JP3613412B2 - Drilling mud modifier - Google Patents

Drilling mud modifier Download PDF

Info

Publication number
JP3613412B2
JP3613412B2 JP19415895A JP19415895A JP3613412B2 JP 3613412 B2 JP3613412 B2 JP 3613412B2 JP 19415895 A JP19415895 A JP 19415895A JP 19415895 A JP19415895 A JP 19415895A JP 3613412 B2 JP3613412 B2 JP 3613412B2
Authority
JP
Japan
Prior art keywords
soil
modifier
mud
water
drilling mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19415895A
Other languages
Japanese (ja)
Other versions
JPH0920889A (en
Inventor
道雄 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19415895A priority Critical patent/JP3613412B2/en
Publication of JPH0920889A publication Critical patent/JPH0920889A/en
Application granted granted Critical
Publication of JP3613412B2 publication Critical patent/JP3613412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、掘削泥土の改質剤に関する。さらに詳しくは、本発明は、石油井、ガス井、地熱井、トンネル工事、浚渫工事、建設工事、その他の工事現場で発生する掘削泥土や、ヘドロ、スラッジ類を、再利用または廃棄が容易な形態に改質することができる掘削泥土の改質剤に関する。
【0002】
【従来の技術】
土木工事、建設工事、浚渫工事等において発生する掘削泥土は、含水量が多く流動性に富むため、通常のダンプカーやトラック等による運搬作業を困難なものとしている。このため、従来はこれら含水泥土に石灰あるいはセメント系の固化剤を混合して処理したり、水溶性高分子化合物または高吸水性樹脂を混合して処理している。
石灰あるいはセメント系固化剤を用いて、含水率の高い掘削泥土を処理する場合、処理後の掘削泥土が流動性を失い、取扱いが容易な強度に達するまでには通常数十時間を要し、また、掘削泥土1m当たり100kg以上の大量の固化剤を添加しなければ、高含水率の掘削泥土を処理できないという問題がある。
一方、水溶性高分子化合物または高吸水性樹脂等のみを用いて、含水率の高い掘削泥土を処理する場合、処理後の掘削泥土が流動性を失うまでの時間は、水溶性高分子化合物または高吸水性樹脂添加後数分以内と短時間であるが、掘削泥土の含水率が非常に高い場合や、掘削泥土が粘性土または有機性土である場合、処理土の強度が十分には高くならないという欠点がある。
【0003】
【発明が解決しようとする課題】
本発明は、含水量の多い掘削泥土に添加することにより、短時間でその流動性を失わせ、強度が大きく再利用の容易な処理土とすることができる掘削泥土の改質剤を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、掘削泥土の改質剤に椰子屑(Coir pith)を含有せしめることにより、椰子屑(Coir pith)の有する吸水効果、繊維構造による補強効果等により、短時間で取扱いの容易な処理土が得られることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)椰子屑(Coir pith、椰子殻粉末は含まないもの及び水溶性高分子を1:1〜100:1の重量比で含有することを特徴とする掘削泥土の改質剤を提供するものである。
さらに、本発明の好ましい態様として、
(2)水溶性高分子化合物が天然水溶性高分子化合物である第()項記載の掘削泥土の改質剤、
)無機水硬性物質、無機多孔性物質および膨潤性粘土鉱物から選ばれる1種または2種以上の物質を含有する第(1)〜()項記載の掘削泥土の改質剤、および、
)椰子屑(Coir pith)と無機水硬性物質、無機多孔性物質および膨潤性粘土鉱物の重量比が、1:60〜20:1である第()項記載の掘削泥土の改質剤、
を挙げることができる。
【0005】
本発明の改質剤は、石油井、ガス井、地熱井、トンネル工事、浚渫工事、建設工事、その他の工事現場で発生する掘削泥土や、ヘドロ、スラッジ類の改質に使用することができる。本発明の改質剤によって処理することができる掘削泥土の含水率の上限は特に問わず、例えば、含水率が90重量%に達するような高含水率の掘削泥土も処理することができる。掘削泥土に対する改質剤の添加量は、掘削泥土の性状および所望する処理土の性状により適切に選ぶことができるが、通常は掘削泥土に対し30重量%以下で十分である。
本発明に用いる椰子屑(Coir pith)は、ココヤシの実の中果皮より繊維を採取したあとに残される、通常淡褐色ないし暗褐色の短繊維状ないし粉状物質である。その性状などは、Alan W. Meerowによって、「TropicLine」 第6巻、第2号、第1〜4頁(1993年)に紹介されているが、多量のリグニン及びセルロースを含有し、吸水性を有する多孔性の物質である。
椰子屑(Coir pith)は、その特性として吸水効果を有し、また繊維構造によって補強効果を発揮する。掘削泥土に椰子屑(Coir pith)を添加することにより急速に掘削泥土中の水分が吸収され、処理土は繊維によって補強されるので、強度の大きい、取扱いやすい固化した処理土が得られる。
【0006】
本発明の掘削泥土の改質剤には、必要に応じて水溶性高分子化合物を含有せしめることができる。使用する水溶性高分子化合物には特に制限はなく、例えば、デンプン、マンナン、アルギン酸ソーダ、ローカストビーンガム、グアーガム、ペクチン、キサンタンガム、デキストラン、ゼラチン、ラムザンガム、ジェランガム等の天然水溶性高分子化合物、ビスコース、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、カチオン化セルロース、α化デンプン、カルボキシルデンプン、ジアルデヒドデンプン、カチオン化デンプン、デキストリン、ブリティッシュゴム、カチオン化グアーガム、アニオン化グアーガム、メチルグリコールキトサン等の半合成水溶性高分子化合物、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸ソーダ、ポリエチレンオキサイド、ポリビニルメチルエーテル等の合成高分子化合物等を挙げることができる。これらの水溶性高分子化合物は、1種を単独で使用することができ、あるいは2種以上を併用することができる。水溶性高分子化合物は、増粘効果、吸水効果、凝集効果等を有し、椰子屑(Coir pith)を含有する掘削泥土の改質剤に含有せしめたとき、効果的に掘削泥土を強度の大きい処理土に変換する。本発明においては、椰子屑(Coir pith)と水溶性高分子化合物の割合は、重量比で1:1〜100:1であることが好ましく、3:1〜30:1であることがさらに好ましい。これらの水溶性高分子化合物以外の物質であっても、親水性であり、かつ増粘性、吸水性、凝集性等を有する物質は、本発明に効果的に用いることができる。
【0007】
本発明の改質剤においては、必要に応じて、無機水硬性物質、無機多孔性物質および膨潤性粘土鉱物から選ばれる1種または2種以上の物質を含有せしめることができる。本発明において、無機水硬性物質としては水硬性を示す無機物質であれば、その種類を問わず使用することができる。このような物質としては、例えば、半水石膏、無水石膏、普通ポルトランドセメント、速硬性ポルトランドセメント、高炉セメント、その他の改良されたポルトランドセメント、アルミナセメント、カルシウムセメント、フライアッシュやポゾランを含有するセメント類、生石灰、消石灰、石灰系の土壌改質剤等を挙げることができる。無機水硬性物質は、泥粒子や有機物質と反応あるいは物理的な吸着による凝結効果、水和による脱水効果等により掘削泥土の水分を吸収するので、強度の大きい、取扱いやすい固化した処理土が得られる。本発明に用いる無機多孔性物質としては、例えば、ゼオライト、パーライト、バーミキュライト、珪藻土焼成物、粘土鉱物多孔質焼成物、ケイ酸カルシウム焼成物等を挙げることができる。無機多孔性物質は、空孔による吸水効果、粒径による補強効果等により掘削泥土の固化に効果を発揮する。本発明方法に用いる膨潤性粘土鉱物としては、例えば、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチーブンサイト、膨潤性雲母等を挙げることができる。膨潤性粘土鉱物は、膨潤力による吸水効果、粘土質による増粘効果等により掘削泥土を固化し、適度の強度を与える。本発明において、椰子屑(Coir pith)と無機水硬性物質、無機多孔性物質または膨潤性粘土鉱物の使用割合は、重量比で1:60〜20:1であることが好ましく、1:10〜10:1であることがさらに好ましい。
本発明の掘削泥土の改質剤の添加量は、掘削泥土の土質あるいは含水率により異なり特に限定されないが、通常は掘削泥土1m当たり0.1〜200kgであり、好ましくは掘削泥土1m当たり0.5〜100kgである。本発明の改質剤の添加により、掘削泥土に含まれる水分が吸収され椰子屑(Coir pith)中の繊維状物質等により補強されるので、取扱いの容易な強度を有する固化した処理土となり、処理土の再利用および廃棄が容易となる。
【0008】
本発明の改質剤は、椰子屑(Coir pith)、水溶性高分子化合物、無機水硬性物質、無機多孔性物質、膨潤性粘土鉱物の各成分を、あらかじめ混合してワンパック型改質剤として使用し、各成分をそれぞれ別々に掘削泥土に添加して使用し、あるいは、各成分のうち何種かをあらかじめ混合し、残余の成分を別々に添加して使用する等、各成分を任意の順序で添加して使用することができる。これらの添加方法のうち、ワンパック型改質剤として全成分を同時に添加し、あるいは、水溶性高分子化合物を先に添加する方法が効果が良好であるので望ましい。
本発明の改質剤において、椰子屑(Coir pith)、水溶性高分子化合物、無機水硬性物質、無機多孔性物質および膨潤性粘土鉱物は、ミル等を用いて粉砕し、粒径を1mm以下とすれば特に効果的であるが、未粉砕または1mm以上の粒径の各成分も使用することができる。本発明の改質剤は、各成分が乾燥状態であるとき最も高い効果を示すが、スラリー状、その他の形状でも使用することができる。本発明の改質剤をスラリー状とすれば、高粘性液体用ポンプで輸送することができる。本発明の改質剤は、掘削泥土と無撹拌で接触させるだけでも効果を奏するが、掘削泥土に添加したのち撹拌することにより、より高い効果を得ることができる。
本発明の掘削泥土の改質剤において、椰子屑(Coir pith)は、吸水効果および繊維構造による補強効果によって、高含水率の掘削泥土を効果的に固化する。水溶性高分子化合物は、吸水効果、増粘効果、凝集効果等により、繊維状物質の効果を高め、より強度のある改質土とし水の遊離等も防止する。無機水硬性物質は、凝結効果、水和による脱水効果等により繊維状物質の効果を高め、より強度のある改質土とし、雨水による処理土の軟弱化を抑制する。無機多孔性物質は、空孔による吸水効果、粒径による補強効果等により、より低添加量でより効果的に掘削泥土を固化する。膨潤性粘土鉱物は、膨潤力による吸水効果、粘土質による増粘効果等により、より低添加量でより効果的に掘削泥土を固化する。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
地下鉄用トンネル工事現場より採取した掘削泥土(含水率31.5重量%、砂分[75μm以上の粒子]44.5重量%)2リットルに、コーヒミルで乾式粉砕したCoir fiber pith(以下「椰子屑粉砕物」という。)200gを添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、4.5kg/cm2であった。
実施例2
実施例1と同じ泥土2リットルに、椰子屑粉砕物100gおよび天然水溶性高分子系改質剤[栗田工業(株)製クリサットC−101]6gを同時に添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、4.5kg/cm2であった。
実施例3
実施例1と同じ泥土2リットルに、椰子屑粉砕物100g、天然高分子系改質剤[栗田工業(株)製クリサットC−101]6gおよび半水石膏60gを同時に添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、5.0kg/cm2であった。
比較例1
実施例1と同じ泥土2リットルに、天然水溶性高分子系改質剤[栗田工業(株)製クリサットC−101]10gを添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、0.40kg/cm2であった。
椰子屑粉砕物を添加した実施例1、椰子屑粉砕物および天然高分子系改質剤を添加した実施例2、椰子屑粉砕物、天然高分子系改質剤および半水石膏を添加した実施例3では、処理土の土壌強度が十分に向上しているが、天然高分子系改質剤のみを添加し、椰子屑粉砕物を添加していない比較例1では、処理土の土壌強度の向上は少ない。
実施例4
実施例1と同じ泥土2リットルに、椰子屑粉砕物100gおよびポリメタクリル酸エステル系の合成水溶性高分子改質剤[栗田工業(株)製クリフィックスCP−604]6gを同時に添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、5.5kg/cm2であった。
実施例5
実施例1と同じ泥土2リットルに、椰子屑粉砕物100g、ポリメタクリル酸エステル系の合成水溶性高分子改質剤[栗田工業(株)製クリフィックスCP−604]6gおよび半水石膏60gを同時に添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、6.1kg/cm2であった。
比較例2
実施例1と同じ泥土2リットルに、ポリメタクリル酸エステル系の合成水溶性高分子改質剤[栗田工業(株)製クリフィックスCP−604]10gを添加し、2分間撹拌した。10分後に山中式土壌硬度計により処理土の土壌強度を測定したところ、0.80kg/cm2であった。
椰子屑粉砕物および合成高分子系改質剤を添加した実施例4、椰子屑粉砕物、合成高分子系改質剤および半水石膏を添加した実施例5では、処理土の土壌強度が十分に向上しているが、合成高分子系改質剤のみを添加し、椰子屑粉砕物を添加していない比較例2では、処理土の土壌強度の向上は少ない。
実施例6
容積5リットルのモルタルミキサーに、粉末粘土1,111gと水道水889mlを取り、1分間撹拌し、含水率44.5重量%の泥土を調製した。この泥土に、椰子屑粉砕物50g、ポルトランドセメント50gを同時に添加し、2分間撹拌した。4時間後および72時間後に山中式土壌硬度計により処理土の土壌強度を測定したところ、4時間後には1.9kg/cm2、72時間後には15kg/cm2であった。
実施例7
ポルトランドセメント50gの代わりに石灰系土壌改質剤[(株)カルシード製グリーンライムLC]50gを使用した以外は、実施例6と全く同じ操作を繰り返した。処理土の土壌強度は、4時間後には1.1kg/cm2、72時間後には6.6kg/cm2であった。
比較例3
容積5リットルのモルタルミキサーに、粉末粘土1,111gと水道水889mlを取り、1分間撹拌し、含水率44.5重量%の泥土を調製した。この泥土に、ポルトランドセメント100gを添加し、2分間撹拌した。4時間後および72時間後に山中式土壌硬度計により処理土の土壌強度を測定したところ、4時間後には0.6kg/cm2、72時間後には4.0kg/cm2であった。
比較例4
ポルトランドセメント100gの代わりに石灰系土壌改質剤[(株)カルシード製グリーンライムLC]100gを使用した以外は、比較例3と全く同じ操作を繰り返した。処理土の土壌強度は、4時間後は0.7kg/cm2、72時間後は4.0kg/cm2であった。
椰子屑粉砕物、ポルトランドセメントまたは石灰系土壌改質剤を添加した実施例6〜7の処理土は、椰子屑粉砕物を添加していない比較例3〜4の処理土よりも、いずれも高い土壌強度を示した。
【0010】
【発明の効果】
本発明の掘削泥土の改質剤によれば、石油井、ガス井、地熱井、トンネル工事、浚渫工事、建設工事、その他の工事現場で発生する掘削泥土や、ヘドロ、スラッジ類を、短時間で移送可能な形態とし、再利用または廃棄が容易な形態の処理土とすることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drilling mud modifier. More specifically, the present invention is easy to reuse or dispose of drilling mud, sludge, sludge, etc. generated at oil wells, gas wells, geothermal wells, tunnel construction, dredging construction, construction work, and other construction sites. The present invention relates to a drilling mud modifier that can be modified into a form.
[0002]
[Prior art]
Excavation mud generated in civil engineering, construction, dredging, etc. has a high water content and high fluidity, making it difficult to carry with ordinary dump trucks and trucks. For this reason, conventionally, hydrated mud soil is mixed with lime or a cement-based solidifying agent and processed, or a water-soluble polymer compound or a superabsorbent resin is mixed.
When processing drilling mud with a high water content using lime or cement-based solidifying agent, it usually takes several tens of hours for the drilling mud after processing to lose its fluidity and reach a strength that is easy to handle, Further, there is a problem that a drilling mud having a high water content cannot be treated unless a large amount of solidifying agent of 100 kg or more per 1 m 3 of the drilling mud is added.
On the other hand, when processing a drilling mud with a high water content using only a water-soluble polymer compound or a highly water-absorbent resin, the time until the drilling mud after the treatment loses its fluidity is Within a few minutes after the addition of the superabsorbent resin, but the moisture content of the excavated mud is very high, or the excavated mud is viscous or organic, the strength of the treated soil is sufficiently high. There is a disadvantage of not becoming.
[0003]
[Problems to be solved by the invention]
The present invention provides a modifier for excavation mud that can be added to excavation mud with a high water content to lose its fluidity in a short time and can be treated soil that has high strength and can be easily reused. It was made for the purpose.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor has incorporated a core pith into a modifier for excavated mud so that the water absorption effect and fiber of the core pith can be obtained. Based on this finding, the present inventors have found that a treated soil that can be easily handled in a short time can be obtained due to the reinforcing effect of the structure and the like.
That is, the present invention
(1) Provided is a drilling mud modifier characterized by containing coconut scrap ( not including coconut shell powder ) and a water-soluble polymer in a weight ratio of 1: 1 to 100: 1. Is.
Furthermore, as a preferred embodiment of the present invention,
(2) The excavation mud modifier according to item ( 1 ), wherein the water-soluble polymer compound is a natural water-soluble polymer compound;
( 3 ) The excavation mud modifier according to (1) to ( 2 ), which contains one or more substances selected from inorganic hydraulic substances, inorganic porous substances and swellable clay minerals, and ,
( 4 ) The modification of excavated mud according to ( 3 ), wherein the weight ratio of the coil pith to the inorganic hydraulic substance, the inorganic porous substance and the swellable clay mineral is 1:60 to 20: 1. Agent,
Can be mentioned.
[0005]
The modifier of the present invention can be used to modify drilling mud, sludge and sludge generated at petroleum, gas, geothermal, tunnel, dredging, construction, and other construction sites. . The upper limit of the moisture content of the excavation mud that can be treated by the modifier of the present invention is not particularly limited, and for example, a high moisture content excavation mud that reaches 90% by weight can also be treated. The amount of the modifier added to the drilling mud can be appropriately selected depending on the properties of the drilling mud and the desired properties of the treated soil, but usually 30% by weight or less is sufficient with respect to the drilling mud.
Coil pith used in the present invention is a short-brown or dark-brown substance, usually light brown to dark brown, which is left after collecting fibers from the mesocarp of coconut. Its properties are described in Alan W. et al. It is introduced by Merow in “TropicLine” Vol. 6, No. 2, pp. 1-4 (1993), which contains a large amount of lignin and cellulose and is a porous substance having water absorption.
Coil pith has a water-absorbing effect as its characteristic, and exhibits a reinforcing effect due to the fiber structure. By adding coco dust to the excavated mud, moisture in the excavated mud is rapidly absorbed, and the treated soil is reinforced by fibers, so that a solid treated soil with high strength and easy handling can be obtained.
[0006]
The modifying agent for excavation mud according to the present invention may contain a water-soluble polymer compound as necessary. The water-soluble polymer compound to be used is not particularly limited, and examples thereof include natural water-soluble polymer compounds such as starch, mannan, sodium alginate, locust bean gum, guar gum, pectin, xanthan gum, dextran, gelatin, lambzan gum, gellan gum, Course, methylcellulose, ethylcellulose, carboxymethylcellulose, hydroxypropylcellulose, cationized cellulose, pregelatinized starch, carboxyl starch, dialdehyde starch, cationized starch, dextrin, British gum, cationized guar gum, anionized guar gum, methyl glycol chitosan, etc. Semi-synthetic water-soluble polymer compound, polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylamide, poly (meth) acrylate And polyethylene oxide, synthetic polymer compound of polyvinyl methyl ether and the like. These water-soluble polymer compounds can be used alone or in combination of two or more. A water-soluble polymer compound has a thickening effect, a water absorption effect, an agglomeration effect, and the like, and when it is incorporated in a drilling mud modifier containing coconut scrap, the drilling mud is effectively strengthened. Convert to large treated soil. In the present invention, the ratio of the coconut dust to the water-soluble polymer compound is preferably 1: 1 to 100: 1 by weight, and more preferably 3: 1 to 30: 1. . Even substances other than these water-soluble polymer compounds can be effectively used in the present invention if they are hydrophilic and have a thickening property, water absorption property, cohesiveness, and the like.
[0007]
In the modifier of this invention, the 1 type, or 2 or more types of material chosen from an inorganic hydraulic material, an inorganic porous material, and a swelling clay mineral can be contained as needed. In the present invention, any inorganic hydraulic substance can be used as long as it is an inorganic substance exhibiting hydraulic properties. Such materials include, for example, hemihydrate gypsum, anhydrous gypsum, ordinary Portland cement, fast-setting Portland cement, blast furnace cement, other improved Portland cement, alumina cement, calcium cement, cement containing fly ash and pozzolans And lime-based soil modifiers. Inorganic hydraulic material absorbs moisture from excavated mud by reacting with mud particles and organic materials or by physical adsorption or by dehydration by hydration, so that solid treated soil with high strength and easy handling can be obtained. It is done. Examples of the inorganic porous material used in the present invention include zeolite, pearlite, vermiculite, diatomaceous earth fired product, clay mineral porous fired product, calcium silicate fired product, and the like. The inorganic porous material is effective in solidifying excavated mud due to the water absorption effect due to the pores and the reinforcement effect due to the particle size. Examples of the swellable clay mineral used in the method of the present invention include montmorillonite, beidellite, nontronite, saponite, hectorite, soconite, stevensite, and swellable mica. The swellable clay mineral solidifies the excavated mud due to the water absorption effect due to the swelling force, the thickening effect due to the clay, and the like, and gives an appropriate strength. In the present invention, it is preferable that the ratio of the use of the coil dust and the inorganic hydraulic substance, the inorganic porous substance or the swellable clay mineral is 1:60 to 20: 1 by weight ratio, More preferably, it is 10: 1.
The amount of modifier of the drilling mud according to the present invention varies depending on the soil quality or moisture content of the drilling mud and is not particularly limited, but is usually 0.1 to 200 kg per 1 m 3 of the drilling mud, and preferably 1 m 3 of the drilling mud. 0.5-100 kg. By adding the modifier of the present invention, moisture contained in the excavated mud is absorbed and reinforced with fibrous materials in the coil scrap, so that it becomes a solid treated soil having strength that is easy to handle, Reuse and disposal of treated soil becomes easy.
[0008]
The modifier of the present invention is a one-pack type modifier obtained by previously mixing each component of coconut scrap, water-soluble polymer compound, inorganic hydraulic material, inorganic porous material, and swellable clay mineral. Each component can be added to the drilling mud separately, or some of each component can be mixed in advance, and the remaining components can be added separately. Can be added and used in this order. Among these addition methods, a method in which all components are added simultaneously as a one-pack type modifier, or a method in which a water-soluble polymer compound is added first is desirable because the effect is good.
In the modifier of the present invention, coconut pith, a water-soluble polymer compound, an inorganic hydraulic substance, an inorganic porous substance, and a swellable clay mineral are pulverized using a mill or the like, and the particle size is 1 mm or less. This is particularly effective, but it is also possible to use unpulverized or each component having a particle size of 1 mm or more. The modifier of the present invention exhibits the highest effect when each component is in a dry state, but can also be used in the form of a slurry or other shapes. If the modifier of this invention is made into a slurry form, it can be transported by a high viscosity liquid pump. The modifier of the present invention is effective even when it is brought into contact with the drilling mud without stirring, but a higher effect can be obtained by adding it to the drilling mud and stirring.
In the drilling mud modifier according to the present invention, the coconut scrap effectively solidifies the drilling mud with a high water content by the water absorption effect and the reinforcing effect by the fiber structure. The water-soluble polymer compound enhances the effect of the fibrous substance by a water absorption effect, a thickening effect, an agglomeration effect, and the like, and as a modified soil having higher strength, prevents water from being released. The inorganic hydraulic substance enhances the effect of the fibrous substance by the setting effect, the dehydration effect by hydration, and the like, and makes the modified soil stronger, and suppresses the softening of the treated soil by rainwater. The inorganic porous material solidifies the drilling mud more effectively with a lower addition amount due to the water absorption effect by the pores, the reinforcement effect by the particle size, and the like. The swellable clay mineral solidifies the excavated mud more effectively with a lower addition amount due to the water absorption effect due to the swelling power, the thickening effect due to the clay, and the like.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Drilled mud (water content 31.5 wt%, sand content [particles of 75 μm or more] 44.5 wt%) collected from a subway tunnel construction site was dry-ground by a coffee mill (hereinafter “coconut scrap”). 200 g) was added and stirred for 2 minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness meter, and it was 4.5 kg / cm 2 .
Example 2
To 2 liters of the same mud as in Example 1, 100 g of coconut dust pulverized product and 6 g of a natural water-soluble polymer modifier [Kurita Industry Co., Ltd. Chrysat C-101] were added simultaneously and stirred for 2 minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness meter, and it was 4.5 kg / cm 2 .
Example 3
To 2 liters of the same mud as in Example 1, 100 g of coconut crushed material, 6 g of a natural polymer modifier [Kurita Kogyo Co., Ltd. Chrysat C-101] and 60 g of hemihydrate gypsum were simultaneously added and stirred for 2 minutes. . Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka soil hardness tester and found to be 5.0 kg / cm 2 .
Comparative Example 1
To 2 liters of the same mud as in Example 1, 10 g of a natural water-soluble polymer modifier [Chrysat Industrial Co., Ltd. Chrysat C-101] was added and stirred for 2 minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness tester and found to be 0.40 kg / cm 2 .
Example 1 with added coconut crushed material, Example 2 with added coconut crushed material and natural polymer modifier, Example with added coconut crushed product, natural polymer modified agent and hemihydrate gypsum In Example 3, the soil strength of the treated soil is sufficiently improved, but in Comparative Example 1 in which only the natural polymer-based modifier is added and the coconut crushed material is not added, the soil strength of the treated soil is increased. There is little improvement.
Example 4
To 2 liters of the same mud as in Example 1, 100 g of coconut scrap pulverized product and 6 g of a polymethacrylate-based synthetic water-soluble polymer modifier [Kurita Kogyo Kurifix CP-604] were added at the same time. Stir for minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness tester and found to be 5.5 kg / cm 2 .
Example 5
In 2 liters of the same mud as in Example 1, 100 g of coconut scrap pulverized product, 6 g of polymethacrylic ester-based synthetic water-soluble polymer modifier [Kurita Kogyo Co., Ltd. Krifix CP-604] and 60 g of hemihydrate gypsum were added. Simultaneously added and stirred for 2 minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness tester and found to be 6.1 kg / cm 2 .
Comparative Example 2
To 2 liters of the same mud as in Example 1, 10 g of a polymethacrylate-based synthetic water-soluble polymer modifier [Kurita CP Co., Ltd. Krifix CP-604] was added and stirred for 2 minutes. Ten minutes later, the soil strength of the treated soil was measured with a Yamanaka-type soil hardness tester and found to be 0.80 kg / cm 2 .
In Example 4 to which the coconut waste pulverized product and synthetic polymer modifier were added, and Example 5 to which the coconut crushed product, synthetic polymer modifier and hemihydrate gypsum were added, the soil strength of the treated soil was sufficient. However, in Comparative Example 2 in which only the synthetic polymer-based modifier is added and the coconut crushed material is not added, there is little improvement in the soil strength of the treated soil.
Example 6
Into a 5 liter mortar mixer, 1,111 g of powdered clay and 889 ml of tap water were taken and stirred for 1 minute to prepare mud with a water content of 44.5% by weight. To this mud was added 50 g of coconut crushed material and 50 g of Portland cement at the same time and stirred for 2 minutes. After 4 hours and 72 hours, the soil strength of the treated soil was measured with a Yamanaka soil hardness tester. As a result, it was 1.9 kg / cm 2 after 4 hours and 15 kg / cm 2 after 72 hours.
Example 7
Exactly the same operation as in Example 6 was repeated except that 50 g of a lime-based soil conditioner [Green Lime LC manufactured by Calseed Co., Ltd.] was used instead of 50 g of Portland cement. The soil strength of the treated soil was 1.1 kg / cm 2 after 4 hours and 6.6 kg / cm 2 after 72 hours.
Comparative Example 3
Into a 5 liter mortar mixer, 1,111 g of powdered clay and 889 ml of tap water were taken and stirred for 1 minute to prepare mud having a water content of 44.5% by weight. To this mud was added 100 g of Portland cement and stirred for 2 minutes. When after four hours and 72 hours were measured soil strength treated soil by Yamanaka type soil hardness tester, after 4 hours for 0.6 kg / cm 2, 72 hours after was 4.0 kg / cm 2.
Comparative Example 4
Exactly the same operation as Comparative Example 3 was repeated except that 100 g of a lime-based soil modifier [Green Lime LC manufactured by Calceid Co., Ltd.] was used instead of 100 g of Portland cement. Soil strength of treated soil is after 4 hours 0.7 kg / cm 2, 72 hours after was 4.0 kg / cm 2.
The treated soils of Examples 6-7 to which the coconut scrap pulverized product, Portland cement or lime-based soil modifier was added were all higher than the treated soils of Comparative Examples 3-4 to which the coconut scrap crushed product was not added. The soil strength was shown.
[0010]
【The invention's effect】
According to the drilling mud modifier of the present invention, drilling mud, sludge and sludge generated in oil wells, gas wells, geothermal wells, tunnel construction, dredging construction, construction work, and other construction sites can be removed in a short time. It is possible to make the treated soil in a form that can be easily transported and reused or discarded.

Claims (1)

椰子屑(Coir pith、椰子殻粉末は含まないもの及び水溶性高分子を1:1〜100:1の重量比で含有することを特徴とする掘削泥土の改質剤。A modifying agent for excavation mud characterized in that it contains coconut scrap ( not including coconut shell powder ) and a water-soluble polymer in a weight ratio of 1: 1 to 100: 1 .
JP19415895A 1995-07-06 1995-07-06 Drilling mud modifier Expired - Fee Related JP3613412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19415895A JP3613412B2 (en) 1995-07-06 1995-07-06 Drilling mud modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19415895A JP3613412B2 (en) 1995-07-06 1995-07-06 Drilling mud modifier

Publications (2)

Publication Number Publication Date
JPH0920889A JPH0920889A (en) 1997-01-21
JP3613412B2 true JP3613412B2 (en) 2005-01-26

Family

ID=16319892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19415895A Expired - Fee Related JP3613412B2 (en) 1995-07-06 1995-07-06 Drilling mud modifier

Country Status (1)

Country Link
JP (1) JP3613412B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256154A (en) * 1998-03-10 1999-09-21 Oji Ryokka Kk Soil improvement
JP4695254B2 (en) * 2000-12-07 2011-06-08 吉野石膏株式会社 Soil treatment material composition and soil treatment method
JP5767442B2 (en) * 2010-04-28 2015-08-19 株式会社クレアテラ Drilling material modifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715786A (en) * 1980-07-02 1982-01-27 Hitachi Ltd Door controller
JPH05317705A (en) * 1992-05-15 1993-12-03 Sekisui Plastics Co Ltd Water-absorptive compression molded body
JP3422554B2 (en) * 1994-02-22 2003-06-30 住友精化株式会社 Solidifying agent for treating hydrous slurry excavated soil and method for treating hydrous slurry excavated soil
JP3496851B2 (en) * 1995-06-06 2004-02-16 住友精化株式会社 Residual soil solidifying agent and method for solidifying residual soil

Also Published As

Publication number Publication date
JPH0920889A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP3783388B2 (en) Method for reforming and solidifying high water content mud, mud or sludge
JP3551424B2 (en) Drilling mud strength modifier
CN107245338B (en) Composite preparation for repairing and improving soil structure and preparation method thereof
CN113860840A (en) Roadbed material prepared from waste slurry and application thereof
JPH0581632B2 (en)
JP3613412B2 (en) Drilling mud modifier
JP7059039B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP3549129B2 (en) Residual soil improver and method for improving residual soil
JP3952090B2 (en) Drilling mud modifier
JPH0953071A (en) Treatment of surplus excavated soil
JPH08209108A (en) Excavated mud modifier
JPH0582280B2 (en)
JP3707064B2 (en) Mud and powder chemical mixing equipment
JP4210384B2 (en) Sludge treatment agent and sludge treatment method
JP3525084B2 (en) Soil improvement method and soil improvement material for highly hydrous soil
JP3736702B2 (en) Alkaline mud modifier
JPH0415038B2 (en)
JPH1058000A (en) Solidification treatment of muddy soil
JP3220202B2 (en) Wastewater treatment method for construction
JP4016462B2 (en) Sludge or mud modifier and treatment method
JP4014057B2 (en) Mud and mud used for underground excavation
JP2004197356A (en) Soil column material, soil column, and construction method for soil column
PL182728B1 (en) Injectable agent and injectable suspension
JP4261168B2 (en) Solidification aid for hydrous sludge stabilization treatment, solidification material for hydrous sludge stabilization treatment, and hydrous sludge stabilization treatment method
JP2007160258A (en) Muddy water modifier and muddy water modifying method using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees