JP3613276B2 - Spread spectrum communication system and transmission power control method - Google Patents

Spread spectrum communication system and transmission power control method Download PDF

Info

Publication number
JP3613276B2
JP3613276B2 JP2003170187A JP2003170187A JP3613276B2 JP 3613276 B2 JP3613276 B2 JP 3613276B2 JP 2003170187 A JP2003170187 A JP 2003170187A JP 2003170187 A JP2003170187 A JP 2003170187A JP 3613276 B2 JP3613276 B2 JP 3613276B2
Authority
JP
Japan
Prior art keywords
signal
transmission
base station
power control
terminal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003170187A
Other languages
Japanese (ja)
Other versions
JP2004159289A (en
Inventor
隆 矢野
信数 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003170187A priority Critical patent/JP3613276B2/en
Publication of JP2004159289A publication Critical patent/JP2004159289A/en
Application granted granted Critical
Publication of JP3613276B2 publication Critical patent/JP3613276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スペクトラム拡散通信システムに関し、更に詳しくは、複数の端末装置が基地局装置と通信を同時に行うセルラ方式のスペクトラム拡散通信システム、およびそれに適用する移動端末装置ならびに送信電力制御方法に関する。
【0002】
【従来の技術】
例えば、図10に示すように、交換局10と接続された複数の基地局100(100−a、100−b)を分散配置して複数のセル1(1a、1b)を構成し、各セル内で基地局100と複数の移動端末300とが通信を行うセルラ方式のスペクトル拡散通信システムにおいて、各基地局100がセル内の端末に送信する信号の拡散符号として、セル内の各端末毎に固有の直交符号Wiを用いる方式が知られている。
【0003】
直交符号は、例えば図11に符号W0、W1、W2、W3で示す如く、そのうちの任意の2つの符号について直交単位区間にわたって積和演算を行うと、結果が0となる性質をもっている。
【0004】
従って、基地局がセル内の複数の端末300−1〜300−nにそれぞれ固有の直交符号Wi(i=1〜n)を割当て、1つの端末300−i宛に送信する信号あるいはデ−タをその端末の固有の直交符号Wiを用いて拡散し、上記端末300−iが自分に割り当てられた固有の直交符号Wiを用いて受信信号を逆拡散するようにしておくと、端末300−i宛の送信信号と直交するセル内の他の端末宛の送信信号成分は、上記逆拡散処理の過程で完全に除去されてしまい、妨害信号として作用しなくなる。このように各基地局から移動端末への通信に直交符号による拡散を適用した通信方式としては、例えば、米国特許第5103459号公報に示されている。
【0005】
然るに、直交符号を用いたセルラ方式のスペクトル拡散通信システムにおいては、各端末には、セル内の基地局から送信された信号の他に、隣接セルを形成する他の基地局からの送信信号も到達する。この場合、他の基地局からの送信信号は、セル内の基地局が送信する信号と直交関係にないため、上述したセル内で固有の直交符号Wiによる逆拡散処理によって除去することができない。すなわち、各端末の受信動作において、他のセルの基地局からの送信信号が妨害要因として作用する。
【0006】
図15は、各端末における上述した他の基地局からの送信信号の影響を示した図である。
基地局から送信された信号の受信電力は、基地局からの距離が大きくなるに従って減衰する。従って、基地局100に近い、セル中心付近に位置した端末300aでは、セル内の基地局からの信号の受信電力910が大きく、妨害信号として作用するセル外の他の基地局からの信号の受信電力911は小さくなるため、高いS/Nが得られる。これに対して、セル境界に付近に位置した端末300bでは、セル内の基地局からの信号の受信電力912が弱く、隣接セルからの妨害信号が上記端末300aより大きな電力913で受信されるため、結果的にS/Nが劣化する。
【0007】
上記理由から、セルラシステムにおいては、各基地局から端末へ送信する信号を、セル中心付近に位置する端末300aに対しては小さな送信電力で、また、セル周辺に位置する端末300bに対しては大きな送信電力で出力するように、端末との位置関係によって送信電力を制御することが望まれる。このように端末の位置に応じて送信電力を変えるようにした送信電力制御方法については、例えば、文献 A.Salmasi、K.S.Gilhousen、「On the System Design Aspects of Code Division Multiple Access(CDMA) Applied to Digital Cellular and Personal Communications Network」、IEEE VTS 1991、pp.57−62に記載されている。
【0008】
上記文献に記載された制御方式では、各端末装置は、例えば、図14に示す回路構成によって受信信号のS/Nを測定して、送信電力の加減を要求する制御信号を基地局に送信し、基地局が、図12〜図13に示す回路構成によって、上記電力制御信号に応答した送信信号電力制御動作を行なうようにしている。
【0009】
基地局の送受信回路部分の構成を示す図12において、アンテナ110で受信された各端末装置からの信号は、サーキュレータ109を経て高周波回路111に入力され、ベースバンドのスペクトル拡散信号Rxに変換される。上記ベースバンドのスペクトル拡散信号Rxは、セル内に位置している各端末装置に対応付けられた変復調装置105−1、105−2、……105−Nに入力され、ここで逆拡散処理と復号処理を施すことによって、各端末毎の送信信号(受信データ)112と、端末が上記送信信号に混合して送信してきた電力制御信号PCとが分離される。
【0010】
各変復調装置105−i(i=1〜N)から出力された電力制御信号PCは、送信電力制御装置116に入力される。送信電力制御装置116は、各電力制御信号PCに応じて、各端末装置毎の送信電力指示信号PWを発生する。
【0011】
上記変復調装置105−i(i=1〜N)は、各端末装置宛の送信データ101に対して、それぞれ符号化処理と、疑似雑音(PN)発生器103で発生した基地局に固有の疑似雑音PNおよび直交符号発生器102から発生した直交符号W1、W2、W3、…、WNを用いたスペクトル拡散による変調処理とを施す。スペクトル拡散により変調された信号は、送信電力制御装置116から与えられた各端末装置対応の送信電力指示信号PWiに従った電力で増幅され、送信信号Tx−i(i=1〜N)として出力される。
【0012】
104はパイロット信号の発生装置であり、単純なパターンデータ、例えばオールゼロからなるデータを発生する。このパイロット信号は、疑似雑音発生器103から発生される基地局に固有の疑似雑音PNと、直交符号発生器102から発生される特定の直交符号W0とを用いてスペクトル拡散変調された後、パイロット信号として出力される。
【0013】
各端末宛の送信信号Tx−i(i=1〜N)は、縦続接続された加算器107(107−0、107−1、……)によって順次加算された後、上記パイロット信号と共に高周波回路108で伝送周波数帯域の信号に変換され、サーキュレータ109、アンテナ109を経て空中に送出される。
【0014】
図13は、図12における変復調器105−i(i=1、2、…N)の構成の1例を示す。
変復調器105−iに入力された送信データ101は、符号化器201に入力され、誤り訂正等の符号化処理を受ける。上記符号化された信号は、乗算器202によって、直交符号発生器102から与えられた直交符号Wiと乗算され、第一次のスペクトル拡散を受け、次に、乗算器203によって疑似雑音信号PNと乗算され、第二次のスペクトル拡散を受ける。このようにスペクトル拡散された信号は可変利得増幅器204に入力され、送信電力指示信号PW−iで指定された利得で増幅され、送信信号Tx−iとして出力される。
【0015】
一方、変復調器105−iに入力された受信信号Rxは、乗算器205に入力され、後述する上記信号Rxの送信元となった端末装置でスペクトル拡散のために用いた疑似雑音PNと同じ、疑似雑音発生器206で発生した疑似雑音PNを用いて逆拡散処理を受ける。逆拡散された信号は累算器207に入力され、一定時間分の信号が累算される。この累算された逆拡散信号は、復号器208に入力されて誤り訂正等の復号処理を受け、復号された受信データ112と、端末装置が送信してきた電力制御信号PC−iとに分離して出力される。
【0016】
図14は、従来の端末装置が備える送受信回路部分の構成を示す。
端末装置において、アンテナ301から受信された信号は、サーキュレータ302を経て高周波回路303に入力され、ベースバンドのスペクトル拡散信号に変換される。
【0017】
上記ベースバンドのスペクトル拡散信号は、第1の乗算器304に入力され、疑似雑音発生器305から発生した疑似雑音PNと乗算され、第一次の逆拡散処理を受ける。上記疑似雑音PNは、端末装置を基地局に位置登録した時、上記基地局のPN発生器103で発生する固有の疑似雑音PNと同一となるように雑音パターンが設定されている。
【0018】
上記第一次の逆拡散処理を受けた信号は、第2の乗算器307に入力され、直交符号発生器306から発生する上記端末に割り当てられた直交符号Wiと乗算され、第二次の逆拡散処理を受ける。上記第二次の逆拡散処理を受けた信号は、累算器308に入力され、一定時間分の信号が累算される。累算された信号は、復号器309によって復号化され、受信データとなる。
【0019】
従来技術によれば、各端末装置では、受信信号の振幅に関する確率密度分布において、分散が雑音電力に相当し、平均が信号振幅に相当することを利用して、受信信号のS/Nを測定している。
【0020】
このS/N測定のために、従来技術では、累算器308の出力を絶対値演算器328に入力して得られる絶対値と、上記累算器308の出力を自乗演算器325に入力して得られる自乗値とを、S/N測定器329に供給している。上記S/N測定器329では、自乗値入力の平均値と、絶対値入力の平均の自乗値との差から雑音電力を求め、絶対値入力の平均の自乗値から信号電力を求めることによってS/Nを測定し、その結果を比較器330で、S/Nの基準値とを比較し、基地局に送信電力増減を要求するための電力制御信号PC−iを得ている。
【0021】
上記電力制御信号PC−iは、混合器317で端末からの送信データと混合した後、符号化器318で誤り訂正等の符号化処理を施し、この符号化された信号を乗算器320に与え、疑似雑音発生器319から発生された疑似雑音と乗算することによってスペクトル拡散変調する。スペクトル拡散変調された信号は、高周波回路321で伝送周波数帯域の信号に変換された後、サーキュレータ302を介してアンテナ301に出力され、空中に送出される。
【0022】
以上の構成により、端末は基地局からの自端末に対する送信信号の受信S/Nを基地局に通知し、基地局は端末の受信S/Nが目標S/Nとなるように送信電力を制御する。
【0023】
【発明が解決しようとする課題】
上述した従来のスペクトル拡散通信システムでは、各端末装置は、基地局が自分宛に送出した信号のみに基づいてS/Nを測定している。すなわち、逆拡散して得られる受信信号の振幅の分散を雑音電力とみなし、上記信号の振幅の平均値の自乗を信号電力とみなしてS/Nを測定している。
【0024】
然るに、上記従来のS/N測定の原理は、雑音がなければ信号の振幅が一定となることを前提としているが、移動通信システムにおいては、各端末装置の受信信号の振幅が、端末の移動に伴って激しく変動する。従って、各端末で信頼できるS/N測定結果を得るためには、受信信号の略振幅が一定とみなせる程度の比較的短い期間内に測定を完了する必要がある。このため、従来の端末装置では、S/N測定回路系325〜329に極めて高速性能の回路が要求される。もし、回路性能の制約からS/N測定に時間を要する場合は、正しいS/N測定結果が得られないため、端末からの電力制御信号に基づいて、基地局が適切な電力制御を実現できないという問題がある。
【0025】
この場合、S/N測定結果の誤差分を考慮して、基地局が、セル内の各端末に必要以上に大きな電力で信号を送信すると、送信信号は隣接セルに高い電力で侵入し、隣接セル内の端末に強い妨害電波として作用する。一方、基地局が、実際に端末が必要とする電力より小さな電力で送信動作すると、これを受信した端末における通信品質が悪化するという問題がある。
【0026】
なお、基地局からの送信信号の電力制御方法としては、例えば、各端末装置が、上述した受信信号のS/Nの代わりに受信データの誤り率を監視し、誤り率が所定の基準に満たない場合に、基地局に送信電力の増加を要求する方式が考えられるが、この方式は、データの誤り率の算出に比較的長時間の監視が必要となるため、電力制御を通信状態の変動に十分に追従できないという問題がある。
【0027】
本発明の目的は、各端末装置が高いS/Nで基地局と通信できるスペクトル拡散通信システムおよび電力制御方法を提供することにある。
【0028】
本発明の他の目的は、各セルにおける同時通信数を増加可能なスペクトル拡散通信システムおよび電力制御方法を提供することにある。
【0029】
本発明の他の目的は、基地局に送信すべき電力制御のための制御情報を迅速に算出可能な移動端末装置を提供することにある。
【0030】
【課題を解決するための手段】
上記目的を達成するために、本発明のスペクトル拡散通信システムでは、基地局が、スペクトル拡散のための直交符号系列のうちの少なくとも1つを、パイロット信号や端末に対する送信信号の変調には適用しない、電力制御に専用の符号として割当てることを1つの特徴とする。
【0031】
また、本発明では、各端末装置(移動端末)が、受信信号を上記基地局でS/N計測専用に割り当てた直交符号により逆拡散した結果得られるノイズ成分の受信電力と、パイロット信号または自端末宛の送信信号のうちの少なくとも一方の受信電力とから、受信信号のS/Nを求めることを1つの特徴とする。
【0032】
本発明のスペクトル拡散通信システムでは、各端末装置が、このようにして求めたS/Nの値に基づいて得られた電力制御情報を基地局に送信し、基地局が、端末装置から受信した上記制御情報に応じて、各端末装置に対する信号の送信電力を制御する。
また、本願発明の他の着眼点は、送信電力制御において、電力制御情報を取得する第1の信号と、制御対象となる第2の信号を異ならせるところにある。
【0033】
基地局から送出される全ての信号成分は上記制御専用の直交符号と直交しているため、基地局が上記制御専用の直交符号を送信信号の変調に適用しないようにしておき、各端末装置が上記制御専用の直交符号を用いてそれぞれの受信信号を逆拡散処理するようにしておくと、各端末装置では、受信信号からセル内の基地局が送出した各種の信号成分を完全に除去することができる。この場合、他のセルの基地局から送出された信号は、上記逆拡散に用いた特定符号と直交していないため、逆拡散処理で除去されず、雑音成分として残る。従って、上記逆拡散処理によって抽出された雑音成分の自乗平均を求めることによって、雑音電力を迅速、且つ十分な精度で測定することができる。
【0034】
一方、基地局から送られた信号成分は、各端末に割り当てられた直交符号、またはパイロット信号用に割り当てられた直交符号で受信信号を逆拡散することによって得られるため、その電力値と上記雑音電力とから、S/N値を求めることができる。
【0035】
本発明によれば、各端末が上記S/N値に応じた電力制御要求を基地局に通知し、基地局が、各端末からの制御要求に基づいて各端末毎の信号送信電力を制御することによって、各端末装置の通信品質を保証することができる。
【0036】
なお、上記信号送信電力の制御を、例えば、全ての端末でS/Nが等しくなるように制御すると、各基地局の送信電力の総和を減少することができるため、結果的に、隣接セルに悪影響を及ぼす雑音電力の値を低下でき、これによって各端末におけるS/Nを一層改善できるという効果がある。
また、本願発明は、制御情報の基となる信号と制御対象となる信号が同一である「閉ループ制御」ではなく、これらが異なる「開ループ制御」を採用する。閉ループ制御の場合には、制御の遅れまたは誤りにより制御対象信号に変動が生じた場合、その変動が制御情報の誤差となって現れ、さらに制御対象信号が変動するという問題があるが、開ループ制御の考え方を採用する本願発明では、そのような問題がなく安定な制御が可能となる。
【0037】
【実施例】
図1は、本発明のスペクトル拡散通信システムにおける基地局の構成の1例を示す。図において、従来技術として図12に示した基地局の構成要素と対応する要素には、同一の符号を付してある。
【0038】
上記本発明の基地局動作は、前述の従来技術による基地局とほぼ同様であるが、後述するように、直交符号発生器102から出力される直交符号のうち、任意の1つ、この実施例ではWNが、端末に対する送信データの変調用途から除外され、S/N測定専用に割り当てられていると言う点で相違している。
【0039】
図3は、本発明における端末装置の第1の実施例を示す。図において、回路要素301〜309は、図14に示した従来の端末装置の構成要素301〜309と対応しており、これらの要素からなる受信回路では、従来装置と同様、乗算器304で疑似雑音PNによる第1次の逆拡散を受けた受信信号が、乗算器307で直交符号Wiによって第2次の逆拡散を受け、端末宛の受信データとして復号される。
【0040】
この実施例では、上記乗算器304で第1次の逆拡散を受けた受信信号を乗算器313と310に入力する。乗算器303に入力された信号は、直交符号発生器306から発生される直交符号W0によって第2次の逆拡散を受ける。上記直交符号W0は基地局が周期的に出力するパイロット信号の拡散用直交符号と対応しており、上記直交符号W0により逆拡散した信号を累算器314に入力し、一定期間累算することによって、パイロット信号を復調することができる。上記パイロット信号は、自乗器315で自乗され、パイロット信号成分の瞬時電力を示す信号となってS/N測定回路316の第1端子に入力される。
【0041】
一方、乗算器310に入力された受信信号は、直交符号発生器306より発生されたS/N測定専用の直交符号WNによって第2次の逆拡散を受け、逆拡散された信号は、累算器311に入力されて一定期間累算される。上記直交符号WNは、基地局で送信信号の変調には用いない特定の直交符号となっているため、この直交符号による逆拡散処理の結果、上記基地局からの送信信号成分を完全に除去し、雑音に相当する成分を抽出できる。従って、乗算器311の出力を累算器311で一定期間累算し、これを自乗器312において自乗演算することによって、雑音成分の瞬時電力を得ることができる。
【0042】
上記雑音成分の瞬時電力は、S/N測定回路316の第2端子に入力され、前記パイロット信号成分の瞬時電力との比率を算出することによって、パイロット信号のS/Nを示す信号が求まる。本実施例では、上記S/N信号を比較器330において基準S/Nと比較し、基準S/Nとの偏差を示す電力制御信号PCを得ている。この電力制御信号PCは、混合器317で送信データと混合した後、符号化器318で符号化し、乗算器320において疑似雑音発生器319から発生した疑似雑音によりスペクトル拡散変調を施した後、高周波回路321、サーキュレータ302、アンテ301を介して基地局に向けて送信される。
【0043】
図4は、端末装置の第2の実施例を示す。この実施例では、図3における比較器330を省略し、S/N測定回路から出力されるS/N情報をそのまま電力制御信号SNとして扱い、混合器317で送信データと混合した後、符号器318、乗算器320、高周波回路321、サーキュレータ321を介して送信するようにしている。
【0044】
図1に示した基地局100では、各変復調装置105−i(i=1〜N−1)が、それと対応する各端末装置からの受信信号を受信データと電力制御信号に分離し、電力制御信号を送信電力制御装置106に与えるようになっている。各端末が第1実施例の構造の場合は、電力制御信号PCが分離され、各端末が第2実施例の構造の場合は、電力制御信号SNが分離される。上記送信電力制御装置106は、電力制御信号PCまたはSNに応じて、各変復調装置105−iに与えるべき送信電力指示信号PWを発生する。
【0045】
上記変復調器105−iの構成を図2に示す。回路要素201〜207は、図13に示した従来の変復調装置の回路要素201〜207と対応している。
【0046】
端末装置からの受信信号Rxは、乗算器205で疑似雑音信号によって逆拡散され、累算器207で一定期間累積された後、誤り訂正復号器508に入力される。ここで、誤り訂正等の復号処理が行われ、復号された信号から、受信データ112と、電力制御信号SN−iまたはPC−iが分離される。
【0047】
端末装置が第1実施例の構成をもつ場合、各変復調装置105−iにおいて分離した電力制御信号PC−iを、従来と同様の構成をもつ送信電力制御装置106に入力し、各端末の受信S/Nが標準S/Nに一致するように、送信電力指示信号PW−iを発生すればよい。
【0048】
図5は、端末装置が第2実施例の構造を有し、変復調装置105が制御信号SN−i(i=1〜N−1)を出力する場合の送信電力制御装置106の構成の1例を示す。
【0049】
電力制御信号SN−iは、各端末と対応するローパスフィルタ401−i(i=1〜N−1)に入力され、必要以上に高い周波数で変動する高周波成分を除去した後、逆数演算器402−i(i=1〜N−1)でS/N値の逆数に相当する信号に変換される。上記逆数演算器402−iの出力は、加算器403において加算された後、加算結果が逆数演算器404で再度逆数変換される。逆数演算器404の出力は、乗算器405−(i=1〜N−1)に供給され、逆数演算器402−i(i=1〜N−1)の出力との乗算が行われ、その演算結果が各端末毎の送信電力指示信号PW−i(i=1〜N−1)として出力される。この場合の送信電力指示信号PW−iは、送信電力の重み係数を表しており、端末装置のS/N値が低ければ低い程、送信電力が他の端末より高くなるように信号PW−iの値が決定される。
【0050】
上記送信電力指示信号PW−iは、それと対応する図2に示す変復調装置105−iに供給される。変復調装置105−iにおいて、上記送信電力指示信号PW−iは、送信回路系の増幅器204に電力制御入力として入力され、これによって、各端末装置のS/Nの状態に応じた電力で、送信信号が出力される。
【0051】
以上の構成において、基地局から送信されるパイロット信号と、基地局から各端末装置に送信される送信信号(データ信号)は、同一の周波数帯域で略同時点で送出されているため、基地局からの距離に応じて各端末装置の受信データ信号に生ずる減衰は、パイロット信号に生ずる減衰と略等しい。また、パイロット信号とデータ信号に生ずる雑音電力は等しい。
【0052】
従って、上記実施例のように、各端末装置が、パイロット信号の受信電力と、その時点でS/N計測用直交符号を用いて抽出した雑音電力とに基づいてS/Nを計測し、これを電力制御信号(PCまたはSN)として基地局に送り、基地局が上記電力制御信号に基づいて、各端末対応にS/Nに反比例した送信電力でデータ信号を送信制御することによって、各端末における受信信号のS/Nを等しくすることができる。
【0053】
図16は、本発明によって各端末のS/Nが等しくなるように送信電力制御を行った場合の効果を示す図である。本発明によれば、セルの境界付近に位置する端末Aに対する信号の送信電力に比較して、基地局付近に位置する端末Bに対する信号の送信電力が小さくなるように電力制御が行われるため、端末A、Bにおける信号の受信電力は、それぞれ920、922のようになる。
【0054】
上述した電力制御は、各セルに隣接したセルにおいても同様に行われ、各基地局のトータルの送信電力を減少させる方向に制御が働くため、各セルにおいては、隣接セルからの妨害電波のパワーが減少し、基地局に近い端末に他のセルの基地局から到達する妨害信号の受信電力は921のように、また、セル境界の端末に到達する妨害信号の受信電力は923のようにそれぞれ低減する。この電力低減の効果は、例えば、正六角形のセルが繰り返して配置された構造を持つスペクトル拡散通信システムにおいては、約7.4dBに相当する。また、妨害信号の電力が低減された分、各セルにおいて同時に通信可能な端末台数(基地局が収容する端末個数)を増加でき、最大で従来の約5.5倍に増加できる。なお、上述した電力制御は、開ループ制御となっているため、安定した制御が行われる。
【0055】
図6は、本発明による端末装置の第3の実施例を示す。この実施例では、S/Nの測定を、上述したパイロット信号に代えて、各端末宛の送信信号(データ信号)の受信電力と、雑音信号の受信電力とから求めるようにしている。図において、図4と同一の回路要素には同一の符号を付してあり、これらの回路要素は図4と同様の機能をもつ。
【0056】
本実施例では、直交符号Wiで逆拡散された端末宛の送信信号を累算器308で一定期間累算し、その出力を復号器309に入力する一方、これを自乗器325に入力して受信信号の瞬時電力を得、この受信信号の瞬時電力をS/N測定装置326の第2入力とする。上記S/N測定装置326の第1入力には、直交符号Wnで逆拡散して自乗器312から出力される雑音の瞬時電力を与え、これによって受信信号のS/Nを求める。上記受信信号のS/Nは、電力制御信号SN=iとして混合器317で送信データ信号と混合された後、符号化回路318、乗算器320、高周波回路321を介して、アンテナ301から送出される。
【0057】
尚、上記受信信号S/Nは、第1実施例と同様に、基準S/Nとの差分をとり、電力制御信号PCとして基地局に送信してもよい。
【0058】
図7は、基地局の信電力制御装置106の他の実施例を示す。この実施例では、各変復調装置105i(i=1〜N−1)で分離した電力制御信号SN−i(i=1〜N−1)を、ローパスフィルタ601−i(i=1〜N−1)に入力し、必要以上の高周波変動成分を除去した後、比較器603−i(i=1〜N−1)で、目標値S/N発生回路602から出力されるS/N目標値との差を求め、各端末毎に、実際のS/Nと目標S/Nとの差を積分器604−i(i=1〜N−1)で積分する。上記各積分器の出力が、各端末に対する送信電力指示信号PW−i(i=1〜N−1)として、図2に示す出力増幅器204に与えられる。この送信電力指示信号によって、全ての端末でのS/Nが等しくなるように送信信号の電力が制御される。本実施例の場合も閉ループ制御となっており、各端末のS/Nは、伝送系に多少の非線形性が存在していても、目標S/Nに一致するように制御される。
【0059】
図8は端末装置の第4の実施例を示す。この実施例では、図3で説明した第1の実施例におけるS/N測定装置316と、図6で説明した第3実施例におけるS/N測定装置326とが併用されている。すなわち、S/N測定装置316からはパイロット信号のS/N情報が得られ、S/N測定装置326からは受信信号のS/N情報が得られる。これら2種類のS/N情報は、混合器327で送信データと混合され、符号化回路318、乗算器320、高周波回路321、サーキュレータ302、アンテナ301を介して送出される。
【0060】
図9は、端末装置が上記第4実施例の構成をもつ場合の基地局における送信電力制御装置106の構成を示す。基地局において、各変復調装置105−iは、端末装置が送ってきた2種類の電力制御信号、すなわち、パイロット信号のS/N(S/N−ip)と、受信信号のS/N(S/N−id)とを分離して出力する。
【0061】
このうち、パイロット信号のS/NであるSN−ip(i=1〜N−1)は、回路要素401−i、402−i、403、404、405−iからなる図5に示した回路と同様の回路構成で、各端末に対する送信電力の第1の重み値を生成する。一方、受信信号のS/NであるSN−id(i=1〜N−1)は、回路要素601−i、602、603−i、604−iからなる図7に示した回路と同様の回路構成で、各端末に対する送信電力の第2の重み値を生成する。上記第2の重み値を、第1の重み値に補正値として作用させることによって、各端末毎の送信電力指示信号PW−i(i=1〜N−1)が得られる。ここで、ローパスフィルタ601−iの時定数は、ローパスフィルタ401−iの時定数よりも十分大きな値に設定しておく。
【0062】
上述した各実施例によれば、端末装置の位置が基地局に近く、基地局からの信号の受信状態が非常によい場合、この端末に対する送信電力が非常に小さくなってしまう可能性がある。この場合は、端末に対する送信電力に下限値を設定しておき、送信電力が所定値以下に下がらないように制御すればよい。
【0063】
【発明の効果】
本発明によれば、各端末装置においてS/Nを迅速に測定することができるため、これを電力制御信号として基地局に送信し、基地局が上記電力制御信号に基づいて各端末宛の信号の送信電力を制御することによって、各端末におけるS/Nが略等しくなるようにすることができる。この結果、各セルにおける基地局からの端末宛の信号の送信電力の総和を必要最小限に抑えることが可能となり、隣接セルにノイズとして作用する妨害電波の電力を低減でき、各セルにおける収容端末個数の増加が可能となる。
【図面の簡単な説明】
【図1】本発明の通信システムにおける基地局装置の構成の1例を示す図。
【図2】上記基地局装置の変復調装置105−iの詳細を示す図。
【図3】本発明の通信システムに適用する端末装置の第1の実施例を示す構成図。
【図4】本発明の通信システムに適用する端末装置の第2の実施例を示す構成図。
【図5】基地局装置の送信電力制御装置の第1の実施例を示す図。
【図6】本発明の通信システムに適用する端末装置の第3の実施例を示す構成図。
【図7】基地局装置の送信電力制御装置の第2の実施例を示す図。
【図8】本発明の通信システムに適用する端末装置の第4の実施例を示す構成図。
【図9】基地局装置の送信電力制御装置の第3の実施例を示す図。
【図10】本発明の移動通信システムの全体構成を示す図。
【図11】スペクトル拡散に用いる直交符号の1例を示す図。
【図12】従来の技術における基地局装置の構成を示す図。
【図13】従来の技術における基地局装置の変復調装置の構成の1例を示す図。
【図14】従来の技術における端末装置の構成の1例を示す図。
【図15】従来の通信システムにおけるセル内の基地局からの信号成分と他のセルからの妨害成分との関係を説明するための図。
【図16】本発明の通信システムにおけるセル内の基地局からの信号成分と他のセルからの妨害成分との関係を説明するための図。
【符号の説明】
104:パイロット信号発生装置、 105:変復調装置、
106:送信電力制御装置、 102、306:直交符号発生装置、
201、318:符号化器、 202:第一次の拡散を行う乗算器、
203:第二次の拡散を行う乗算器、204:送信電力調整用可変利得増幅器、
205:逆拡散を行う乗算器、 207、308、311、314:累算器、208、309:復号器、 304:第一次の逆拡散を行う乗算器、
307、310、313:第二次の逆拡散を行う乗算器、
328:絶対値演算器、 312、315、325:自乗演算器、
320:符号拡散のための乗算器、 316、326、329:S/N測定装置、330:比較器、 317、327:混合器、
401、601:ローパスフィルタ、402、404:逆数演算器、
603:加算器、 604:積分器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spread spectrum communication system, and more particularly to a cellular spread spectrum communication system in which a plurality of terminal apparatuses communicate with a base station apparatus at the same time, a mobile terminal apparatus applied thereto, and a transmission power control method.
[0002]
[Prior art]
For example, as shown in FIG. 10, a plurality of base stations 100 (100-a, 100-b) connected to the switching center 10 are distributed to form a plurality of cells 1 (1a, 1b). In a cellular spread spectrum communication system in which a base station 100 and a plurality of mobile terminals 300 communicate with each other, as a spreading code of a signal transmitted from each base station 100 to a terminal in the cell, for each terminal in the cell A method using a unique orthogonal code Wi is known.
[0003]
For example, as shown by reference characters W0, W1, W2, and W3 in FIG. 11, the orthogonal code has a property that the result becomes 0 when the product-sum operation is performed over the orthogonal unit interval for any two of the codes.
[0004]
Therefore, the base station assigns a unique orthogonal code Wi (i = 1 to n) to each of the plurality of terminals 300-1 to 300-n in the cell, and transmits a signal or data transmitted to one terminal 300-i. Is spread using the unique orthogonal code Wi of the terminal, and the terminal 300-i despreads the received signal using the unique orthogonal code Wi assigned to itself. Transmission signal components addressed to other terminals in the cell orthogonal to the addressed transmission signal are completely removed during the despreading process, and do not act as interference signals. A communication system in which spreading by orthogonal codes is applied to communication from each base station to a mobile terminal is disclosed in, for example, US Pat. No. 5,104,459.
[0005]
However, in a cellular spread spectrum communication system using orthogonal codes, each terminal also receives transmission signals from other base stations forming adjacent cells in addition to signals transmitted from base stations in the cell. To reach. In this case, the transmission signal from another base station is not orthogonal to the signal transmitted by the base station in the cell, and thus cannot be removed by the despreading process using the orthogonal code Wi unique in the cell. That is, in the reception operation of each terminal, a transmission signal from a base station in another cell acts as an interference factor.
[0006]
FIG. 15 is a diagram illustrating the influence of a transmission signal from another base station described above in each terminal.
The received power of the signal transmitted from the base station attenuates as the distance from the base station increases. Therefore, terminal 300a located near the cell center near base station 100 has a large signal reception power 910 from the base station in the cell, and receives signals from other base stations outside the cell that act as interference signals. Since the power 911 is small, a high S / N can be obtained. On the other hand, in the terminal 300b located near the cell boundary, the reception power 912 of the signal from the base station in the cell is weak, and the interference signal from the adjacent cell is received with the power 913 larger than that of the terminal 300a. As a result, S / N deteriorates.
[0007]
For the above reasons, in the cellular system, signals transmitted from each base station to the terminal are transmitted with small transmission power to the terminal 300a located near the cell center, and to the terminal 300b located around the cell. It is desired to control the transmission power according to the positional relationship with the terminal so as to output with a large transmission power. As for the transmission power control method in which the transmission power is changed in accordance with the position of the terminal as described above, for example, see Document A. Salmasi, K.M. S. Gilhouseen, “On the System Designs of Codes of Code Division Multiple Access (CDMA) Applied to Digital Cellular and Personal Communications Network 91Ep. 57-62.
[0008]
In the control method described in the above document, each terminal device measures the S / N of the received signal using, for example, the circuit configuration shown in FIG. 14, and transmits a control signal for requesting transmission power to the base station. The base station performs the transmission signal power control operation in response to the power control signal with the circuit configurations shown in FIGS.
[0009]
In FIG. 12 showing the configuration of the transmission / reception circuit portion of the base station, a signal from each terminal apparatus received by the antenna 110 is input to the high-frequency circuit 111 via the circulator 109 and converted into a baseband spread spectrum signal Rx. . The baseband spread spectrum signal Rx is input to modulation / demodulation devices 105-1, 105-2,... 105-N associated with each terminal device located in the cell. By performing the decoding process, the transmission signal (reception data) 112 for each terminal is separated from the power control signal PC transmitted by the terminal mixed with the transmission signal.
[0010]
The power control signal PC output from each modulation / demodulation device 105-i (i = 1 to N) is input to the transmission power control device 116. The transmission power control device 116 generates a transmission power instruction signal PW for each terminal device according to each power control signal PC.
[0011]
The modem 105-i (i = 1 to N) encodes the transmission data 101 addressed to each terminal device and the pseudo signal unique to the base station generated by the pseudo noise (PN) generator 103. A modulation process by spread spectrum using the orthogonal codes W1, W2, W3,..., WN generated from the noise PN and the orthogonal code generator 102 is performed. The signal modulated by the spread spectrum is amplified by the power according to the transmission power instruction signal PWi corresponding to each terminal device given from the transmission power control device 116, and output as a transmission signal Tx-i (i = 1 to N). Is done.
[0012]
A pilot signal generator 104 generates simple pattern data, for example, data consisting of all zeros. This pilot signal is subjected to spread spectrum modulation using a pseudo noise PN specific to the base station generated from the pseudo noise generator 103 and a specific orthogonal code W0 generated from the orthogonal code generator 102, and then pilot-modulated. Output as a signal.
[0013]
Transmission signals Tx-i (i = 1 to N) addressed to each terminal are sequentially added by cascade-connected adders 107 (107-0, 107-1,...), And then, together with the pilot signal, a high-frequency circuit. The signal is converted into a signal in the transmission frequency band at 108, and sent to the air through the circulator 109 and the antenna 109.
[0014]
FIG. 13 shows an example of the configuration of the modem 105-i (i = 1, 2,... N) in FIG.
The transmission data 101 input to the modem 105-i is input to the encoder 201 and subjected to an encoding process such as error correction. The encoded signal is multiplied by the orthogonal code Wi given from the orthogonal code generator 102 by the multiplier 202 and subjected to the first spread spectrum, and then the pseudo noise signal PN and the multiplier 203 are applied. Multiplied and subjected to second order spread spectrum. The spectrum-spread signal is input to the variable gain amplifier 204, amplified with the gain specified by the transmission power instruction signal PW-i, and output as the transmission signal Tx-i.
[0015]
On the other hand, the received signal Rx input to the modulator / demodulator 105-i is input to the multiplier 205, and is the same as the pseudo noise PN used for spread spectrum in the terminal device that is the transmission source of the signal Rx described later A despreading process is performed using the pseudo noise PN generated by the pseudo noise generator 206. The despread signal is input to an accumulator 207, and a signal for a certain time is accumulated. The accumulated despread signal is input to the decoder 208 and subjected to decoding processing such as error correction, and is separated into the decoded received data 112 and the power control signal PC-i transmitted by the terminal device. Is output.
[0016]
FIG. 14 shows a configuration of a transmission / reception circuit portion included in a conventional terminal device.
In the terminal device, a signal received from the antenna 301 is input to the high frequency circuit 303 via the circulator 302 and converted into a baseband spread spectrum signal.
[0017]
The baseband spread spectrum signal is input to the first multiplier 304, multiplied by the pseudo noise PN generated from the pseudo noise generator 305, and subjected to the first-order despreading process. The pseudo-noise PN has a noise pattern set to be the same as the inherent pseudo-noise PN generated by the PN generator 103 of the base station when the terminal device is registered in the base station.
[0018]
The signal subjected to the first-order despreading process is input to the second multiplier 307, multiplied by the orthogonal code Wi assigned to the terminal generated from the orthogonal code generator 306, and the second-order inverse spread. Receive diffusion treatment. The signal subjected to the second-order despreading process is input to an accumulator 308, where signals for a certain time are accumulated. The accumulated signal is decoded by the decoder 309 to be received data.
[0019]
According to the prior art, each terminal apparatus measures the S / N of the received signal by using the fact that the variance corresponds to the noise power and the average corresponds to the signal amplitude in the probability density distribution regarding the amplitude of the received signal. doing.
[0020]
For this S / N measurement, in the prior art, the absolute value obtained by inputting the output of the accumulator 308 to the absolute value calculator 328 and the output of the accumulator 308 are input to the square calculator 325. The square value obtained in this way is supplied to the S / N measuring device 329. The S / N measuring device 329 obtains noise power from the difference between the mean value of the square value input and the mean square value of the absolute value input, and obtains the signal power from the mean square value of the absolute value input. / N is measured, and the result is compared with the S / N reference value by the comparator 330 to obtain the power control signal PC-i for requesting the base station to increase or decrease the transmission power.
[0021]
The power control signal PC-i is mixed with the transmission data from the terminal by the mixer 317, then subjected to an encoding process such as error correction by the encoder 318, and this encoded signal is given to the multiplier 320. Spread spectrum modulation is performed by multiplying the pseudo noise generated from the pseudo noise generator 319. The signal subjected to spread spectrum modulation is converted into a signal in the transmission frequency band by the high frequency circuit 321, and then output to the antenna 301 via the circulator 302 and transmitted to the air.
[0022]
With the above configuration, the terminal notifies the base station of the reception S / N of the transmission signal from the base station to the terminal, and the base station controls the transmission power so that the reception S / N of the terminal becomes the target S / N. To do.
[0023]
[Problems to be solved by the invention]
In the conventional spread spectrum communication system described above, each terminal apparatus measures the S / N based only on the signal transmitted from the base station to itself. That is, the dispersion of the amplitude of the received signal obtained by despreading is regarded as noise power, and the S / N is measured by regarding the square of the average value of the amplitude of the signal as signal power.
[0024]
However, the principle of the conventional S / N measurement is based on the premise that the signal amplitude is constant if there is no noise. However, in a mobile communication system, the amplitude of the received signal of each terminal device It fluctuates violently with. Therefore, in order to obtain a reliable S / N measurement result at each terminal, it is necessary to complete the measurement within a relatively short period to the extent that the amplitude of the received signal can be regarded as constant. For this reason, in the conventional terminal device, an extremely high-speed performance circuit is required for the S / N measurement circuit systems 325 to 329. If time is required for S / N measurement due to circuit performance constraints, a correct S / N measurement result cannot be obtained, and the base station cannot implement appropriate power control based on the power control signal from the terminal. There is a problem.
[0025]
In this case, considering the error in the S / N measurement result, if the base station transmits a signal with higher power than necessary to each terminal in the cell, the transmission signal enters the adjacent cell with high power and Acts as a strong jamming signal for terminals in the cell. On the other hand, if the base station performs a transmission operation with a power smaller than that actually required by the terminal, there is a problem that the communication quality at the terminal that has received the base station deteriorates.
[0026]
As a method for controlling the power of the transmission signal from the base station, for example, each terminal apparatus monitors the error rate of received data instead of the above-described S / N of the received signal, and the error rate satisfies a predetermined standard. If this is not the case, a method of requesting the base station to increase the transmission power can be considered, but this method requires a relatively long period of time to calculate the data error rate. There is a problem that it is not possible to follow up sufficiently.
[0027]
An object of the present invention is to provide a spread spectrum communication system and a power control method in which each terminal apparatus can communicate with a base station with high S / N.
[0028]
Another object of the present invention is to provide a spread spectrum communication system and a power control method capable of increasing the number of simultaneous communications in each cell.
[0029]
Another object of the present invention is to provide a mobile terminal apparatus capable of quickly calculating control information for power control to be transmitted to a base station.
[0030]
[Means for Solving the Problems]
In order to achieve the above object, in the spread spectrum communication system of the present invention, the base station does not apply at least one of the orthogonal code sequences for spread spectrum to the modulation of the transmission signal for the pilot signal or the terminal. One characteristic is that it is assigned as a dedicated code for power control.
[0031]
In the present invention, each terminal apparatus (mobile terminal) receives the received power of the noise component obtained by despreading the received signal with the orthogonal code assigned exclusively for S / N measurement at the base station, and the pilot signal or the own signal. One feature is to obtain the S / N of the received signal from the received power of at least one of the transmission signals addressed to the terminal.
[0032]
In the spread spectrum communication system of the present invention, each terminal device transmits power control information obtained based on the S / N value thus obtained to the base station, and the base station receives from the terminal device. The transmission power of the signal to each terminal apparatus is controlled according to the control information.
Another point of focus of the present invention is that, in transmission power control, the first signal for acquiring power control information is different from the second signal to be controlled.
[0033]
Since all signal components transmitted from the base station are orthogonal to the orthogonal code dedicated to control, the base station does not apply the orthogonal code dedicated to control to the modulation of the transmission signal, and each terminal device If each received signal is subjected to despreading processing using the orthogonal code dedicated to the control, each terminal device completely removes various signal components transmitted from the base station in the cell from the received signal. Can do. In this case, since the signal transmitted from the base station of another cell is not orthogonal to the specific code used for the despreading, it is not removed by the despreading process and remains as a noise component. Therefore, by obtaining the root mean square of the noise component extracted by the despreading process, the noise power can be measured quickly and with sufficient accuracy.
[0034]
On the other hand, since the signal component sent from the base station is obtained by despreading the received signal with the orthogonal code assigned to each terminal or the orthogonal code assigned for the pilot signal, the power value and the noise The S / N value can be obtained from the electric power.
[0035]
According to the present invention, each terminal notifies the base station of a power control request according to the S / N value, and the base station controls the signal transmission power for each terminal based on the control request from each terminal. As a result, the communication quality of each terminal device can be guaranteed.
[0036]
Note that if the signal transmission power is controlled so that, for example, the S / N is the same for all terminals, the total transmission power of each base station can be reduced. There is an effect that the value of the noise power having an adverse effect can be reduced, and thereby the S / N in each terminal can be further improved.
Further, the present invention employs “open loop control” in which these signals are different from “closed loop control” in which the signal that is the basis of the control information and the signal to be controlled are the same. In the case of closed-loop control, if the control target signal fluctuates due to a control delay or error, the fluctuation appears as an error in the control information, and the control target signal fluctuates. In the present invention employing the concept of control, there is no such problem and stable control is possible.
[0037]
【Example】
FIG. 1 shows an example of the configuration of a base station in a spread spectrum communication system of the present invention. In the figure, elements corresponding to those of the base station shown in FIG.
[0038]
The operation of the base station of the present invention is substantially the same as that of the base station according to the prior art described above, but as will be described later, any one of the orthogonal codes output from the orthogonal code generator 102, this embodiment However, the difference is that the WN is excluded from the use of modulation of transmission data for the terminal and is allocated exclusively for S / N measurement.
[0039]
FIG. 3 shows a first embodiment of the terminal device according to the present invention. In the figure, circuit elements 301 to 309 correspond to the components 301 to 309 of the conventional terminal device shown in FIG. 14, and in the receiving circuit composed of these elements, the multiplier 304 performs pseudo-simulation similarly to the conventional device. The received signal subjected to the first-order despreading due to the noise PN is subjected to the second-order despreading by the orthogonal code Wi in the multiplier 307 and decoded as received data addressed to the terminal.
[0040]
In this embodiment, the received signal subjected to the first-order despreading by the multiplier 304 is input to the multipliers 313 and 310. The signal input to the multiplier 303 is subjected to second-order despreading by the orthogonal code W 0 generated from the orthogonal code generator 306. The orthogonal code W0 corresponds to the spreading orthogonal code of the pilot signal periodically output by the base station, and the signal despread by the orthogonal code W0 is input to the accumulator 314 and accumulated for a certain period. Thus, the pilot signal can be demodulated. The pilot signal is squared by the squarer 315 and input to the first terminal of the S / N measurement circuit 316 as a signal indicating the instantaneous power of the pilot signal component.
[0041]
On the other hand, the received signal input to the multiplier 310 is subjected to second-order despreading by the orthogonal code WN dedicated to S / N measurement generated by the orthogonal code generator 306, and the despread signal is accumulated. It is input to the device 311 and accumulated for a certain period. Since the orthogonal code WN is a specific orthogonal code that is not used for modulation of the transmission signal at the base station, the transmission signal component from the base station is completely removed as a result of the despreading process using the orthogonal code. The component corresponding to noise can be extracted. Therefore, the instantaneous power of the noise component can be obtained by accumulating the output of the multiplier 311 for a certain period of time by the accumulator 311 and calculating the square thereof by the squarer 312.
[0042]
The instantaneous power of the noise component is input to the second terminal of the S / N measurement circuit 316, and a signal indicating the S / N of the pilot signal is obtained by calculating a ratio with the instantaneous power of the pilot signal component. In this embodiment, the S / N signal is compared with the reference S / N in the comparator 330 to obtain a power control signal PC indicating a deviation from the reference S / N. This power control signal PC is mixed with transmission data by a mixer 317, encoded by an encoder 318, subjected to spread spectrum modulation by pseudo noise generated from a pseudo noise generator 319 in a multiplier 320, and then subjected to high frequency. The data is transmitted to the base station via the circuit 321, the circulator 302, and the antenna 301.
[0043]
FIG. 4 shows a second embodiment of the terminal device. In this embodiment, the comparator 330 in FIG. 3 is omitted, the S / N information output from the S / N measurement circuit is handled as it is as the power control signal SN, and after mixing with the transmission data by the mixer 317, the encoder 318, the multiplier 320, the high frequency circuit 321, and the circulator 321 are used for transmission.
[0044]
In the base station 100 shown in FIG. 1, each modulation / demodulation device 105-i (i = 1 to N-1) separates the received signal from each corresponding terminal device into received data and a power control signal, and performs power control. A signal is supplied to the transmission power control apparatus 106. When each terminal has the structure of the first embodiment, the power control signal PC is separated. When each terminal has the structure of the second embodiment, the power control signal SN is separated. The transmission power control device 106 generates a transmission power instruction signal PW to be given to each modulation / demodulation device 105-i according to the power control signal PC or SN.
[0045]
The configuration of the modem 105-i is shown in FIG. The circuit elements 201 to 207 correspond to the circuit elements 201 to 207 of the conventional modem shown in FIG.
[0046]
The received signal Rx from the terminal device is despread by the pseudo noise signal by the multiplier 205, accumulated by the accumulator 207 for a certain period, and then input to the error correction decoder 508. Here, decoding processing such as error correction is performed, and the received data 112 and the power control signal SN-i or PC-i are separated from the decoded signal.
[0047]
When the terminal device has the configuration of the first embodiment, the power control signal PC-i separated in each modulation / demodulation device 105-i is input to the transmission power control device 106 having the same configuration as the conventional one, and received by each terminal. The transmission power instruction signal PW-i may be generated so that the S / N matches the standard S / N.
[0048]
FIG. 5 shows an example of the configuration of the transmission power control apparatus 106 when the terminal apparatus has the structure of the second embodiment and the modem apparatus 105 outputs the control signal SN-i (i = 1 to N−1). Indicates.
[0049]
The power control signal SN-i is input to a low-pass filter 401-i (i = 1 to N−1) corresponding to each terminal, and after removing a high-frequency component that fluctuates at a frequency higher than necessary, an inverse calculator 402 -I (i = 1 to N-1) is converted into a signal corresponding to the reciprocal of the S / N value. The output of the reciprocal calculator 402-i is added by the adder 403, and the addition result is reciprocally converted again by the reciprocal calculator 404. The output of the reciprocal calculator 404 is supplied to a multiplier 405-(i = 1 to N−1), and the output of the reciprocal calculator 402-i (i = 1 to N−1) is multiplied. The calculation result is output as a transmission power instruction signal PW-i (i = 1 to N−1) for each terminal. The transmission power instruction signal PW-i in this case represents a weighting factor of the transmission power, and the signal PW-i is set such that the lower the S / N value of the terminal device, the higher the transmission power than other terminals. The value of is determined.
[0050]
The transmission power instruction signal PW-i is supplied to the modem 105-i shown in FIG. 2 corresponding thereto. In the modem 105-i, the transmission power instruction signal PW-i is input as a power control input to the amplifier 204 of the transmission circuit system, thereby transmitting with the power corresponding to the S / N state of each terminal device. A signal is output.
[0051]
In the above configuration, the pilot signal transmitted from the base station and the transmission signal (data signal) transmitted from the base station to each terminal device are transmitted at substantially the same point in the same frequency band. The attenuation that occurs in the received data signal of each terminal device in accordance with the distance from the terminal is substantially equal to the attenuation that occurs in the pilot signal. Further, the noise power generated in the pilot signal and the data signal is equal.
[0052]
Therefore, as in the above-described embodiment, each terminal apparatus measures the S / N based on the received power of the pilot signal and the noise power extracted using the S / N measurement orthogonal code at that time. Is transmitted to the base station as a power control signal (PC or SN), and the base station performs transmission control of the data signal with transmission power inversely proportional to S / N for each terminal based on the power control signal. The S / N of the received signals at can be made equal.
[0053]
FIG. 16 is a diagram illustrating an effect when transmission power control is performed so that the S / N of each terminal becomes equal according to the present invention. According to the present invention, the power control is performed so that the transmission power of the signal to the terminal B located near the base station is smaller than the transmission power of the signal to the terminal A located near the cell boundary. The received power of the signals at terminals A and B are as shown at 920 and 922, respectively.
[0054]
The power control described above is performed in the same manner in cells adjacent to each cell, and the control works in a direction to reduce the total transmission power of each base station. The received power of the interference signal reaching the terminal near the base station from the base station of another cell is 921, and the received power of the interference signal reaching the terminal at the cell boundary is 923, respectively. To reduce. This power reduction effect corresponds to about 7.4 dB in a spread spectrum communication system having a structure in which regular hexagonal cells are repeatedly arranged, for example. Further, since the power of the interference signal is reduced, the number of terminals that can simultaneously communicate in each cell (the number of terminals accommodated by the base station) can be increased, and can be increased up to about 5.5 times the conventional maximum. In addition, since the electric power control mentioned above is open loop control, stable control is performed.
[0055]
FIG. 6 shows a third embodiment of the terminal device according to the present invention. In this embodiment, the S / N measurement is obtained from the reception power of the transmission signal (data signal) addressed to each terminal and the reception power of the noise signal instead of the above-described pilot signal. In the figure, the same reference numerals are given to the same circuit elements as those in FIG. 4, and these circuit elements have the same functions as those in FIG.
[0056]
In the present embodiment, the transmission signal destined for the terminal despread with the orthogonal code Wi is accumulated for a certain period by the accumulator 308, and the output is input to the decoder 309, while this is input to the squarer 325. The instantaneous power of the received signal is obtained, and the instantaneous power of the received signal is used as the second input of the S / N measuring device 326. The first input of the S / N measuring device 326 is given the instantaneous power of noise despread with the orthogonal code Wn and output from the squarer 312, thereby obtaining the S / N of the received signal. The S / N of the received signal is mixed with the transmission data signal by the mixer 317 as the power control signal SN = i, and then transmitted from the antenna 301 via the encoding circuit 318, the multiplier 320, and the high frequency circuit 321. The
[0057]
The received signal S / N may be differenced from the reference S / N and transmitted to the base station as a power control signal PC, as in the first embodiment.
[0058]
FIG. 7 shows another embodiment of the power control apparatus 106 of the base station. In this embodiment, the power control signal SN-i (i = 1 to N-1) separated by each modem 105i (i = 1 to N-1) is converted into a low-pass filter 601-i (i = 1 to N-). 1), after removing unnecessary high frequency fluctuation components, the S / N target value output from the target value S / N generation circuit 602 is output by the comparator 603-i (i = 1 to N−1). The difference between the actual S / N and the target S / N is integrated for each terminal by the integrator 604-i (i = 1 to N−1). The output of each integrator is given to output amplifier 204 shown in FIG. 2 as transmission power instruction signal PW-i (i = 1 to N−1) for each terminal. With this transmission power instruction signal, the power of the transmission signal is controlled so that the S / N ratios of all terminals are equal. In this embodiment as well, closed-loop control is performed, and the S / N of each terminal is controlled to match the target S / N even if there is some nonlinearity in the transmission system.
[0059]
FIG. 8 shows a fourth embodiment of the terminal device. In this embodiment, the S / N measurement device 316 in the first embodiment described in FIG. 3 and the S / N measurement device 326 in the third embodiment described in FIG. 6 are used in combination. That is, S / N information of the pilot signal is obtained from the S / N measuring device 316, and S / N information of the received signal is obtained from the S / N measuring device 326. These two types of S / N information are mixed with transmission data by a mixer 327 and transmitted via an encoding circuit 318, a multiplier 320, a high frequency circuit 321, a circulator 302, and an antenna 301.
[0060]
FIG. 9 shows the configuration of the transmission power control apparatus 106 in the base station when the terminal apparatus has the configuration of the fourth embodiment. In the base station, each modulation / demodulation device 105-i receives two types of power control signals sent from the terminal device, that is, S / N (S / N-ip) of the pilot signal and S / N (S of the received signal). / N-id) and output.
[0061]
Of these, SN-ip (i = 1 to N−1), which is the S / N of the pilot signal, is the circuit shown in FIG. 5 composed of circuit elements 401-i, 402-i, 403, 404, 405-i The first weight value of the transmission power for each terminal is generated with the same circuit configuration as in FIG. On the other hand, the SN-id (i = 1 to N−1) that is the S / N of the received signal is the same as that of the circuit shown in FIG. A second weight value of transmission power for each terminal is generated with a circuit configuration. By causing the second weight value to act on the first weight value as a correction value, a transmission power instruction signal PW-i (i = 1 to N−1) for each terminal is obtained. Here, the time constant of the low-pass filter 601-i is set to a value sufficiently larger than the time constant of the low-pass filter 401-i.
[0062]
According to each of the above-described embodiments, when the position of the terminal device is close to the base station and the reception state of the signal from the base station is very good, there is a possibility that the transmission power for this terminal becomes very small. In this case, a lower limit value may be set for the transmission power for the terminal, and control may be performed so that the transmission power does not drop below a predetermined value.
[0063]
【The invention's effect】
According to the present invention, since the S / N can be quickly measured in each terminal device, this is transmitted as a power control signal to the base station, and the base station transmits a signal addressed to each terminal based on the power control signal. By controlling the transmission power, the S / N at each terminal can be made substantially equal. As a result, the total transmission power of signals addressed to the terminal from the base station in each cell can be suppressed to the minimum necessary, and the power of interfering radio waves acting as noise on adjacent cells can be reduced. The number can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a configuration of a base station apparatus in a communication system according to the present invention.
FIG. 2 is a diagram illustrating details of the modem 105-i of the base station device.
FIG. 3 is a block diagram showing a first embodiment of a terminal device applied to the communication system of the present invention.
FIG. 4 is a block diagram showing a second embodiment of a terminal device applied to the communication system of the present invention.
FIG. 5 is a diagram illustrating a first embodiment of a transmission power control apparatus of a base station apparatus.
FIG. 6 is a block diagram showing a third embodiment of a terminal device applied to the communication system of the present invention.
FIG. 7 is a diagram illustrating a second embodiment of the transmission power control apparatus of the base station apparatus.
FIG. 8 is a block diagram showing a fourth embodiment of a terminal device applied to the communication system of the present invention.
FIG. 9 is a diagram illustrating a third embodiment of the transmission power control apparatus of the base station apparatus.
FIG. 10 is a diagram showing an overall configuration of a mobile communication system according to the present invention.
FIG. 11 is a diagram showing an example of orthogonal codes used for spectrum spreading.
FIG. 12 is a diagram showing a configuration of a base station apparatus in a conventional technique.
FIG. 13 is a diagram illustrating an example of a configuration of a modem of a base station device according to a conventional technique.
FIG. 14 is a diagram illustrating an example of a configuration of a terminal device according to a conventional technique.
FIG. 15 is a diagram for explaining the relationship between signal components from a base station in a cell and interference components from other cells in a conventional communication system;
FIG. 16 is a view for explaining the relationship between signal components from base stations in a cell and interference components from other cells in the communication system of the present invention;
[Explanation of symbols]
104: Pilot signal generator, 105: Modulator / demodulator,
106: Transmission power control device, 102, 306: Orthogonal code generation device,
201, 318: Encoder, 202: Multiplier that performs first spreading,
203: Multiplier that performs second spreading, 204: Variable gain amplifier for adjusting transmission power,
205: Multiplier that performs despreading, 207, 308, 311, 314: Accumulator, 208, 309: Decoder, 304: Multiplier that performs first-order despreading,
307, 310, 313: multipliers for performing second order despreading,
328: absolute value calculator, 312, 315, 325: square calculator
320: Multiplier for code spreading, 316, 326, 329: S / N measuring device, 330: Comparator, 317, 327: Mixer,
401, 601: low-pass filter, 402, 404: reciprocal calculator,
603: Adder, 604: Integrator.

Claims (21)

基地局と複数の端末装置との間でスペクトル拡散方式による通信を行うスペクトル拡散通信システムにおける基地局の送信電力制御方法において、
上記基地局から特定の拡散符号を用いて拡散された第1の信号を送信し、
上記端末装置における上記第1の信号の受信電力に基づく電力制御情報を上記端末装置から上記基地局に受信し、
上記端末装置に割り当てられた拡散符号を用いて拡散されて上記基地局から上記端末装置に送信される第2の信号の送信電力を上記電力制御情報に応じた送信電力に設定する送信電力制御方法。
In a base station transmission power control method in a spread spectrum communication system that performs communication by a spread spectrum method between a base station and a plurality of terminal devices,
Transmitting a first signal spread using a specific spreading code from the base station,
Power control information based on the received power of the first signal in the terminal device is received from the terminal device to the base station,
A transmission power control method for setting a transmission power of a second signal that is spread using a spreading code assigned to the terminal apparatus and transmitted from the base station to the terminal apparatus to a transmission power according to the power control information .
請求項1において、
上記基地局は、上記受信電力の高い端末装置に対しては上記第2の信号の送信電力を低め、上記受信電力の低い端末装置に対しては上記第2の信号の送信電力を高くして上記第2の信号を送信する送信電力制御方法。
In claim 1,
The base station lowers the transmission power of the second signal for a terminal device with high reception power, and increases the transmission power of the second signal for a terminal device with low reception power. A transmission power control method for transmitting the second signal.
請求項1において、
上記拡散符号と上記拡散符号とは相互に異なる複数のコード群から選択されており、
上記第1の信号と上記第2の信号とは同時期に同一の周波数帯域内で送信される送信電力制御方法。
In claim 1,
The spreading code and the spreading code are selected from a plurality of different code groups,
The transmission power control method in which the first signal and the second signal are transmitted in the same frequency band at the same time.
請求項1において、上記第1の信号は、一定の送信電力により送信される送信電力制御方法。The transmission power control method according to claim 1, wherein the first signal is transmitted with a constant transmission power. 基地局と複数の端末装置との間でスペクトル拡散方式による通信を行うスペクトル拡散通信システムにおける基地局の送信電力制御方法において、
上記基地局から、特定の拡散符号を用いて拡散された第1の信号を送信し、
上記端末装置における上記第1の信号のS/N比に基づく電力制御情報を上記端末装置から上記基地局に受信し、
上記基地局から、上記端末装置に割り当てられた拡散符号を用いて拡散された第2の信号を上記電力制御情報に応じた送信電力で送信する送信電力制御方法。
In a base station transmission power control method in a spread spectrum communication system that performs communication by a spread spectrum method between a base station and a plurality of terminal devices,
From the base station, a first signal spread using a specific spreading code is transmitted,
Power control information based on the S / N ratio of the first signal in the terminal device is received from the terminal device to the base station,
A transmission power control method for transmitting, from the base station, a second signal spread using a spreading code assigned to the terminal device, with transmission power corresponding to the power control information.
請求項5において、
上記基地局は、上記S/Nの高い端末装置に対しては上記第2の信号の送信電力を低め、上記S/Nの低い端末装置に対しては上記第2の信号の送信電力を高くする送信電力制御方法。
In claim 5,
The base station lowers the transmission power of the second signal for the terminal device with a high S / N and increases the transmission power of the second signal for the terminal device with a low S / N. Transmission power control method.
請求項5記載の送信電力制御方法において、
上記拡散符号と上記拡散符号とは相互に異なる複数のコード群から選択されており、
上記第1の信号と上記第2の信号とは同時期に同一の周波数帯域内で送信される送信電力制御方法。
The transmission power control method according to claim 5, wherein
The spreading code and the spreading code are selected from a plurality of different code groups,
The transmission power control method in which the first signal and the second signal are transmitted in the same frequency band at the same time.
請求項5記載の送信電力制御方法において、
上記第1の信号は、一定の送信電力により送信される送信電力制御方法。
The transmission power control method according to claim 5, wherein
The transmission power control method in which the first signal is transmitted with a constant transmission power.
基地局との間でスペクトル拡散方式による通信を行う移動端末装置において、
送信された伝送周波数帯域の信号をベースバンドの第2次の受信スペクトル拡散信号に変換する第1の高周波回路と、
上記第2次の受信スペクトル拡散信号を基地局に割り当てられた拡散信号PNを用いて逆拡散して第1次の受信スペクトル拡散信号に変換する第1の復調器と、
上記第1次の受信スペクトル拡散信号を特定の拡散符号を用いて逆拡散して第1の受信信号を抽出する第2の復調器と、
上記第1次の受信スペクトル拡散信号を割り当てられた拡散符号を用いて逆拡散して第2の受信信号を抽出する第3の復調器と、
上記第2の受信信号を復号して受信データに変換する復号器と、
上記第1の受信信号の受信電力に基づき電力制御情報を生成する電力制御情報生成回路と、
上記電力制御情報を上記拡散符号PNを用いて拡散してベースバンドの送信スペクトル拡散信号に変換する変調器と、
送信のために上記送信スペクトル拡散信号を伝送周波数帯域の信号に変換する第2の高周波回路と、
を有することを特徴とする移動端末装置。
In a mobile terminal device that performs spread spectrum communication with a base station,
A first high-frequency circuit that converts a transmitted signal in a transmission frequency band into a second-order received spectrum spread signal in a baseband;
A first demodulator that despreads the second received spread spectrum signal using a spread signal PN assigned to a base station and converts it into a first received spread spectrum signal;
A second demodulator that despreads the first received spread spectrum signal using a specific spreading code to extract a first received signal;
A third demodulator for despreading the first received spread spectrum signal using an assigned spreading code to extract a second received signal;
A decoder for decoding the second received signal and converting it into received data;
A power control information generating circuit for generating power control information based on the received power of the first received signal;
A modulator that spreads the power control information using the spreading code PN and converts it into a baseband transmit spectrum spread signal;
A second high frequency circuit for converting the transmission spread spectrum signal into a transmission frequency band signal for transmission;
A mobile terminal device comprising:
請求項記載の移動端末装置において、
上記拡散符号と上記拡散符号は互いに直交する直交符号群から選択されたことを特徴とする移動端末装置。
The mobile terminal device according to claim 9 , wherein
The mobile terminal apparatus, wherein the spreading code and the spreading code are selected from orthogonal code groups orthogonal to each other.
基地局との間でスペクトル拡散方式による通信を行う移動端末装置において、
上記基地局より送信された、特定の拡散符号を用いて拡散された第1の信号と上記移動端末装置に割り当てられた拡散信号を用いて拡散された第2の信号とを受信する受信回路と、
上記第1の信号の受信電力に基づき電力制御情報を生成する電力制御情報生成回路と、
上記第2の信号を受信データに変換する復号器と、
上記電力制御情報を上記基地局に送信する送信回路と、
を有することを特徴とする移動端末装置。
In a mobile terminal device that performs spread spectrum communication with a base station,
A receiving circuit that receives the first signal spread from the base station and spread using a specific spreading code and the second signal spread using the spread signal assigned to the mobile terminal device; ,
A power control information generating circuit for generating power control information based on the received power of the first signal;
A decoder for converting the second signal into received data;
A transmission circuit for transmitting the power control information to the base station;
A mobile terminal device comprising:
請求項11記載の移動端末装置において、
上記受信回路は、上記基地局より送信された信号に対して上記拡散符号を用いて逆拡散して第1の信号を抽出する第1の復調器と上記基地局より送信された信号に対して上記拡散符号を用いて逆拡散して第2の信号を抽出する第2の復調器とを有することを特徴とする移動端末装置。
The mobile terminal device according to claim 11 , wherein
The reception circuit despreads the signal transmitted from the base station using the spreading code and extracts the first signal, and the signal transmitted from the base station. A mobile terminal apparatus comprising: a second demodulator that performs despreading using the spreading code and extracts a second signal.
請求項11記載の移動端末装置において、
上記拡散符号と上記拡散符号は相互に異なる複数のコード群から選択され、
上記第1の信号と上記第2の信号とは同一の周波数帯域で送信され、
上記第1の信号は一定の送信電力で上記基地局により送信されることを特徴とする移動端末装置。
The mobile terminal device according to claim 11 , wherein
The spreading code and the spreading code are selected from a plurality of different code groups,
The first signal and the second signal are transmitted in the same frequency band,
The mobile terminal apparatus, wherein the first signal is transmitted by the base station with a constant transmission power.
移動端末装置との間でスペクトル拡散方式による通信を行う基地局において、
第1の送信信号を基地局固有の拡散符号PN及び特定の拡散符号を用いて拡散して第1の送信スペクトル拡散信号に変換する第1の変調器と、
第2の送信信号を上記拡散符号PN及び上記移動端末装置に割り当てられた拡散符号を用いて拡散して第2の送信スペクトル拡散信号に変換する第2の変調器と、
上記第1の送信スペクトル拡散信号と上記第2の送信スペクトル拡散信号とを重畳して、送信のために伝送周波数帯域の信号に変換する第1の高周波回路と、
送信された伝送周波数帯域の信号をベースバンドの受信スペクトル拡散信号に変換する第2の高周波回路と、
上記受信スペクトル拡散信号を基地局に割り当てられた拡散信号PNを用いて逆拡散して受信信号を抽出する復調器と、
上記受信信号を受信データ及び上記移動端末装置において上記第1の送信信号の受信電力に基づき生成された電力制御情報に変換する復号器と、
上記第1の変調器は上記第1の送信スペクトル拡散信号を所定の利得で増幅し、上記第2の変調器は上記第2の送信スペクトル拡散信号を上記電力制御情報に応じた利得で増幅することを特徴とする基地局。
In a base station that performs communication using a spread spectrum method with a mobile terminal device,
A first modulator that spreads the first transmission signal using a base station-specific spreading code PN and a specific spreading code to convert the first transmission signal into a first transmission spectrum spread signal;
A second modulator that spreads a second transmission signal using the spreading code PN and a spreading code assigned to the mobile terminal device to convert the second transmission signal into a second transmission spectrum spread signal;
A first high-frequency circuit that superimposes the first transmission spread spectrum signal and the second transmission spread spectrum signal and converts the signal into a transmission frequency band signal for transmission;
A second high frequency circuit for converting the transmitted transmission frequency band signal into a baseband received spread spectrum signal;
A demodulator that despreads the received spread spectrum signal using a spread signal PN assigned to a base station to extract the received signal;
A decoder for converting the received signal into received data and power control information generated based on the received power of the first transmission signal in the mobile terminal device;
The first modulator amplifies the first transmission spread spectrum signal with a predetermined gain, and the second modulator amplifies the second transmission spread spectrum signal with a gain according to the power control information. A base station characterized by that.
請求項14記載の基地局において、
上記拡散符号と上記拡散符号は互いに直交する直交符号群から選択されたことを特徴とする移動端末装置。
The base station according to claim 14 ,
The mobile terminal apparatus, wherein the spreading code and the spreading code are selected from orthogonal code groups orthogonal to each other.
移動端末装置との間でスペクトル拡散方式による通信を行う基地局において、
特定の拡散信号を用いて拡散された第1の送信信号と上記移動端末装置に割り当てた拡散信号を用いて拡散された第2の送信信号とを送信する送信回路と、
上記移動端末装置において上記第1の送信信号の受信電力に基づき生成された電力制御情報を受信する受信回路と、
上記送信回路は、上記第2の送信信号を上記電力制御情報に応じた送信電力で送信することを特徴とする基地局。
In a base station that performs communication using a spread spectrum method with a mobile terminal device,
A transmission circuit for transmitting a first transmission signal spread using a specific spread signal and a second transmission signal spread using a spread signal assigned to the mobile terminal device;
A receiving circuit for receiving power control information generated based on the received power of the first transmission signal in the mobile terminal device;
The transmission circuit, the base station and transmits over the SL second transmission signal at a transmission power corresponding to the power control information.
請求項16記載の基地局において、
上記拡散符号と上記拡散符号は相互に異なる複数のコード群から選択され、
上記送信回路は、上記第1の送信信号と上記第2の送信信号とを同一の周波数帯域で送信し、
上記送信回路は、上記第1の送信信号の受信電力の大きな移動端末装置に対してはより低い送信電力により、上記第2の送信信号の受信電力の小さな移動端末装置に対してはより高い送信電力により、上記第2の送信信号を送信することを特徴とする基地局。
The base station according to claim 16 , wherein
The spreading code and the spreading code are selected from a plurality of different code groups,
The transmission circuit transmits the first transmission signal and the second transmission signal in the same frequency band,
The transmission circuit transmits lower transmission power to a mobile terminal device having a large reception power of the first transmission signal and higher transmission to a mobile terminal device having a low reception power of the second transmission signal. The base station transmitting the second transmission signal by power.
基地局と複数の端末装置との間でスペクトル拡散方式による通信を行うスペクトル拡散通信システムにおける送信電力制御方法において、
上記基地局より送信された、特定の拡散符号を用いて拡散された第1の信号
と上記移動端末装置に割り当てられた拡散信号を用いて拡散された第2の信号とを受信し、
上記第1の信号の受信電力に基づき電力制御情報を生成し、
上記第2の信号を受信データに変換し、
上記電力制御情報を上記基地局に送信することを特徴とする送信電力制御方法。
In a transmission power control method in a spread spectrum communication system that performs spread spectrum communication between a base station and a plurality of terminal devices,
Receiving a first signal transmitted from the base station and spread using a specific spreading code and a second signal spread using a spread signal assigned to the mobile terminal device;
Generating power control information based on the received power of the first signal;
Converting the second signal into received data;
A transmission power control method characterized by transmitting the power control information to the base station.
請求項18記載の送信電力制御方法において、
上記拡散符号と上記拡散符号は相互に異なる複数のコード群から選択され、
上記第1の信号と上記第2の信号とは同一の周波数帯域で送信され、
上記第1の信号は一定の送信電力で上記基地局より送信されることを特徴とする送信電力制御方法。
The transmission power control method according to claim 18 , wherein
The spreading code and the spreading code are selected from a plurality of different code groups,
The first signal and the second signal are transmitted in the same frequency band,
The transmission power control method, wherein the first signal is transmitted from the base station with a constant transmission power.
基地局と複数の移動端末装置との間でスペクトル拡散方式による通信を行うスペクトル拡散通信システムにおける送信電力制御方法において、
特定の拡散信号を用いて拡散された第1、上記移動端末装置に割り当てた拡散信号を用いて拡散され、送信電力が可変の第2の送信信号とを送信し、
上記移動端末装置において上記第1の送信信号の受信電力に基づき生成された電力制御情報を受信し、
上記電力制御情報に応じて上記第2の送信信号の送信電力を制御することを特徴とする送信電力制御方法。
In a transmission power control method in a spread spectrum communication system that performs spread spectrum communication between a base station and a plurality of mobile terminal devices,
A first diffused using a specific spreading signals, spread with a spread signal allocated to the mobile terminal device, transmission power sends a second transmission signal of the variable,
Receiving power control information generated based on the received power of the first transmission signal in the mobile terminal device;
A transmission power control method, comprising: controlling transmission power of the second transmission signal in accordance with the power control information.
請求項20記載の送信電力制御方法において、
上記拡散符号と上記拡散符号は相互に異なる複数のコード群から選択され、
上記送信回路は、上記第1の送信信号と上記第2の送信信号とを同一の周波数帯域で送信し、
上記第1の送信信号と上記第2の送信信号とを同一の周波数帯域で送信し、
上記第2の信号は、上記受信電力の大きな移動端末装置に対してはより低い送信電力により、上記受信電力の小さな移動端末装置に対してはより高い送信電力により送信されることを特徴とする送信電力制御方法。
The transmission power control method according to claim 20 ,
The spreading code and the spreading code are selected from a plurality of different code groups,
The transmission circuit transmits the first transmission signal and the second transmission signal in the same frequency band,
Transmitting the first transmission signal and the second transmission signal in the same frequency band;
The second signal is transmitted with a lower transmission power for the mobile terminal apparatus with a large reception power and with a higher transmission power for the mobile terminal apparatus with a low reception power. Transmission power control method.
JP2003170187A 2003-06-16 2003-06-16 Spread spectrum communication system and transmission power control method Expired - Lifetime JP3613276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170187A JP3613276B2 (en) 2003-06-16 2003-06-16 Spread spectrum communication system and transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170187A JP3613276B2 (en) 2003-06-16 2003-06-16 Spread spectrum communication system and transmission power control method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18246493A Division JP3457357B2 (en) 1993-07-23 1993-07-23 Spread spectrum communication system, transmission power control method, mobile terminal device, and base station

Publications (2)

Publication Number Publication Date
JP2004159289A JP2004159289A (en) 2004-06-03
JP3613276B2 true JP3613276B2 (en) 2005-01-26

Family

ID=32821690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170187A Expired - Lifetime JP3613276B2 (en) 2003-06-16 2003-06-16 Spread spectrum communication system and transmission power control method

Country Status (1)

Country Link
JP (1) JP3613276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612045B1 (en) 2004-12-08 2006-08-14 한국전자통신연구원 Method for controlling base station to suppress inter-cell interference

Also Published As

Publication number Publication date
JP2004159289A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3457357B2 (en) Spread spectrum communication system, transmission power control method, mobile terminal device, and base station
KR100341959B1 (en) Method and apparatus for simulating interference received by subscribers in a spread spectrum communications system
US5870393A (en) Spread spectrum communication system and transmission power control method therefor
EP0719481B1 (en) Method and apparatus for simulating user interference in a spread spectrum communications system
Andrews et al. Optimum power control for successive interference cancellation with imperfect channel estimation
EP1388937B1 (en) Adaptive RF amplifier prelimiter
JP3390771B2 (en) Direct sequence band spreading code chip modulator
MXPA96000954A (en) System and method for simulating user interference in a spectrodifund communications network
EP1442535B1 (en) Controlling forward link transmission power
US7171241B2 (en) Data transmission method and arrangement
AU2002359303A1 (en) Controlling forward link transmission power
Rahman et al. Repeaters for hotspot capacity in DS-CDMA networks
JP3613276B2 (en) Spread spectrum communication system and transmission power control method
JP3882833B2 (en) Transmission power control method, mobile terminal apparatus, and base station
JP3613228B2 (en) Transmission power control method, mobile terminal apparatus, and base station
US8301352B2 (en) Transmission power control parameter calculation method and device
JP4564995B2 (en) Mobile terminal device
JP3159206B2 (en) Transmission power control method, mobile terminal device and base station
JP4113553B2 (en) Transmission power control method
EP2360837B1 (en) Process for performing cubic metric computation in the transmitter of a UE for a wireless communication system, and apparatus for performing the same
CN101151767A (en) Antenna adaptation method, communication terminal, device, module and computer program product
Kim et al. Adaptive CDMA scheme as a rain fade countermeasure in Ka-band geosynchronous satellite communications
KR20040000588A (en) Method and apparatus for pilot signal transmission and reception
KR20010103047A (en) Cdma signal transmission using ratios of in-band and out-of-band signals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

EXPY Cancellation because of completion of term