JP3613731B2 - No-load power-saving power supply - Google Patents

No-load power-saving power supply Download PDF

Info

Publication number
JP3613731B2
JP3613731B2 JP2002197915A JP2002197915A JP3613731B2 JP 3613731 B2 JP3613731 B2 JP 3613731B2 JP 2002197915 A JP2002197915 A JP 2002197915A JP 2002197915 A JP2002197915 A JP 2002197915A JP 3613731 B2 JP3613731 B2 JP 3613731B2
Authority
JP
Japan
Prior art keywords
resistor
voltage
transistor
power supply
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197915A
Other languages
Japanese (ja)
Other versions
JP2004015993A (en
Inventor
俊一郎 大塚
Original Assignee
大平電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大平電子株式会社 filed Critical 大平電子株式会社
Priority to JP2002197915A priority Critical patent/JP3613731B2/en
Publication of JP2004015993A publication Critical patent/JP2004015993A/en
Application granted granted Critical
Publication of JP3613731B2 publication Critical patent/JP3613731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はスイッチング電源装置に関し、特に無負荷時に入力電力を小さくする技術に関する。
【0002】
【従来の技術】
従来、無負荷時に入力電力を小さくする回路の一例として、図3に示したように、電源の2次側の電流を抵抗31で検出し、その電流が所定の値を下まわったときにコンパレータ9の出力が電流を引き込み、フォトカプラ8の発光素子を発光させ、受光素子を導通状態にしてスイッチ素子2のゲートに接続されているトランジスタ10をオン状態にして発振を一旦停止させるという手段が用いられていた。
【0003】
図3において、発振が一旦停止すると再び発振開始するまで所定の時間がかかるため、発振停止と発振開始を繰り返すが、発振停止期間を長くすることによって平均入力電力をより小さくすることができる。
【0004】
【発明が解決しようとする課題】
上に示した従来の方式は、2次側の電流を無負荷に近い値で検出するために、精度の高い比較回路を用いなければならないということと、信号を2次側から1次側に送るためにフォトカプラが必要になるということからコストアップが大きい。
【0005】
そこで、本発明はコストアップを最小限に抑え、かつ、従来方式と同程度の効果を持つ回路を提供することを目的としている。
【0006】
【課題を解決するための手段】
上の目的を達成するために本発明は、2次側の電圧を一定に保つための帰還信号をフォトカプラを介して1次側に送る電源装置において、2次側の負荷が無負荷になったときにフォトカプラの受光素子に流れる電流が最も大きくなることを利用し、この電流を第1の抵抗によって検出し、電流が最も大きくなるときに第1の抵抗両端の電圧がトランジスタのベース・エミッタ間電圧に達するように値を選び、この第1の抵抗両端にトランジスタのベースとエミッタを接続し、トランジスタのコレクタを第2の抵抗を介してスイッチ素子の発振制御回路の制御信号入力端子に接続した。そして、トランジスタのコレクタとフォトカプラの受光素子に電流を供給する直流電源の第1の抵抗が接続されている端子と反対側の端子との間にコンデンサを接続した。
【0007】
【発明の実施の形態】
2次側の負荷が無負荷になるとフォトカプラの受光素子の電流が増えて第1の抵抗両端の電圧が上昇し、トランジスタのベース・エミッタ間の電圧が上昇してオン状態になると、コンデンサは充電されて電圧が上昇し、やがて発振制御回路の制御信号入力端子に連続して電流を供給し、発振制御回路がスイッチ素子の制御電極の電圧を下げ続け、発振を停止させる。
【0008】
発振が停止すると2次側の電圧が下がり、フォトカプラの受光素子の電流がゼロになるが、コンデンサの電荷は第2の抵抗を通って制御信号入力端子に流れ続ける。コンデンサの電荷の放出が止まると発振制御回路はスイッチ素子の制御電極の電圧を下げるのを止めて発振を再開する。
【0009】
このようにして、発振停止と開始を繰り返すが、コンデンサと第2の抵抗の時定数を適当に選ぶことによって発振停止期間を長く設定することができるようになり、平均的な入力電力を小さくすることができる。
【0010】
【実施例】
図1は本発明の実施例に係る自励式のリンギングチョークコンバータを示す回路図である。
【0011】
図1において、発振開始は次のメカニズムで行われる。直流電源23より抵抗18を介して、スイッチ素子2のゲート及びコンデンサ19に電流が流れ、ゲート電圧が上昇し、そして、しきい値に達するとスイッチ素子2がターンオンし、1次巻線1aに直流電源23の電圧が加わる。このとき、補助巻線1cに誘導される電圧がゲート電圧を押し上げるように補助巻線1cの極性が選ばれているので、ゲート電圧はさらに上がり、スイッチ素子2は完全にオン状態になる。一方、補助巻線1cの電圧は抵抗21を介してコンデンサ22を充電するので、コンデンサ22の電圧がトランジスタ3のベース・エミッタ間電圧に達するとトランジスタ3がオン状態になってスイッチ素子2のゲート電圧を引き下げ、スイッチ素子2をターンオフさせる。スイッチ素子2のターンオフによって、トランス1の巻線には逆方向の起電力が生じ、この電力は2次巻線1bを介して2次側に供給される。また、補助巻線1cに生じる逆方向の電圧によってコンデンサ19にはスイッチ素子2のゲート側がプラスになる電圧が充電される。逆方向の起電力が2次巻線1bを介して放出しきると、巻線の電圧はゼロに戻るが、このときコンデンサ19に充電されている電荷が放電してスイッチ素子2のゲートの電圧を上昇させて再びスイッチ素子2をターンオンさせる。
【0012】
電源が起動するときは抵抗18を介して電流が流れて最初のターンオンが行われるが、発振が連続すると、コンデンサ19の電荷がオフ状態からターンオンさせる働きをする。コンデンサ19の電荷が放出しきった状態から発振するときは、抵抗18を流れるところから始まるので発振開始まで時間を要する。
【0013】
図1において、負荷に供給される電圧は、抵抗24と抵抗25によって分圧され、基準電源を内蔵しているエラーアンプ6のリファレンス端子に加えられるが、この電圧の基準電源の電圧との差が大きい程フォトカプラ7の発光素子の電流が大きくなり、受光素子の電流も大きくなる。ダイオード16とコンデンサ17は巻線1cに生じる電圧を整流平滑して直流電圧を作り、受光素子に電流を供給している。
【0014】
負荷電流が小さい程負荷に供給される電圧は高くなり受光素子の電流が大きくなる。受光素子の電流が大きくなることによってトランジスタ3のベースの電圧は常に高い状態になり、スイッチ素子2がターンオンした後、巻線1cの電圧が抵抗21を通りベースに加わると短い期間にベース電圧は上昇してトランジスタ3をターンオンするのでオン期間は短くなるが、スイッチ素子2がターンオフするとトランジスタ3のベースの電圧はすぐに下がるため、受光素子の電流だけでトランジスタ3がオン状態を続けることはない。
【0015】
無負荷になると第1の抵抗11両端の電圧がトランジスタ12をオン状態にしてコンデンサ13の電圧を上昇させる。コンデンサ13の電圧が上昇すると、トランジスタ12を流れる電流は第2の抵抗14とダイオード15を通りトランジスタ3のベースに流れ、トランジスタ3をオン状態にする。トランジスタ3がオン状態になることによってスイッチ素子2のゲート電圧が下がり発振は停止する。
【0016】
発振停止によって負荷に加わる電圧が下がり受光素子の電流が小さくなり、トランジスタ12がオフ状態になるが、コンデンサ13の電荷は第2の抵抗14を通ってトランジスタ3のベースに流れ続けるため発振停止はしばらく続く。やがて、コンデンサ19の電圧が下がり、トランジスタ3のベースに電流を流し続けることができなくなると、発振を開始するが、発振の再開は抵抗18に電流が流れるところから始まるので、その分発振停止期間は長くなる。
【0017】
図1の実施例において、ダイオード15は本発明の回路を構成する必須部品ではないが、無負荷時以外の負荷において連続発振しているときにフォトカプラ7の帰還信号が第2の抵抗14を通りコンデンサ13を充電すると、コンデンサ13と第2の抵抗14の時定数による応答の遅れが生じるので、帰還信号がコンデンサ13を充電しないように付加されている。
【0018】
また、図1の実施例ではフォトカプラ7の受光素子を流れる帰還信号と、トランジスタ3を流れる電流が同じ制御信号入力端子であるトランジスタ12のベースに注がれているが、それらは互いに異なる制御入力端子に各々別々に注がれる方法をとることもできる。
【0019】
図2は本発明の実施例に係るPWM方式のフライバックコンバータを示す回路図である。
【0020】
図2において、負荷電流が所定の値を越えていれば、フォトカプラ7の受光素子を流れる電流は小さくて、トランジスタ12はオフ状態である。負荷電流が所定の値を下まわるトランジスタ12はオン状態になって、PWM回路28のオフ端子OFFの電圧を上昇させ発振を停止させる。コンデンサ13の電圧が下がると発振を再開するので発振の停止と開始を繰り返し、その結果平均入力電力は小さくなる。
【0021】
PWM回路28は発振回路を内蔵しており、また、制御信号入力端子として帰還信号入力端子FBとオフ端子OFFを有していて、帰還信号入力端子FBに加える電圧を変化させることによって、パルス出力端子OUTから出力するパルス幅を変化させることができ、また、オフ端子OFFに加える電圧を所定の値にすることによって発振を止めることができる。
【0022】
【発明の効果】
図3に示した従来方式に比べて回路が簡単で部品のコストを下げることができるので経済効果が大きい。
【図面の簡単な説明】
【図1】本発明の実施例に係る自励式のリンギングチョークコンバータを示す回路図である。
【図2】本発明の実施例に係るPWM方式のフライバックコンバータを示す回路図である。
【図3】従来方式の一例を示す回路図である。
【符号の説明】
1 トランス
1a 1次巻線
1b 2次巻線
1c 補助巻線
2 MOSFET
3 トランジスタ
4 ダイオード
5 コンデンサ
6 基準電源内蔵エラーアンプ
7、8 フォトカプラ
9 コンパレータ
10 トランジスタ
11 第1の抵抗
12 トランジスタ
13 コンデンサ
14 第2の抵抗
15、16 ダイオード
17 コンデンサ
18 抵抗
19 コンデンサ
20、21 抵抗
22 コンデンサ
23 直流電源
24、25、26 抵抗
27 負荷
28 PWM回路
31、32、33、34 抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching power supply device, and more particularly to a technique for reducing input power when there is no load.
[0002]
[Prior art]
Conventionally, as an example of a circuit for reducing the input power when there is no load, as shown in FIG. 3, the current on the secondary side of the power source is detected by a resistor 31, and the comparator when the current falls below a predetermined value. 9 outputs current, causes the light emitting element of the photocoupler 8 to emit light, turns on the light receiving element, turns on the transistor 10 connected to the gate of the switch element 2, and temporarily stops oscillation. It was used.
[0003]
In FIG. 3, once oscillation stops, it takes a predetermined time until oscillation starts again. Therefore, oscillation stop and oscillation start are repeated, but the average input power can be reduced by extending the oscillation stop period.
[0004]
[Problems to be solved by the invention]
In the conventional method shown above, in order to detect the current on the secondary side with a value close to no load, it is necessary to use a highly accurate comparison circuit, and the signal is changed from the secondary side to the primary side. The cost increase is large because a photocoupler is required for sending.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a circuit that minimizes the cost increase and has the same effect as the conventional method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a power supply apparatus that sends a feedback signal for keeping a secondary side voltage constant to a primary side via a photocoupler, the load on the secondary side becomes no load. The current flowing through the photo-receiving element of the photocoupler is detected by the first resistor, and when the current is maximized, the voltage across the first resistor is A value is selected so as to reach the voltage between the emitters, the base and emitter of the transistor are connected to both ends of the first resistor, and the collector of the transistor is connected to the control signal input terminal of the oscillation control circuit of the switch element via the second resistor. Connected. A capacitor was connected between the terminal of the DC power supply that supplies current to the collector of the transistor and the light receiving element of the photocoupler and the terminal on the opposite side.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
When the load on the secondary side becomes no load, the current of the light receiving element of the photocoupler increases and the voltage across the first resistor rises. When the voltage between the base and emitter of the transistor rises and turns on, the capacitor The voltage is increased by charging, and eventually, a current is continuously supplied to the control signal input terminal of the oscillation control circuit, and the oscillation control circuit continues to lower the voltage of the control electrode of the switch element to stop the oscillation.
[0008]
When the oscillation stops, the voltage on the secondary side decreases and the current of the light receiving element of the photocoupler becomes zero, but the capacitor charge continues to flow to the control signal input terminal through the second resistor. When the discharge of the capacitor charge stops, the oscillation control circuit stops lowering the voltage of the control electrode of the switch element and resumes oscillation.
[0009]
In this way, the oscillation stop and start are repeated, but by appropriately selecting the time constant of the capacitor and the second resistor, the oscillation stop period can be set longer and the average input power is reduced. be able to.
[0010]
【Example】
FIG. 1 is a circuit diagram showing a self-excited ringing choke converter according to an embodiment of the present invention.
[0011]
In FIG. 1, the oscillation start is performed by the following mechanism. A current flows from the DC power source 23 through the resistor 18 to the gate of the switch element 2 and the capacitor 19, the gate voltage rises, and when the threshold value is reached, the switch element 2 is turned on and the primary winding 1a is turned on. The voltage of the DC power supply 23 is applied. At this time, since the polarity of the auxiliary winding 1c is selected so that the voltage induced in the auxiliary winding 1c pushes up the gate voltage, the gate voltage further increases and the switch element 2 is completely turned on. On the other hand, since the voltage of the auxiliary winding 1c charges the capacitor 22 via the resistor 21, when the voltage of the capacitor 22 reaches the base-emitter voltage of the transistor 3, the transistor 3 is turned on and the gate of the switch element 2 is turned on. The voltage is lowered and the switch element 2 is turned off. When the switch element 2 is turned off, an electromotive force in the reverse direction is generated in the winding of the transformer 1, and this power is supplied to the secondary side via the secondary winding 1b. The capacitor 19 is charged with a voltage that causes the gate side of the switch element 2 to be positive by the reverse voltage generated in the auxiliary winding 1c. When the electromotive force in the reverse direction is completely discharged through the secondary winding 1b, the voltage of the winding returns to zero. At this time, the electric charge charged in the capacitor 19 is discharged and the voltage of the gate of the switching element 2 is reduced. Then, the switch element 2 is turned on again.
[0012]
When the power supply is started, a current flows through the resistor 18 and the first turn-on is performed. However, when the oscillation continues, the charge of the capacitor 19 functions to turn on from the off state. When oscillating from the state where the electric charge of the capacitor 19 is completely discharged, it takes time until the oscillation starts because it starts from the position where it flows through the resistor 18.
[0013]
In FIG. 1, the voltage supplied to the load is divided by resistors 24 and 25 and applied to the reference terminal of the error amplifier 6 incorporating the reference power supply. The difference between this voltage and the voltage of the reference power supply is shown. Is larger, the current of the light emitting element of the photocoupler 7 is increased, and the current of the light receiving element is also increased. The diode 16 and the capacitor 17 rectify and smooth the voltage generated in the winding 1c to generate a DC voltage, and supply current to the light receiving element.
[0014]
The smaller the load current, the higher the voltage supplied to the load and the greater the current of the light receiving element. As the current of the light receiving element increases, the base voltage of the transistor 3 is always high. When the voltage of the winding 1c is applied to the base through the resistor 21 after the switch element 2 is turned on, the base voltage is reduced in a short period. Since the transistor 3 is turned on and the transistor 3 is turned on, the on period is shortened. However, when the switch element 2 is turned off, the voltage at the base of the transistor 3 immediately decreases. .
[0015]
When no load is applied, the voltage across the first resistor 11 turns on the transistor 12 and raises the voltage of the capacitor 13. When the voltage of the capacitor 13 increases, the current flowing through the transistor 12 flows through the second resistor 14 and the diode 15 to the base of the transistor 3 to turn on the transistor 3. When the transistor 3 is turned on, the gate voltage of the switch element 2 decreases and the oscillation stops.
[0016]
When the oscillation is stopped, the voltage applied to the load is reduced, the current of the light receiving element is reduced, and the transistor 12 is turned off. However, since the charge of the capacitor 13 continues to flow through the second resistor 14 to the base of the transistor 3, the oscillation is stopped. Continue for a while. Eventually, when the voltage of the capacitor 19 decreases and the current cannot continue to flow through the base of the transistor 3, the oscillation starts. However, since the restart of the oscillation starts from where the current flows through the resistor 18, the oscillation stop period accordingly. Becomes longer.
[0017]
In the embodiment of FIG. 1, the diode 15 is not an essential component constituting the circuit of the present invention, but the feedback signal of the photocoupler 7 causes the second resistor 14 when the oscillator 15 continuously oscillates at a load other than no load. When the capacitor 13 is charged, a delay in response due to the time constant of the capacitor 13 and the second resistor 14 occurs, so that a feedback signal is added so as not to charge the capacitor 13.
[0018]
In the embodiment of FIG. 1, the feedback signal that flows through the light receiving element of the photocoupler 7 and the current that flows through the transistor 3 are poured into the base of the transistor 12 that is the same control signal input terminal. It is also possible to use a method in which each of the input terminals is poured separately.
[0019]
FIG. 2 is a circuit diagram showing a PWM flyback converter according to an embodiment of the present invention.
[0020]
In FIG. 2, if the load current exceeds a predetermined value, the current flowing through the light receiving element of the photocoupler 7 is small, and the transistor 12 is in the OFF state. The transistor 12 whose load current falls below a predetermined value is turned on, and the voltage at the OFF terminal OFF of the PWM circuit 28 is increased to stop oscillation. When the voltage of the capacitor 13 decreases, the oscillation is resumed, so that the oscillation is repeatedly stopped and started. As a result, the average input power is reduced.
[0021]
The PWM circuit 28 has a built-in oscillation circuit, and has a feedback signal input terminal FB and an OFF terminal OFF as control signal input terminals. By changing the voltage applied to the feedback signal input terminal FB, pulse output is achieved. The pulse width output from the terminal OUT can be changed, and oscillation can be stopped by setting the voltage applied to the OFF terminal OFF to a predetermined value.
[0022]
【The invention's effect】
Compared with the conventional method shown in FIG. 3, the circuit is simple and the cost of parts can be reduced, so that the economic effect is great.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a self-excited ringing choke converter according to an embodiment of the present invention.
FIG. 2 is a circuit diagram showing a PWM flyback converter according to an embodiment of the present invention.
FIG. 3 is a circuit diagram showing an example of a conventional method.
[Explanation of symbols]
1 transformer 1a primary winding 1b secondary winding 1c auxiliary winding 2 MOSFET
3 Transistor 4 Diode 5 Capacitor 6 Reference amplifier built-in error amplifier 7 and 8 Photocoupler 9 Comparator 10 Transistor 11 First resistor 12 Transistor 13 Capacitor Second resistor 15 and 16 Diode 17 Capacitor 18 Resistor 19 Capacitor 20 and 21 Resistor 22 Capacitor 23 DC power supply 24, 25, 26 Resistance 27 Load 28 PWM circuit 31, 32, 33, 34 Resistance

Claims (1)

1次巻線と2次巻線を有するトランスと、前記1次巻線に直列に接続されたスイッチ素子と、前記スイッチ素子の制御電極に接続された制御信号入力端子を1つ以上持つ発振制御回路と、前記2次巻線に接続された整流平滑回路と、前記整流平滑回路によって作られる直流電圧を基準電源の電圧と比較してその差を増幅するエラーアンプと、その発光素子が前記エラーアンプの出力端子に接続されその受光素子が前記制御信号入力端子の1つに接続されたフォトカプラと、前記受光素子に電流を供給する直流電源を備えたスイッチング電源装置において、前記受光素子の前記直流電源側に第1の抵抗を直列に挿入し、トランジスタを付加してそのベースとエミッタを前記第1の抵抗の両端に接続し、前記発振制御回路の制御信号入力端子に第2の抵抗の一端を接続し、前記第2の抵抗の他端を前記トランジスタのコレクタに接続し、前記第2の抵抗の他端と前記トランジスタのコレクタの接続点と前記直流電源の前記第1の抵抗が接続される端子と反対側の端子との間にコンデンサを接続したことを特徴とする無負荷時省電力電源装置。 Oscillation control having a transformer having a primary winding and a secondary winding, a switch element connected in series to the primary winding, and one or more control signal input terminals connected to a control electrode of the switch element A circuit, a rectifying / smoothing circuit connected to the secondary winding, an error amplifier that compares a DC voltage generated by the rectifying / smoothing circuit with a voltage of a reference power source, and amplifies the difference, and the light emitting element includes the error A switching power supply comprising a photocoupler connected to an output terminal of an amplifier and having a light receiving element connected to one of the control signal input terminals, and a DC power supply for supplying a current to the light receiving element. a first resistor inserted in series with the DC power supply side, by adding a transistor to connect the base and emitter to both ends of the first resistor, the second to the control signal input terminal of the oscillation control circuit One end of the second resistor, the other end of the second resistor connected to the collector of the transistor, a connection point between the other end of the second resistor, the collector of the transistor, and the first of the DC power source. A no-load power-saving power supply device, wherein a capacitor is connected between a terminal to which a resistor is connected and a terminal on the opposite side.
JP2002197915A 2002-06-03 2002-06-03 No-load power-saving power supply Expired - Fee Related JP3613731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197915A JP3613731B2 (en) 2002-06-03 2002-06-03 No-load power-saving power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197915A JP3613731B2 (en) 2002-06-03 2002-06-03 No-load power-saving power supply

Publications (2)

Publication Number Publication Date
JP2004015993A JP2004015993A (en) 2004-01-15
JP3613731B2 true JP3613731B2 (en) 2005-01-26

Family

ID=30437164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197915A Expired - Fee Related JP3613731B2 (en) 2002-06-03 2002-06-03 No-load power-saving power supply

Country Status (1)

Country Link
JP (1) JP3613731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191741A (en) * 2011-03-10 2012-10-04 Toshiba Tec Corp Power supply unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104205B1 (en) * 2011-02-21 2012-01-10 경남과학기술대학교 산학협력단 Power control circuit
KR101255190B1 (en) * 2011-02-21 2013-04-22 경남과학기술대학교 산학협력단 Power control circuit
CN103036444A (en) * 2011-09-30 2013-04-10 海洋王照明科技股份有限公司 Voltage regulator circuit
KR101327063B1 (en) 2011-12-22 2013-11-07 엘지이노텍 주식회사 Circuit for driving lighting
US9331689B2 (en) * 2012-04-27 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and semiconductor device including the same
JP5927138B2 (en) * 2013-04-17 2016-05-25 コーセル株式会社 Switching power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191741A (en) * 2011-03-10 2012-10-04 Toshiba Tec Corp Power supply unit

Also Published As

Publication number Publication date
JP2004015993A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US6788556B2 (en) Switching power source device
KR101168588B1 (en) Power supply apparatus and image forming apparatus
JP4682647B2 (en) Switching power supply
US6690586B2 (en) Switching power source device
JP2003018828A (en) Dc-dc converter
JP3358588B2 (en) Switching power supply circuit
JP4787350B2 (en) Self-excited switching power supply circuit
JP3626072B2 (en) Switching power supply
JP3492882B2 (en) Switching power supply
JP3760379B2 (en) Switching power supply
US20080007976A1 (en) Power supply device and electric appliance provided therewith
US8582320B2 (en) Self-excited switching power supply circuit
JP3613731B2 (en) No-load power-saving power supply
JP5408161B2 (en) Self-excited switching power supply circuit
JP3691498B2 (en) Self-excited switching power supply circuit
JP2004194387A (en) Switching power supply unit
JP3273598B2 (en) Switching power supply
JP4329113B2 (en) Switching power supply
JP3409287B2 (en) Self-excited switching power supply circuit
JP2001037219A (en) Power source unit and its control method
US5838553A (en) Voltage stabilized self-oscillating power supply
JP2002136122A (en) Switching power device
JP3641351B2 (en) Ringing choke converter
JP2008193803A (en) Switching power supply device
JP4395880B2 (en) Synchronous rectifier circuit for switching power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees