JP3613366B2 - Intake manifold for inline 4-cylinder internal combustion engine - Google Patents

Intake manifold for inline 4-cylinder internal combustion engine Download PDF

Info

Publication number
JP3613366B2
JP3613366B2 JP22960196A JP22960196A JP3613366B2 JP 3613366 B2 JP3613366 B2 JP 3613366B2 JP 22960196 A JP22960196 A JP 22960196A JP 22960196 A JP22960196 A JP 22960196A JP 3613366 B2 JP3613366 B2 JP 3613366B2
Authority
JP
Japan
Prior art keywords
resonance
cylinder
independent intake
intake
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22960196A
Other languages
Japanese (ja)
Other versions
JPH1073024A (en
Inventor
尚義 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22960196A priority Critical patent/JP3613366B2/en
Publication of JPH1073024A publication Critical patent/JPH1073024A/en
Application granted granted Critical
Publication of JP3613366B2 publication Critical patent/JP3613366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気装置に関し、特に吸気脈動を利用して吸気過給を行うようにした直列4気筒内燃機関の吸気マニホルドに関する。
【0002】
【従来の技術】
従来より多気筒内燃機関の各気筒の吸気通路に発生する圧力変動を利用し、吸気行程後半に吸気ポート部分の圧力を上昇させて過給効果を得るようにした吸気装置が種々提案されており、またこのような吸気の動的効果として慣性過給と共鳴過給があることが知られている。
【0003】
慣性過給は、吸気行程にある気筒からの負圧波を吸気拡大部によって正の圧力波に反転させ、この圧力波による吸気押込み作用によって過給を行うものである。
【0004】
一方共鳴過給においては、複数の気筒が互いに吸気行程が連続しない第1気筒群と第2気筒群とに分けられ、第1気筒群の各気筒がそれぞれ独立吸気通路を介して第1共鳴室に連通され、第2気筒群も同じく第2共鳴室に連通される。
そして第1,第2共鳴室どうしはそれぞれ第1,第2共鳴通路を介して共通の集合室に集合する。
【0005】
このような構成により吸気ポートの周期的な開閉によって生じる圧力波を原因として第1,第2共鳴通路内の気柱が振動され、この振動が第1,第2共鳴室内および独立吸気通路内の空気を振動させることになり、この振動の共鳴を生じた時に圧力振動が最大となって大きな過給が行われることになる。
【0006】
しかるに各気筒に対する吸気通路の長さが互いに等しくないと、気筒への反射圧力波の到達時期(伝播周期)にずれが生じて、これにより各気筒の間に体積効率(充填効率)の不均一が生じ、運転性能の低下を招くことになる。
【0007】
そこで直列4気筒内燃機関において4本の吸気通路の長さを等しくした吸気マニホルドが従来より提案されており、その特開昭64−15427号公報記載の一例を図5に図示する。
【0008】
直列4気筒の内燃機関01が車両に縦置きに搭載されており、前方より順に第1,第2,第3,第4気筒と配列され、第1気筒と第4気筒は互いに吸気行程が連続しないように構成されていて、この第1気筒と第4気筒から延出した第1,第4独立吸気通路011 ,014 が共通の第1共鳴室021 に集合し、第2気筒と第3気筒から延出した第2,第3独立吸気通路012 ,013 が共通の第2共鳴室022 に集合している。
【0009】
第1,第2共鳴室021 ,022 からそれぞれ上流側に延出した第1,第2共鳴通路031 ,032 は上流端で合流している。
そして第1,第2共鳴室021 ,022 は、気筒配列方向に直列に配設され、第1,第2共鳴室021 ,022 およびその上流側は前後に線対称に構成されるとともに、気筒配列方向に垂直な向きの内燃機関中心線L−Lに第1共鳴室021 の気筒配列方向に垂直な向きの中心線が、ほぼ一致するように第1共鳴室021 を配設している。
【0010】
かかる構成により図5に示すように第1,第2,第3独立吸気通路011 ,012 ,013 が互いに平行移動した略同一の形状をし、第4独立吸気通路014 は第1独立吸気通路011 と内燃機関中心線L−Lに関して略対称な概ね同一の形状をして、全ての独立吸気通路が互いに長さを略等しくし、各気筒の間に充填効率の不均一が生じるのを防止している。
【0011】
【発明が解決しようとする課題】
4本の独立吸気通路011 ,012 ,013 ,014 は、第1,第2共鳴室021 ,022 に気筒配列方向に並んで集合しており、したがって第1,第2共鳴室021 ,022 はともに気筒配列方向に平行な姿勢で、気筒配列方向に直列に配置されているので、第1,第2共鳴室021 ,022 周りは、前後方向に大きくかさばり、限られた機関室内の空間を有効に利用することが難しい。
【0012】
また同公報の記載および図5の平面図のみでは、各独立吸気通路011 ,012 ,013 ,014 の実際の湾曲形状が明らかでなく、第4独立吸気通路012 は第2,第3独立吸気通路011 ,012 ,013 と平面視で重なっており、上下幅も大きいおそれもある。
【0013】
各独立吸気通路011 ,012 ,013 ,014 の湾曲形状の曲率が異なると吸気抵抗も異なって吸気充填量の均一化も望めず、また曲率が小さ過ぎると吸気抵抗が増大して吸気充填量の低下を招く。
【0014】
本発明は、かかる点に鑑みなされたもので、その目的とする処は、全ての独立吸気通路を必要以上に小さくない曲率で等長化し、各気筒の間に均一で充分な充填効率を確保しつつ吸気マニホルドをコンパクト化して機関室内のスペースを有効に利用することができる直列4気筒内燃機関の吸気マニホルドを提供する点にある。
【0015】
【課題を解決するための手段および作用】
上記目的を達成するために、本発明は、直列4気筒内燃機関の4つの気筒を吸気行程が互いに連続しない2つの気筒群に分け、各気筒にそれぞれ連通する互いに独立な第1,第2,第3,第4独立吸気通路と、前記第1,第2,第3,第4独立吸気通路が前記2つの気筒群毎に合流する第1,第2共鳴室と、前記第1,第2共鳴室からそれぞれ上流側に延びる第1,第2共鳴通路と、前記第1,第2共鳴通路が集合する集合室とを設け、前記集合室の一端にスロットルボディを接続してなる4気筒内燃機関の吸気装置において、前記第1共鳴室を気筒配列方向に垂直な方向に長尺な形状として配置し、前記第2共鳴室を気筒配列方向に平行な方向に長尺な形状として配置し、前記第1,第2共鳴室からそれぞれ上流側に延びる第1,第2共鳴通路の下流側を気筒配列方向に平行に延出し、前記第1,第2,第3独立吸気通路を下方に空間を抱え込むように側面視逆U字状に湾曲形成して第1独立吸気通路を前記第1共鳴室の上面に接続し第2,第3独立吸気通路を前記第2共鳴室の上面に接続し、前記第1,第2,第3独立吸気通路より前記スロットルボディ側に位置させた前記第4独立吸気通路を前記第1,第2,第3独立吸気通路が形成する下方空間内を前記第2共鳴室の側面に沿って通らせ前記第1共鳴室の側面に接続した直列4気筒内燃機関の吸気マニホルドとした。
【0016】
気筒配列方向に対して第1共鳴室を垂直に、第2共鳴室を平行に配置し、第1,第2,第3独立吸気通路が第1,第2共鳴室の上面に接続され、第4独立吸気通路が前記第1,第2,第3独立吸気通路が形成する下方空間内を前記第2共鳴室の側面に沿わせて前記第1共鳴室の側面に接続したので、第1,第2共鳴室は気筒配列方向に関し3本の第1,第2,第3独立吸気通路が接続される幅を有すればよく、気筒配列方向の大きさを小さくできる。
【0017】
さらに第1,第2共鳴室から第1,第2共鳴通路を気筒配列方向に平行に延出させているので、第1,第2共鳴室は気筒配列方向に垂直な方向に関し2本の独立吸気通路が接続される幅を有すればよい。
したがって第1,第2共鳴室は前後左右ともに小さく吸気マニホルドをコンパクトに構成することができる。
【0018】
そして第1,第2,第3独立吸気通路を下方に空間を抱え込むように側面視逆U字状に湾曲形成し、第4独立吸気通路を前記第1,第2,第3独立吸気通路が形成する下方空間内を通らせるので、各独立吸気通路を十分な曲率で湾曲させ、かつ等しい長さとして各気筒の間に均一で充分な充填効率を確保することが可能であるとともに、第1,第2共鳴室およびこれらに集合する各独立吸気通路を内燃機関に近づけ、益々吸気マニホルドをコンパクトに内燃機関に沿わせることができ、限られた機関室内のスペースを有効に利用することができる。
【0019】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図4に図示し説明する。
本実施の形態に係る自動車1は、FF車(フロントエンジンフロントドライブ車)であり、図1はその車体前部における内燃機関10の配置状態を示す概略側面図である。
【0020】
ボンネット2の下方の機関室3内において、前方のラジエータ4と後方のダッシュボード5との間に直列4気筒の内燃機関10が横置きに搭載されており、直列に気筒が配列されたシリンダブロック11は後方に傾斜している。
傾斜したシリンダブロック11の上部のシリンダヘッド12からは前方に吸気マニホルド20が延出形成され、後方に排気マニホルド15が延出形成されている。
【0021】
本吸気マニホルド20は、吸気過給がなされる構造をなしており、図2ないし図4はスロットルボディより下流側の吸気マニホルド20を示す平面図,正面図および側面図である。
【0022】
車体に対して横置きに搭載された直列4気筒の内燃機関10の4つの気筒を右側から順に第1,第2,第3,第4気筒とすると、点火順序を第1−第3−第4−第2の気筒の順としており、第1気筒と第4気筒が吸気行程の連続しない気筒群を構成し、同様に第2気筒と第3気筒が吸気行程の連続しない別の気筒群を構成する。
【0023】
かかる直列4気筒の内燃機関10のシリンダヘッド12から第1,第2,第3,第4気筒毎に第1,第2,第3,第4独立吸気管21,22,23,24が前方へ延出している。
4本の独立吸気管21,22,23,24は、その基端部が共通の横長板状のフランジプレート13のヘッドフランジ部13aに溶接されてシリンダヘッド12に接続される。
【0024】
第1,第2,第3,第4独立吸気管21,22,23,24は、フランジプレート13から前方へ斜め上向きに延出し、そのうち第1,第2,第3独立吸気管21,22,23は下方に空間を抱え込むように側面視で逆U字状に必要十分な曲率(ポート径の約1.5 倍の曲がりR)で湾曲形成し、第1独立吸気管21は第1共鳴室31の上面に接続され、第2,第3独立吸気管22,23は第2共鳴室32の上面に接続されている。
【0025】
第1共鳴室31は、気筒配列方向に対し垂直な方向に指向した前後長尺な姿勢で第2気筒の略前方位置に配置されており、その後半部(シリンダヘッド側)が上方に膨出して前半部上面31aが後半部上面31bより低い高さ位置にあり、前記第1独立吸気管21はこの低い方の前半部上面31aに接続されている。
【0026】
第2共鳴室32は、気筒配列方向に平行に指向した左右長尺な姿勢にあって第3気筒の略前方位置で第1共鳴室31の前半部側面に接して配置されており、前記第2,第3独立吸気管22,23はこの第2共鳴室32の上面32aに左右に並んで接続されている。
【0027】
第1共鳴室31の前半部上面31aと第2共鳴室32の上面32aとは略同じ高さに左右並んで位置するので、第1,第2,第3独立吸気管21,22,23は上流端が第1,第2共鳴室31,32の上面31a,32aに左右に近接して配列され、逆U字状に湾曲して下流端がフランジプレート13の左右に長尺の同一面に配列していて、略同一の曲率の湾曲形状で略同一の通路長をなす。
【0028】
そして第4独立吸気管24は、フランジプレート13から前方へ斜め上向きに延出した後、下方に空間を抱え込むように側面視で逆U字状に湾曲しながら斜め右方(車両進行方向に向かって右方)に延び、前記第2,第3独立吸気管22,23が形成する逆U字状の湾曲部の下方空間を第2共鳴室32の後側(フランジプレート13側)側面に沿って延出し、第1共鳴室31の後半部左側面の上方に膨出した部分に接続されている。
【0029】
したがって第4独立吸気管24は、下流端が第1,第2,第3独立吸気管21,22,23と同じフランジプレート13から延出し、上流端が第1,第2,第3独立吸気管21,22,23の上流端よりフランジプレート13に近く前後長が短いが左右に延びる長さが長く、互いに相殺されて第1,第2,第3独立吸気管21,22,23と略等しい通路長が確保されている。
【0030】
また第4独立吸気管24の逆U字状湾曲は斜めに形成されるので、第1,第2,第3独立吸気管21,22,23より近くに湾曲しなければならないにもかかわらず曲率を小さくしないですみ、よって曲率も第1,第2,第3独立吸気管21,22,23と略等しい。
以上より4本の第1,第2,第3,第4独立吸気管21,22,23,24は、互いに通路長も湾曲部の曲率も略等しい。
【0031】
そして第1共鳴室31の後半部左側面の下部(上部には第4独立吸気管24が接続されている)から第1共鳴管41がフランジプレート13に平行に延出し、上方の第4独立吸気管24を過ぎた辺りから斜め上方に傾斜し、後方に略L字状に屈曲(共鳴管の径の約2倍の曲がりR)して集合室50の右側に接続されている。
【0032】
また第2共鳴室32の左側面からは第2共鳴管42がフランジプレート13に平行に延出し、第1共鳴管41に沿って途中から斜め上方に傾斜し、後方にL字状に屈曲(共鳴管の径の約2倍の曲がりR)して集合室50の左側に接続されている。
【0033】
集合室50は、その上流部がフランジプレート13のヘッドフランジ部13aから左方に若干斜め上方に延出した端部のスロットルボディフランジ部13bに接続され、前方に左右隣接して分岐した下流部が第1,第2共鳴管41,42に接続される。
第1共鳴管41に比べ第2共鳴管42は、若干通路長が短いが、屈曲部の曲率は略等しい。
【0034】
なおフランジプレート13がシリンダヘッド12に取り付けられると、スロットルボディフランジ部13bに固着された集合室50は、スロットルボディに接続され、スロットルボディから上流側にエアフローダクトを介してエアクリーナが接続される。
【0035】
前記左右に隣接する第1共鳴室31と第2共鳴室32は、下部において連通管33により連通されており、同連通管33は左右に膨出して比較的容量が大きく形成されている。
【0036】
該連通管33の第1共鳴室31との連通口には開閉弁34が開閉自在に設けられ、第1共鳴室31と第2共鳴室32を連通管33を介して適宜遮断または連通できるようになっている。
【0037】
第2共鳴管42は、第1共鳴管41より若干通路長が短いが、同第2共鳴管42が接続される第2共鳴室32は、これと常時連通している連通管33の容積も含めると十分な容積が確保されて第1,第2共鳴管41,42が等長化されているに等しく、よって第1共鳴管41と第2共鳴管42の共鳴周波数(共振点)を同一とすることができる。
【0038】
開閉弁34は弁軸35に固着され旋回する蝶形弁で、回転自在に枢支された弁軸35はヘッドフランジ13側に突設されたダイヤフラム36の作動部にリンク機構37を介して連結されている。
ダイヤフラム36は内燃機関10と吸気マニホルド20との間のデッドスペースを利用して配置されスペースを有効に使用している。
【0039】
ダイヤフラム36は内燃機関10の運転状態に応じて作動するようになっており、内燃機関10の低中回転域では切換弁34を閉じて第1共鳴室31と第2共鳴室32との連通を遮断し、高回転域では切換弁34を開き連通する。
【0040】
内燃機関10が低中回転域で切換弁34が閉じているときは、一方の気筒群の第1,第4独立吸気管21,24が第1共鳴室31を介して連通する第1共鳴管41と、他方の気筒群の第2,第3独立吸気管22,23が第2共鳴室32を介して連通する第2共鳴管42とは、互いに遮断されて前記したように等長化され、共鳴周波数を同一とし、第1,第2,第3,第4独立吸気管21,22,23,24内の空気を振動させ各気筒の間に均一で充分な充填効率を確保することができ、共鳴過給の効果を最大に発揮することができる。
【0041】
また内燃機関10が高回転域で切換弁34が開いているときは、連通管33を介して第1共鳴室31と第2共鳴室32が連通して大容量の吸気拡大部が形成され、気筒で発生した負圧波を等長化された第1,第2,第3,第4独立吸気管21,22,23,24を介して該吸気拡大部で反射反転させ、慣性過給のバラツキによる高回転域の性能低下を防止することができる。
したがって内燃機関10の低中回転数から高回転数に亘る広い機関回転域で高い出力トルクを得ることができる。
【0042】
気筒配列方向に対して第1共鳴室31を垂直に、第2共鳴室32を平行に連接して配置し、該第1,第2共鳴室31,32は気筒配列方向に関し3本の第1,第2,第3独立吸気管21,22,23が接続されるに必要なだけの幅を有し、かつ第1,第2共鳴室は気筒配列方向に垂直な方向に関し2本の第1,第4独立吸気管21,24が接続されるに必要なだけの幅を有し、したがって第1,第2共鳴室31,32は前後幅・左右幅ともに小さくコンパクトに構成することができる。
【0043】
第2,第3独立吸気管22,23の逆U字状の下方空間を第4独立吸気管24が通る構成として第1,第2共鳴室31,32およびこれらに集合する各独立吸気管を、内燃機関10に近づけ、益々吸気マニホルド20をコンパクトに内燃機関10に沿わせることができ、限られた機関室内のスペースを有効に利用することができる。
【0044】
なおフランジプレート13のヘッドフランジ部13aとスロットルボディフランジ部13bとを別体にしてもよいが、本実施の形態のように一体に形成することで、図2の平面図からも分かるように本吸気マニホルド20は、各独立吸気管21,22,23,24、第1,第2共鳴管41,42およびフランジプレート13が概ねロ字状に構成され、構造的に剛性・強度を向上させることができる。
【0045】
【発明の効果】
本発明は、気筒配列方向に対して第1共鳴室を垂直に、第2共鳴室を平行に配置し、気筒配列方向およびその直角方向の大きさをコンパクト化することができる。
【0046】
各独立吸気通路を十分な曲率で湾曲させ、かつ等しい長さとして各気筒の間に均一で充分な充填効率を確保することが可能であるとともに、第1,第2共鳴室およびこれらに集合する各独立吸気通路を内燃機関に近づけ、益々吸気装置をコンパクトに内燃機関に沿わせることができ、限られた機関室内のスペースを有効に利用することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る自動車の車体前部の内燃機関の配置状態を示す概略側面図である。
【図2】同内燃機関の吸気マニホルドの平面図である。
【図3】同正面図である。
【図4】同側面図である。
【図5】従来の直列4気筒内燃機関および吸気マニホルドを示す平面図である。
【符号の説明】
1…自動車、2…ボンネット、3…機関室、4…ラジエータ、5…ダッシュボード、
10…内燃機関、11…シリンダブロック、12…シリンダヘッド、13…フランジプレート、15…排気マニホルド、
20…吸気マニホルド、21…第1独立吸気管、22…第2独立吸気管、23…第3独立吸気管、24…第4独立吸気管、
31…第1共鳴室、32…第2共鳴室、33…連通管、34…開閉弁、35…弁軸、36…ダイヤフラム、37…リンク機構、
41…第1共鳴管、42…第2共鳴管、
50…集合室。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake device for an internal combustion engine, and more particularly, to an intake manifold for an in-line four-cylinder internal combustion engine that performs intake supercharging using intake pulsation.
[0002]
[Prior art]
Conventionally, various intake devices have been proposed in which the pressure fluctuation generated in the intake passage of each cylinder of a multi-cylinder internal combustion engine is used to increase the pressure in the intake port portion in the latter half of the intake stroke to obtain a supercharging effect. In addition, it is known that there are inertia supercharging and resonance supercharging as dynamic effects of such intake air.
[0003]
Inertial supercharging is a process in which a negative pressure wave from a cylinder in an intake stroke is reversed to a positive pressure wave by an intake air expansion portion, and supercharging is performed by an intake pushing action by this pressure wave.
[0004]
On the other hand, in resonance supercharging, a plurality of cylinders are divided into a first cylinder group and a second cylinder group in which the intake strokes do not continue with each other, and each cylinder of the first cylinder group passes through an independent intake passage to the first resonance chamber. The second cylinder group is also communicated to the second resonance chamber.
The first and second resonance chambers gather in a common collection chamber via the first and second resonance passages, respectively.
[0005]
With such a configuration, the air column in the first and second resonance passages is vibrated due to pressure waves generated by the periodic opening and closing of the intake port, and this vibration is generated in the first and second resonance chambers and in the independent intake passages. The air is vibrated, and when the vibration is resonated, the pressure vibration is maximized and a large supercharging is performed.
[0006]
However, if the lengths of the intake passages for the cylinders are not equal to each other, there will be a shift in the arrival time (propagation cycle) of the reflected pressure wave to the cylinders, resulting in non-uniform volumetric efficiency (filling efficiency) among the cylinders. As a result, the driving performance is degraded.
[0007]
In view of this, an intake manifold in which the lengths of the four intake passages are the same in an in-line four-cylinder internal combustion engine has been proposed in the past, and an example of that disclosed in Japanese Patent Application Laid-Open No. 64-15427 is shown in FIG.
[0008]
An in-line four-cylinder internal combustion engine 01 is vertically mounted on a vehicle, and is arranged in order from the front as first, second, third, and fourth cylinders, and the first cylinder and the fourth cylinder have consecutive intake strokes. The first and fourth independent intake passages 011, 014 extending from the first cylinder and the fourth cylinder are gathered in a common first resonance chamber 021, and the second cylinder and the third cylinder The second and third independent intake passages 012 and 013 extending from the second chamber are gathered in a common second resonance chamber 022.
[0009]
The first and second resonance passages 031 and 032 extending upstream from the first and second resonance chambers 021 and 022 are joined at the upstream end.
The first and second resonance chambers 021 and 022 are arranged in series in the cylinder arrangement direction, and the first and second resonance chambers 021 and 022 and the upstream side thereof are configured symmetrically in the longitudinal direction, and the cylinder arrangement The first resonance chamber 021 is arranged so that the center line in the direction perpendicular to the cylinder arrangement direction of the first resonance chamber 021 substantially coincides with the internal combustion engine center line LL in the direction perpendicular to the direction.
[0010]
With this configuration, as shown in FIG. 5, the first, second, and third independent intake passages 011, 012, and 013 have substantially the same shape, and the fourth independent intake passage 014 has the first independent intake passage 011. And the internal combustion engine center line L-L are substantially the same shape, and all the independent intake passages have substantially the same length to prevent uneven filling efficiency between the cylinders. ing.
[0011]
[Problems to be solved by the invention]
The four independent intake passages 011, 012, 013, 014 gather together in the cylinder arrangement direction in the first and second resonance chambers 021, 022, and therefore the first and second resonance chambers 021, 022 are both Since the cylinders are arranged in series in the cylinder arrangement direction in a posture parallel to the cylinder arrangement direction, the surroundings of the first and second resonance chambers 021 and 022 are greatly bulky in the front-rear direction, and the space in the limited engine room is effectively used. It is difficult to use.
[0012]
In addition, the actual curved shape of each of the independent intake passages 011, 012, 013, and 014 is not clear only from the description of the publication and the plan view of FIG. 5, and the fourth independent intake passage 012 is the second and third independent intake passages. 011, 012, and 013 overlap in plan view, and the vertical width may be large.
[0013]
If the curvatures of the curved shapes of the individual intake passages 011, 012, 013, and 014 are different, the intake resistance is different and the intake charge amount cannot be uniformed. If the curvature is too small, the intake resistance increases and the intake charge amount is reduced. Incurs a decline.
[0014]
The present invention has been made in view of such a point, and the object of the process is to make all independent intake passages equal in length with a curvature that is not smaller than necessary, and to ensure uniform and sufficient filling efficiency between the cylinders. However, it is to provide an intake manifold for an in-line four-cylinder internal combustion engine that can make the intake manifold compact and effectively use the space in the engine room.
[0015]
[Means and Actions for Solving the Problems]
In order to achieve the above object, the present invention divides four cylinders of an in-line four-cylinder internal combustion engine into two cylinder groups whose intake strokes are not continuous with each other, and the first, second, Third and fourth independent intake passages, first, second and second resonance chambers where the first, second, third and fourth independent intake passages merge for each of the two cylinder groups, and the first and second resonance chambers. A four-cylinder internal combustion engine comprising a first and second resonance passages extending upstream from the resonance chambers, a collecting chamber in which the first and second resonance passages are gathered, and a throttle body connected to one end of the collecting chamber In the engine intake device, the first resonance chamber is arranged in a shape elongated in a direction perpendicular to the cylinder arrangement direction, and the second resonance chamber is arranged in a shape elongated in a direction parallel to the cylinder arrangement direction, First and second resonances extending upstream from the first and second resonance chambers, respectively. A first independent intake passage that extends in parallel with the cylinder arrangement direction on the downstream side of the passage, and that the first, second, and third independent intake passages are curved in a reverse U shape in a side view so as to hold a space below. Is connected to the upper surface of the first resonance chamber, the second and third independent intake passages are connected to the upper surface of the second resonance chamber, and is positioned closer to the throttle body than the first, second, and third independent intake passages. The fourth independent intake passage made to pass through the lower space formed by the first, second and third independent intake passages along the side surface of the second resonance chamber and connected to the side surface of the first resonance chamber An intake manifold for an in-line four-cylinder internal combustion engine was used.
[0016]
The first resonance chamber is perpendicular to the cylinder arrangement direction, the second resonance chamber is arranged in parallel, and the first, second, and third independent intake passages are connected to the upper surfaces of the first and second resonance chambers, Since the four independent intake passages are connected to the side surfaces of the first resonance chamber along the side surfaces of the second resonance chamber in the lower space formed by the first, second, and third independent intake passages, The second resonance chamber only needs to have a width to which the three first, second, and third independent intake passages are connected in the cylinder arrangement direction, and the size in the cylinder arrangement direction can be reduced.
[0017]
Further, since the first and second resonance passages extend from the first and second resonance chambers in parallel to the cylinder arrangement direction, the first and second resonance chambers are two independent in the direction perpendicular to the cylinder arrangement direction. It only needs to have a width to which the intake passage is connected.
Therefore, the first and second resonance chambers are small in the front, rear, left, and right, and the intake manifold can be made compact.
[0018]
Then, the first, second, and third independent intake passages are curved in a reverse U shape so as to hold a space downward, and the fourth independent intake passage is formed by the first, second, and third independent intake passages. Since it passes through the lower space to be formed, each independent intake passage can be curved with a sufficient curvature, and it is possible to ensure uniform and sufficient filling efficiency between the cylinders with equal lengths, and the first , The second resonance chambers and the independent intake passages gathered in them can be brought closer to the internal combustion engine, and the intake manifold can be made more compact along the internal combustion engine, so that the limited space in the engine chamber can be used effectively. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
The automobile 1 according to the present embodiment is an FF vehicle (front engine front drive vehicle), and FIG. 1 is a schematic side view showing an arrangement state of the internal combustion engine 10 at the front portion of the vehicle body.
[0020]
In an engine room 3 below the bonnet 2, an in-line four-cylinder internal combustion engine 10 is mounted horizontally between a front radiator 4 and a rear dashboard 5, and a cylinder block in which the cylinders are arranged in series. 11 is inclined backward.
From the cylinder head 12 at the top of the inclined cylinder block 11, an intake manifold 20 is formed to extend forward, and an exhaust manifold 15 is formed to extend rearward.
[0021]
The intake manifold 20 has a structure in which intake supercharging is performed. FIGS. 2 to 4 are a plan view, a front view, and a side view showing the intake manifold 20 on the downstream side of the throttle body.
[0022]
Assuming that the four cylinders of the in-line four-cylinder internal combustion engine 10 mounted laterally with respect to the vehicle body are the first, second, third, and fourth cylinders in order from the right side, the ignition sequence is first to third to third. 4- The order of the second cylinder is the order, and the first cylinder and the fourth cylinder constitute a cylinder group in which the intake stroke does not continue, and similarly, the second cylinder and the third cylinder constitute another cylinder group in which the intake stroke does not continue. Constitute.
[0023]
The first, second, third and fourth independent intake pipes 21, 22, 23 and 24 are forward from the cylinder head 12 of the in-line four-cylinder internal combustion engine 10 for each of the first, second, third and fourth cylinders. It extends to.
The four independent intake pipes 21, 22, 23, and 24 are connected to the cylinder head 12 by welding the base end portions thereof to the head flange portion 13 a of the common horizontally long plate-like flange plate 13.
[0024]
The first, second, third and fourth independent intake pipes 21, 22, 23 and 24 extend obliquely upward from the flange plate 13, of which the first, second and third independent intake pipes 21 and 22. , 23 are curved with a necessary and sufficient curvature (bend R about 1.5 times the port diameter) in an inverted U shape in a side view so as to hold a space below, and the first independent intake pipe 21 has a first resonance. The second and third independent intake pipes 22 and 23 are connected to the upper surface of the second resonance chamber 32.
[0025]
The first resonance chamber 31 is disposed at a substantially front position of the second cylinder in a longitudinally long posture directed in a direction perpendicular to the cylinder arrangement direction, and a rear half portion (cylinder head side) bulges upward. The front half top surface 31a is at a lower position than the rear half top surface 31b, and the first independent intake pipe 21 is connected to the lower front half top surface 31a.
[0026]
The second resonance chamber 32 has a long left and right posture directed parallel to the cylinder arrangement direction, and is disposed in contact with the front half side surface of the first resonance chamber 31 at a substantially forward position of the third cylinder. The second and third independent intake pipes 22 and 23 are connected to the upper surface 32a of the second resonance chamber 32 side by side.
[0027]
Since the upper surface 31a of the first half of the first resonance chamber 31 and the upper surface 32a of the second resonance chamber 32 are positioned side by side at substantially the same height, the first, second, and third independent intake pipes 21, 22, and 23 are The upstream end is arranged adjacent to the left and right upper surfaces 31a and 32a of the first and second resonance chambers 31 and 32, is curved in an inverted U-shape, and the downstream end is the same long surface on the left and right of the flange plate 13. They are arranged and have substantially the same path length with curved shapes having substantially the same curvature.
[0028]
The fourth independent intake pipe 24 extends obliquely upward from the flange plate 13 to the front, and then curves diagonally right (toward the vehicle traveling direction) while curving in an inverted U shape in side view so as to hold a space below. And the lower space of the inverted U-shaped curved portion formed by the second and third independent intake pipes 22, 23 along the rear side (flange plate 13 side) side surface of the second resonance chamber 32. The first resonance chamber 31 is connected to a portion that bulges upward on the left side surface of the rear half.
[0029]
Therefore, the fourth independent intake pipe 24 has a downstream end extending from the same flange plate 13 as the first, second and third independent intake pipes 21, 22 and 23, and an upstream end at the first, second and third independent intake pipes. The front and rear lengths of the pipes 21, 22, 23 are closer to the flange plate 13 than the upstream ends, but the lengths extending left and right are long. Equal passage length is ensured.
[0030]
Further, since the inverted U-shaped curve of the fourth independent intake pipe 24 is formed obliquely, the curvature is required even though it must be curved closer to the first, second and third independent intake pipes 21, 22 and 23. Therefore, the curvature is substantially equal to that of the first, second, and third independent intake pipes 21, 22, and 23.
As described above, the four first, second, third, and fourth independent intake pipes 21, 22, 23, and 24 have substantially the same passage length and curvature of the curved portion.
[0031]
The first resonance pipe 41 extends in parallel to the flange plate 13 from the lower part of the left side of the rear half of the first resonance chamber 31 (the upper part is connected to the fourth independent intake pipe 24), and the upper fourth independent pipe is provided. It is inclined obliquely upward from the vicinity of the intake pipe 24 and bent rearward in a substantially L shape (bent R that is about twice the diameter of the resonance pipe) and connected to the right side of the collecting chamber 50.
[0032]
A second resonance tube 42 extends in parallel to the flange plate 13 from the left side surface of the second resonance chamber 32, is inclined obliquely upward from the middle along the first resonance tube 41, and is bent backward in an L shape ( It is connected to the left side of the collecting chamber 50 with a bend R of about twice the diameter of the resonance tube.
[0033]
The gathering chamber 50 is connected to a throttle body flange portion 13b at an upstream end thereof that extends slightly obliquely upward to the left from the head flange portion 13a of the flange plate 13, and is a downstream portion that branches right and left adjacent to the front. Are connected to the first and second resonance tubes 41, 42.
The second resonance tube 42 is slightly shorter in path length than the first resonance tube 41, but the curvature of the bent portion is substantially equal.
[0034]
When the flange plate 13 is attached to the cylinder head 12, the collecting chamber 50 fixed to the throttle body flange portion 13b is connected to the throttle body, and an air cleaner is connected to the upstream side from the throttle body via an air flow duct.
[0035]
The first resonance chamber 31 and the second resonance chamber 32 adjacent to the left and right are communicated with each other through a communication pipe 33 at the lower part, and the communication pipe 33 bulges to the left and right and has a relatively large capacity.
[0036]
An opening / closing valve 34 is provided at the communication port of the communication pipe 33 with the first resonance chamber 31 so as to be openable and closable so that the first resonance chamber 31 and the second resonance chamber 32 can be appropriately blocked or communicated via the communication pipe 33. It has become.
[0037]
The second resonance tube 42 has a slightly shorter passage length than the first resonance tube 41, but the second resonance chamber 32 to which the second resonance tube 42 is connected has a volume of the communication tube 33 that is always in communication therewith. If included, it is equivalent to securing a sufficient volume and the first and second resonance tubes 41 and 42 being equal in length, and therefore the resonance frequencies (resonance points) of the first resonance tube 41 and the second resonance tube 42 are the same. It can be.
[0038]
The on-off valve 34 is a butterfly valve that is fixed to the valve shaft 35 and pivots. The valve shaft 35 that is rotatably supported is connected to an operating portion of a diaphragm 36 that projects from the head flange 13 via a link mechanism 37. Has been.
The diaphragm 36 is disposed using a dead space between the internal combustion engine 10 and the intake manifold 20 to effectively use the space.
[0039]
The diaphragm 36 operates in accordance with the operating state of the internal combustion engine 10, and the switching valve 34 is closed in the low and medium rotation range of the internal combustion engine 10 to establish communication between the first resonance chamber 31 and the second resonance chamber 32. The valve is shut off, and the switching valve 34 is opened and communicated in the high speed range.
[0040]
When the internal combustion engine 10 is in the low and middle rotation range and the switching valve 34 is closed, the first resonance pipe in which the first and fourth independent intake pipes 21 and 24 of one cylinder group communicate with each other via the first resonance chamber 31. 41 and the second resonance pipe 42 in which the second and third independent intake pipes 22 and 23 of the other cylinder group communicate with each other via the second resonance chamber 32 are cut off from each other and are equalized as described above. The resonance frequency is the same, and the air in the first, second, third, and fourth independent intake pipes 21, 22, 23, and 24 is vibrated to ensure uniform and sufficient filling efficiency between the cylinders. The effect of resonance supercharging can be maximized.
[0041]
When the internal combustion engine 10 is in a high rotation range and the switching valve 34 is open, the first resonance chamber 31 and the second resonance chamber 32 communicate with each other via the communication pipe 33 to form a large-capacity intake expansion portion. The negative pressure wave generated in the cylinder is reflected and inverted at the intake expansion portion via the equalized first, second, third, and fourth independent intake pipes 21, 22, 23, and 24, thereby causing variations in inertia supercharging. It is possible to prevent the performance degradation in the high rotation range due to.
Therefore, a high output torque can be obtained in a wide engine speed range from a low to medium speed of the internal combustion engine 10 to a high speed.
[0042]
The first resonance chamber 31 is arranged perpendicularly to the cylinder arrangement direction, and the second resonance chamber 32 is arranged in parallel to each other. The first and second resonance chambers 31 and 32 are three first resonance chambers 31 and 32 in the cylinder arrangement direction. , Second and third independent intake pipes 21, 22, 23 have a width necessary to be connected, and the first and second resonance chambers are arranged in two directions perpendicular to the cylinder arrangement direction. The fourth independent intake pipes 21 and 24 have a width necessary to be connected, and therefore the first and second resonance chambers 31 and 32 can be small and compact in both the front-rear width and the left-right width.
[0043]
As a configuration in which the fourth independent intake pipe 24 passes through the inverted U-shaped lower space of the second and third independent intake pipes 22 and 23, the first and second resonance chambers 31 and 32 and the independent intake pipes assembled in these are provided. The intake manifold 20 can be made closer to the internal combustion engine 10 closer to the internal combustion engine 10 and the space in the limited engine room can be used effectively.
[0044]
Note that the head flange portion 13a and the throttle body flange portion 13b of the flange plate 13 may be separated from each other. However, by forming them integrally as in the present embodiment, as shown in the plan view of FIG. In the intake manifold 20, each of the independent intake pipes 21, 22, 23, 24, the first and second resonance pipes 41, 42 and the flange plate 13 are configured in a generally rectangular shape, and the rigidity and strength are structurally improved. Can do.
[0045]
【The invention's effect】
In the present invention, the first resonance chambers are arranged perpendicular to the cylinder arrangement direction and the second resonance chambers are arranged in parallel, and the cylinder arrangement direction and the size in the direction perpendicular thereto can be made compact.
[0046]
It is possible to bend each independent intake passage with a sufficient curvature and to ensure uniform and sufficient charging efficiency between the cylinders with equal lengths, and to collect in the first and second resonance chambers and these. Each independent intake passage can be brought closer to the internal combustion engine, and the intake device can be made more compact along the internal combustion engine, so that a limited space in the engine room can be used effectively.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an arrangement state of an internal combustion engine in a front part of a vehicle body of an automobile according to an embodiment of the present invention.
FIG. 2 is a plan view of an intake manifold of the internal combustion engine.
FIG. 3 is a front view of the same.
FIG. 4 is a side view of the same.
FIG. 5 is a plan view showing a conventional in-line four-cylinder internal combustion engine and an intake manifold.
[Explanation of symbols]
1 ... car, 2 ... bonnet, 3 ... engine room, 4 ... radiator, 5 ... dashboard,
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Cylinder block, 12 ... Cylinder head, 13 ... Flange plate, 15 ... Exhaust manifold,
20 ... Intake manifold, 21 ... First independent intake pipe, 22 ... Second independent intake pipe, 23 ... Third independent intake pipe, 24 ... Fourth independent intake pipe,
DESCRIPTION OF SYMBOLS 31 ... 1st resonance chamber, 32 ... 2nd resonance chamber, 33 ... Communication pipe, 34 ... Open / close valve, 35 ... Valve shaft, 36 ... Diaphragm, 37 ... Link mechanism,
41 ... 1st resonance tube, 42 ... 2nd resonance tube,
50 ... Meeting room.

Claims (1)

直列4気筒内燃機関の4つの気筒を吸気行程が互いに連続しない2つの気筒群に分け、
各気筒にそれぞれ連通する互いに独立な第1,第2,第3,第4独立吸気通路と、
前記第1,第2,第3,第4独立吸気通路が前記2つの気筒群毎に合流する第1,第2共鳴室と、
前記第1,第2共鳴室からそれぞれ上流側に延びる第1,第2共鳴通路と、
前記第1,第2共鳴通路が集合する集合室とを設け、
前記集合室の一端にスロットルボディを接続してなる4気筒内燃機関の吸気装置において、
前記第1共鳴室を気筒配列方向に垂直な方向に長尺な形状として配置し、
前記第2共鳴室を気筒配列方向に平行な方向に長尺な形状として配置し、
前記第1,第2共鳴室からそれぞれ上流側に延びる第1,第2共鳴通路の下流側を気筒配列方向に平行に延出し、
前記第1,第2,第3独立吸気通路を下方に空間を抱え込むように側面視逆U字状に湾曲形成して第1独立吸気通路を前記第1共鳴室の上面に接続し第2,第3独立吸気通路を前記第2共鳴室の上面に接続し、
前記第1,第2,第3独立吸気通路より前記スロットルボディ側に位置させた前記第4独立吸気通路を前記第1,第2,第3独立吸気通路が形成する下方空間内を前記第2共鳴室の側面に沿って通らせて前記第1共鳴室の側面に接続したことを特徴とする直列4気筒内燃機関の吸気マニホルド。
The four cylinders of the in-line four-cylinder internal combustion engine are divided into two cylinder groups in which the intake strokes are not continuous with each other,
Mutually independent first, second, third and fourth independent intake passages communicating with each cylinder;
First and second resonance chambers in which the first, second, third and fourth independent intake passages merge for each of the two cylinder groups;
First and second resonance passages that respectively extend upstream from the first and second resonance chambers;
A collection chamber in which the first and second resonance passages gather;
In an intake device for a four-cylinder internal combustion engine in which a throttle body is connected to one end of the collecting chamber,
The first resonance chamber is disposed in a shape elongated in a direction perpendicular to the cylinder arrangement direction,
The second resonance chamber is arranged in a shape elongated in a direction parallel to the cylinder arrangement direction;
The downstream sides of the first and second resonance passages extending upstream from the first and second resonance chambers respectively extend in parallel to the cylinder arrangement direction,
The first, second, and third independent intake passages are curved in an inverted U shape in a side view so as to hold a space downward, and the first independent intake passage is connected to the upper surface of the first resonance chamber, A third independent intake passage is connected to the upper surface of the second resonance chamber;
The second independent intake passage is formed in the lower space formed by the first, second, and third independent intake passages so that the fourth independent intake passage is located closer to the throttle body than the first, second, and third independent intake passages. An intake manifold for an in-line four-cylinder internal combustion engine, wherein the intake manifold is connected to a side surface of the first resonance chamber through a side surface of the resonance chamber.
JP22960196A 1996-08-30 1996-08-30 Intake manifold for inline 4-cylinder internal combustion engine Expired - Fee Related JP3613366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22960196A JP3613366B2 (en) 1996-08-30 1996-08-30 Intake manifold for inline 4-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22960196A JP3613366B2 (en) 1996-08-30 1996-08-30 Intake manifold for inline 4-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1073024A JPH1073024A (en) 1998-03-17
JP3613366B2 true JP3613366B2 (en) 2005-01-26

Family

ID=16894743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22960196A Expired - Fee Related JP3613366B2 (en) 1996-08-30 1996-08-30 Intake manifold for inline 4-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3613366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382162B2 (en) 2000-01-31 2002-05-07 Honda Giken Kogyo Kabushiki Kaisha Variable intake apparatus for in-line four-cylinder internal combustion engine

Also Published As

Publication number Publication date
JPH1073024A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
JP2877502B2 (en) Engine intake system
JP3613366B2 (en) Intake manifold for inline 4-cylinder internal combustion engine
JPH03286129A (en) Air intake device for multiple cylinder engine
JP2725034B2 (en) Engine intake system
JPH01106922A (en) Intake apparatus of v-shaped engine
JPH03281924A (en) Air intake piping structure of multiple-cylinder engine
JP3601640B2 (en) Intake device for a multi-cylinder internal combustion engine
JPH11294171A (en) Veriable intake system of v-type internal combustion engine
JP3675226B2 (en) Intake device for internal combustion engine
JP2760521B2 (en) Engine intake system
JPH03281922A (en) Air intake device of engine
JP3229728B2 (en) Engine intake system
JP2973718B2 (en) Intake device for internal combustion engine
JP2875267B2 (en) Exhaust control valve device for motorcycle
JP2842060B2 (en) Variable intake system for automotive engine
JPH0724587Y2 (en) V-type engine intake device
JPH0619796Y2 (en) Exhaust system for 4-cylinder engine
JP2902139B2 (en) Engine intake system
JP3062257B2 (en) Engine intake system
JPH0960523A (en) Intake device for multicylinder engine
JP2775442B2 (en) Engine intake system
JPS63106324A (en) Exhauster for v-type multicylinder engine
JP2824294B2 (en) Multi-cylinder engine intake system
JP4103750B2 (en) Intake device for V-type internal combustion engine
JPH0430337Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees