling. Arise. Therefore, the rare earth element is set in the range of 0.01 to 0.20%. When two or more rare earth elements are added, the total amount of these elements may be within this range.
[0015]
Among the rare earth elements, La is most preferable. Ce remarkably promotes a decrease in hot workability, so its addition is preferably 0.05% or less. In addition, the addition amount of rare earth elements is more preferably 0.05 to 0.12% in total.
The balance is Fe, and impurities other than the above components are impurities. As impurity elements, C, Si, Mn, P, S, and N are respectively C: 0.02% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, N: 0.02% or less.
[0016]
Moreover, since Hf is contained as an impurity in Zr, it may be mixed with the addition of Zr and contained in an amount of about 0.01 to 0.05%. Hf is an element that improves oxidation resistance, and even if contained, it does not impair the object of the present invention.
The material having the above composition is melted by a normal melting method, converter, electric furnace, vacuum melting furnace or the like, and an RH degassing method, AOD method, VOD method, or the like is suitable. As the casting method, the continuous casting method is desirable in terms of productivity and quality, but an ingot-making method can also be applied.
[0017]
The material manufactured by the above-described method is hot-rolled and then annealed and cold-rolled to obtain an alloy foil.
The heating temperature of the hot rolling is set to a temperature range between 1050 ° C. and less than 1150 ° C.
Below 1050 ° C, the material cracks during hot rolling, making rolling difficult, and at 1150 ° C and above, large ZrC and ZrN precipitate, and the material breaks during foil rolling. The temperature range was 1050 ° C. and less than 1150 ° C. The heating time is preferably 1 to 3 hours because the longer the time is, the more the precipitate grows.
[0018]
The rolling of at least one pass up to the first three passes of hot rolling is set to a reduction ratio of 10% or less.
When the amount of reduction per pass of all passes up to the first three passes exceeds 10%, micro cracks that cause surface defects frequently occur. Such a microcrack becomes a surface defect and induces fracture of the material during cold rolling. By rolling at least one pass up to the first three passes to a rolling reduction of 10% or less, a hot-rolled sheet with a good surface can be obtained, and ultrathin foil rolling becomes possible.
[0023]
【Example】
A Fe—Cr—Al alloy having the composition shown in Table 1 was melted in a VOD furnace and formed into a slab by continuous casting. These slabs (200 mm thick × 1000 mm × 7000 mm) were hot-rolled under the hot rolling conditions shown in Table 2 to obtain hot-rolled coils having a thickness of 3 mm. Among the hot rolling conditions shown in Table 2 , the hot rolling reduction ratio indicates the amount of reduction in each of the first three passes of hot rolling. Next, these hot-rolled coils were annealed at 900 ° C., pickled and trimmed at the end, and then cold-rolled to form cold-rolled coils having a thickness of 100 μm. Furthermore, after these cold-rolled coils were annealed at 850 ° C. in a nitrogen gas atmosphere, the end portions were further trimmed and cold-rolled to obtain 35 μm-thick foils.
[0024]
The number of times the material coil broke during cold rolling from a 100 μm-thick cold rolled coil to a 35 μm-thick foil was defined as the foil rollability, and the rollability of the material coil was evaluated. The results are shown in Table 2 .
Moreover, about these foil, oxidation resistance and shrinkage resistance were evaluated by the following test , and the result is shown in Table 2 .
(1) Oxidation resistance test
A 20 × 30 mm test piece was taken from the foil , subjected to an oxidation test for 72 hours at a temperature of 1150 ° C. in the atmosphere, and the weight before and after the oxidation test was measured to determine the increase in oxidation. ○ where oxidation weight gain is less than 1.0 mg / cm 2, the case where oxidation weight gain is less than 1.0 mg / cm 2 than 2.0mg / cm 2 △, oxidized amount was evaluated as × in the case of exceeding 2.0 mg / cm 2 .
(2) Shrinkage resistance test
A test piece of 50 × 50 mm taken from the foil in the form indicating the test piece 1 (about 5 mm phi cylindrical), the size of about 5 mm phi to the rolling direction coincides with the longitudinal direction of the cylinder The end was fixed by spot welding and used as a shrinkage measurement test piece. This shrinkage measurement specimen was held at 1100 ° C. for 100 hours, and the amount of shrinkage (%) in the longitudinal direction was measured.
[0025]
[Table 1]
Figure 0003613891
[0026]
[Table 2]
Figure 0003613891
[0027]
From Table 2 , Nos. 1 to 3 of the examples of the present invention were good in the surface condition of the hot-rolled coil, and the foil rolling property and oxidation resistance were also good. On the other hand, Comparative Examples No. 4, No. 5, and No. 7, which are out of the scope of the present invention, have high foil rollability of 5 to 8, and many breaks occur during rolling to an ultrathin foil. In addition, No. 5 of the comparative example required excessive grinding for a long time because the rolling reduction during hot rolling was too high and surface defects occurred frequently. In No. 6, the slab heating temperature was too low, and surface defects and ear cracks occurred frequently, making it impossible to produce a product.
[0028]
【The invention's effect】
According to the present invention, an ultra-thin Fe-Cr-Al alloy foil having excellent oxidation resistance suitable for use in an exhaust gas purification catalyst carrier and excellent in shrinkage resistance during use can be produced with low coil breakage and high yield. A significant industrial effect can be expected.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a shrinkage measurement test piece shape and a manufacturing method.

Claims (3)

重量%で、
Cr:15.0〜25.0%、
Al:4.0 〜6.5 %、
Zr:0.005 〜0.10%、
Ti:0.005 〜0.05%を含み、かつ、
Ti/Zr :2以下で、さらに、
希土類元素のうちから選ばれた1種または2種以上を合計で0.01〜0.20%含有し、残部がFeおよび不可避的不純物からなる素材を、1050℃超え1150℃未満の温度範囲に加熱し熱間圧延したのち、焼鈍および冷間圧延を施し合金箔とすることを特徴とする耐酸化性に優れた排ガス浄化触媒担体用Fe−Cr−Al合金箔の製造方法。
% By weight
Cr: 15.0-25.0%,
Al: 4.0-6.5%,
Zr: 0.005 to 0.10%,
Ti: 0.005 to 0.05% included, and
Ti / Zr: 2 or less,
A material containing one or more selected from rare earth elements in a total of 0.01 to 0.20%, with the balance consisting of Fe and inevitable impurities, heated to a temperature range between 1050 ° C and less than 1150 ° C. A method for producing an Fe-Cr-Al alloy foil for an exhaust gas purification catalyst carrier having excellent oxidation resistance, wherein the alloy foil is subjected to annealing and cold rolling after rolling.
前記熱間圧延が、最初の3パスまでの少なくとも1 パスの圧延を圧下率:10%以下とすることを特徴とする請求項記載の耐酸化性に優れた排ガス浄化触媒担体用Fe−Cr−Al合金箔の製造方法。The hot rolling, rolling reduction rate of at least one pass to the first three pass: exhaust gas superior in oxidation resistance according to claim 1, wherein the 10% or less purification catalyst carrier for Fe-Cr -Manufacturing method of Al alloy foil. 前記素材が、重量%で、
Cr:15.0〜25.0%、
Al:4.0 〜6.5 %、
Zr:0.005 〜0.05%、
Ti:0.005 〜0.05%を含み、かつ、
Ti/Zr :0.2 〜2で、さらに、
希土類元素のうちから選ばれた1種または2種以上を合計で0.01〜0.20%含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項または記載の耐酸化性に優れた排ガス浄化触媒担体用Fe−Cr−Al合金箔の製造方法。
The material is weight percent,
Cr: 15.0-25.0%,
Al: 4.0-6.5%,
Zr: 0.005 to 0.05%,
Ti: 0.005 to 0.05% included, and
Ti / Zr: 0.2-2,
The oxidation resistance according to claim 1 or 2, wherein one or more selected from rare earth elements are contained in a total of 0.01 to 0.20%, and the balance is composed of Fe and inevitable impurities. A method for producing an Fe-Cr-Al alloy foil for an exhaust gas purification catalyst carrier.
JP15934296A 1996-06-20 1996-06-20 Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier Expired - Fee Related JP3613891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15934296A JP3613891B2 (en) 1996-06-20 1996-06-20 Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15934296A JP3613891B2 (en) 1996-06-20 1996-06-20 Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier

Publications (2)

Publication Number Publication Date
JPH108215A JPH108215A (en) 1998-01-13
JP3613891B2 true JP3613891B2 (en) 2005-01-26

Family

ID=15691751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15934296A Expired - Fee Related JP3613891B2 (en) 1996-06-20 1996-06-20 Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier

Country Status (1)

Country Link
JP (1) JP3613891B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527933C2 (en) * 2004-05-19 2006-07-11 Sandvik Intellectual Property Heat-resistant steel
JP5487783B2 (en) * 2009-07-31 2014-05-07 Jfeスチール株式会社 Stainless steel foil and manufacturing method thereof
CN108479386B (en) * 2018-05-31 2023-12-19 深圳市中金岭南科技有限公司 Device and method for selectively heating and catalyzing waste gas

Also Published As

Publication number Publication date
JPH108215A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
WO2013114833A1 (en) Ferritic stainless steel foil
EP0246939B1 (en) Fe-cr-al stainless steel having high oxidation resistance and spalling resistance and fe-cr-al steel foil for catalyst substrate of catalytic converter
EP2554700A1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
EP0592667B1 (en) Highly heat resistant metallic carrier for automobile catalyst
EP3527683B1 (en) Stainless steel sheet and stainless steel foil
JP3247162B2 (en) Fe-Cr-Al-based alloy excellent in oxidation resistance and foil thereof
JP3613891B2 (en) Method for producing Fe-Cr-Al alloy foil for exhaust gas purification catalyst carrier
JP4941320B2 (en) Catalyst support for exhaust gas purification device and Fe-Cr-Al alloy foil used therefor
EP0625585B1 (en) Fe-Cr-Al alloy foil having high oxidation resistance for a substrate of a catalytic converter and method of manufacturing same
US6905651B2 (en) Ferritic stainless steel alloy and its use as a substrate for catalytic converters
JP3200160B2 (en) Fe-Cr-Al alloy excellent in oxidation resistance and high-temperature embrittlement resistance, catalyst carrier using the same, and method for producing alloy foil
WO2002002836A1 (en) Fe-cr-al based alloy foil and method for producing the same
JPH03170642A (en) Heat-resistant ferritic stainless steel foil excellent in acid resistance in combustion exhaust gas
JP3491334B2 (en) Fe-Cr-Al alloy for catalytic converter carrier excellent in oxidation resistance and method for producing alloy foil using the same
JP3901224B2 (en) Catalyst metal carrier
JP3320831B2 (en) Fe-Cr-Al alloy with excellent high temperature strength and oxidation resistance
JP3633518B2 (en) Ultrathin Fe-Cr-Al alloy foil and method for producing the same
JP2002105606A (en) Fe-Cr-Al BASED ALLOY
JPH06220587A (en) Fe-cr-al alloy excellent in oxidation resistance and minimal in electric resistance reduction rate
JPH0953156A (en) Iron-chrome-alum. alloy foil for electrothermal catalyst
JPH1161348A (en) Fe-cr-al-w base quenched alloy foil
EP4446441A1 (en) Ferritic stainless steel and method for manufacturing same
JP2885497B2 (en) High-temperature, high-strength, high-heat-resistant Fe-Cr-Al engaging gold with excellent manufacturability
JP4222217B2 (en) Steel material for exhaust gas purification systems with excellent deformation resistance.
JP2944182B2 (en) Heat resistant stainless steel foil for automobile catalyst carrier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees