JP3612724B2 - Method for producing terephthalic acid with excellent slurry characteristics - Google Patents

Method for producing terephthalic acid with excellent slurry characteristics Download PDF

Info

Publication number
JP3612724B2
JP3612724B2 JP01185594A JP1185594A JP3612724B2 JP 3612724 B2 JP3612724 B2 JP 3612724B2 JP 01185594 A JP01185594 A JP 01185594A JP 1185594 A JP1185594 A JP 1185594A JP 3612724 B2 JP3612724 B2 JP 3612724B2
Authority
JP
Japan
Prior art keywords
terephthalic acid
slurry
crystallization tank
crystallization
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01185594A
Other languages
Japanese (ja)
Other versions
JPH07215914A (en
Inventor
義昭 泉沢
司 川原
明彦 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP01185594A priority Critical patent/JP3612724B2/en
Publication of JPH07215914A publication Critical patent/JPH07215914A/en
Application granted granted Critical
Publication of JP3612724B2 publication Critical patent/JP3612724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、テレフタル酸の製造方法に関する。詳しくは、テレフタル酸とグリコール類とを直接反応させる、いわゆる直接重合法によるポリエステルの製造原料として好適なスラリー特性に優れたテレフタル酸の製造方法に関する。
【0002】
【従来の技術】
テレフタル酸とグリコール類の直接重合法によりポリエチレンテレフタレートなどのポリエステルを製造する場合、テレフタル酸は、通常エチレングリコール等のグリコール類と混合してスラリー状態で反応系へ送られ反応に供される。この際、該スラリーは良好な重合反応状態を維持するために、できるだけ均一で流動性に富んだ特性のものであることが望まれる。かかる特性を有するスラリーを得るにはテレフタル酸に対し多量のグリコール類を用いればよいが、過剰量のグリコール類は重縮合反応の際、副反応生成物の発生を増加させ、これらはポリマーの融点の低下、熱安定性の低下を招き、さらには、ポリマーの着色の原因となる。これらの問題を避けるためには、テレフタル酸に対しグリコール類を化学的理論量に近い量にて反応させることが望ましいが、グリコール類の使用量を減ずると、スラリーの流動性が低下するため、スラリーの調製槽および反応器の攪拌所要動力の増大や、供給不良、場合によってはスラリー化しない等の問題が生じる恐れもある。
【0003】
従って、ポリエチレンテレフタレートの直接重合法の原料としては、必要最低量のグリコール類で、良好な流動性、反応性を有するスラリーを形成するようなテレフタル酸が最適である。スラリーの流動性を向上させるために、一般的に、広範囲の粒径分布を有する粉体を用いることが知られている。スラリーの流動性が良好なテレフタル酸を得る方法として、特開昭48−29735号には、平均粒径100μm以上の比較的粒径の大きいテレフタル酸粒子と、前記の比較的粒径の大きいテレフタル酸粒子の平均粒径の6割以下で平均粒径50μm以上のテレフタル酸粒子を、70〜85%対30〜15%の割合で混合する方法が記載されている。しかし、この方法では平均粒径の異なるテレフタル酸を製造するために条件を変えた2種類以上の晶析工程が必要になる。さらに、異なった条件で製造したテレフタル酸を別々に貯蔵した後、混合する設備が必要になり不経済であった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、エチレングリコール等のグリコール類とテレフタル酸を混合する際のスラリー性に優れたテレフタル酸を、複雑な工程を経ずに簡便に得る方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題に鑑み本発明者が鋭意検討した結果、テレフタル酸の粒度分布中、特に微粉域(例えば30μm以下)の量がスラリー性の向上に対し影響が大きく、このような微粉の量は、還元精製工程を経たテレフタル酸溶液、またはテレフタル酸スラリーを複数の晶析槽で冷却晶析する際、その一部を後段の晶析槽にバイパスして供給して連続的に冷却晶析することでコントロールされ、テレフタル酸とグリコール類を混合する際のスラリー性に優れたテレフタル酸が得られることを見出し、本発明に到達した。
【0006】
すなわち、本発明の要旨は、粗テレフタル酸を、水または含水溶媒を媒体として、高温高圧下、還元条件下で精製したテレフタル酸溶液またはスラリーを、直列に配列した3槽以上の晶析槽を逐次通過させて連続的に冷却晶析する方法において、温度が190℃以上のテレフタル酸溶液またはスラリーの一部をバイパスさせて後段の晶析槽に送り、冷却晶析することを特徴とする、スラリー特性に優れたテレフタル酸の製造方法に存する。
【0007】
以下、本発明を詳細に説明する。
テレフタル酸は一般にパラキシレンを酸化して製造される。パラキシレンの酸化反応としては、通常、パラキシレンを酢酸溶媒中、例えばコバルト、マンガン及び臭素を含む触媒の存在下、170〜230℃で分子状酸素と反応させる、いわゆるSD法が採用される。かかる反応により得られる粗テレフタル酸は、不純物として4−カルボキシベンズアルデヒドを重量基準で通常50〜10000ppm含有している。この粗テレフタル酸を水または含水溶媒に対して、通常10〜40重量%のスラリーとする。次に、このスラリーは昇圧ポンプにより反応圧力より若干高い圧力まで加圧され、加熱溶解工程へ送られて粗テレフタル酸水溶液とされる。
【0008】
この粗テレフタル酸水溶液を白金族金属を含む触媒を有する反応器に通過させ、該反応器内で粗テレフタル酸を高温高圧下、還元条件で精製する。還元条件としては、通常、水素を反応器に供給する。白金族金属を含む触媒としては、通常、パラジウム、ルテニウム、ロジウム、オスミウム、イリジウム、白金等あるいはこれらの金属酸化物から選ばれる。これらの金属もしくは金属酸化物は触媒としてそのまま使用することもできるが、好ましくはテレフタル酸溶液に不溶性の担体、例えば活性炭などに担持させて使用される。反応条件としては、温度を通常220〜320℃、好ましくは260〜300℃で粗テレフタル酸水溶液を触媒と接触させる。水素ガスを用いる場合は、粗テレフタル酸水溶液1000kgに対し通常0.05〜10Nm、好ましくは0.1〜3Nmの割合で供給する。
【0009】
上記の還元精製工程を経たテレフタル酸溶液は、通常70〜200℃まで冷却して、多段晶析槽で晶析される。多段晶析槽の段数は、得られるテレフタル酸の不純物含有量や粒子性状及び、設備経費等を考慮して、通常3〜8段、好ましくは4〜6段で設置される。また、各晶析槽の温度差は通常10〜60℃である。晶析には、通常、溶媒の蒸発冷却方式が用いられ、晶析槽には通常、攪拌機、圧力調整装置、蒸気の冷却還流または抜き出しのための装置が具備されている。晶析したテレフタル酸結晶は遠心分離等により固液分離した後乾燥され高純度テレフタル酸が得られる。
【0010】
本発明では、上記のように直列に配列した多段晶析槽を逐次通過させて、最終的にはテレフタル酸の大部分が析出する温度まで冷却晶析する際に、テレフタル酸溶液またはスラリーの一部を晶析槽のバイパス管を経て後段の晶析槽へバイパスさせ連続的に冷却晶析することを特徴とするものである。
このようにテレフタル酸溶液またはスラリーの一部を晶析槽のバイパス管を経て後段の晶析槽へバイパスさせることによって、晶析槽間の温度差、または圧力差が大きくなり、テレフタル酸結晶の晶出速度が増大し晶出粒子の微粉化が進行するものと推定される。また、圧力差が増大することにより、圧力降下時のフラッシュ衝撃が大きくなり、晶出した粒子の破砕を引き起こし、より微粉化を助長するものと推定される。
【0011】
バイパスは190℃以上、好ましくは200℃以上のテレフタル酸溶液またはスラリーを、次に続く晶析槽を1段以上飛ばして後段の晶析槽に直接供給することにより行う。バイパスされる該流体の温度が190℃より低いと、もはや、急激に冷却しても析出するテレフタル酸の量が少ないため、十分な量の微細な結晶が生じず、得られるテレフタル酸のスラリーの性状の改良が不十分となる。また、バイパス量は所望のテレフタル酸の物性に応じて適宜調整すればよいが、通常、テレフタル酸の溶液またはスラリー全量の5〜70重量%、好ましくは5〜30重量%である。バイパス量が5重量%より少ないと得られるテレフタル酸はスラリーの性状の改良が十分でない場合があり、一方、70重量%より多いと不純物が増加する。
【0012】
バイパスの方法について、さらに図面を用いて具体的に説明する。例えば、晶析工程が5段の晶析槽を有する場合、第1晶析槽および第2晶析槽の晶析温度を190℃以上とすると、例えば図1、図2に示すように第1晶析槽に入るテレフタル酸水溶液をバイパス配管7より第4晶析槽あるいは第2晶析槽にバイパスする方法、また、図3、図4に示すように第1晶析槽から出たスラリーを第1晶析槽バイパス配管8を通して第5晶析槽あるいは第3晶析槽にバイパスする方法、さらに、図5、図6に示すように第2晶析槽から出たスラリーを第2晶析槽バイパス配管9を通して第5晶析槽あるいは第4晶析槽にバイパスする方法等が挙げられる。
【0013】
【実施例】
以下、実施例を挙げて本発明を説明するが、本発明はその要旨を越えない限りこれらの実施例に何ら限定されるものではない。
比較例1
攪拌機を有する同じ構造の5個の晶析槽を直列に配置した図7に示す晶析槽に、高温高圧下、還元条件で精製された290℃のテレフタル酸30重量%水溶液を連続的に供給した。各晶析槽の温度は、第1晶析槽240℃、第2晶析槽200℃、第3晶析槽185℃、第4晶析槽175℃、第5晶析槽150℃である。
【0014】
5個の晶析槽を逐次通過させ段階的に晶析を行なった。得られたテレフタル酸の粒径分布とスラリートルクを表−1に示す。
粒径分布は湿式分級法による篩上粒径分布であり、スラリートルクはテレフタル酸1モルに対しエチレングリコール1.1モルの割合で混合し、2枚羽根かい型翼で撹拌したときの撹拌トルクである。スラリートルクは数値が低い方がスラリー特性に優れている。
【0015】
実施例1
図1のように、第1晶析槽へ入るテレフタル酸水溶液の15%をバイパス管7を通して第4晶析槽へ供給した他は比較例1と同様に行った。得られたテレフタル酸の粒径分布とスラリートルクを表−1に示す。
実施例2
図4のように、第1晶析槽から第2晶析槽へ送られるスラリーのうち30重量%をバイパス管8を通して第3晶析槽に供給した他は比較例1と同様に行った。得られたテレフタル酸の粒径分布とスラリートルクを表−1に示す。
比較例2
図8のように、第3晶析槽から第4晶析槽へ送られるスラリーのうち30重量%をバイパス管10を通して第5晶析槽へ供給した他は比較例1と同様に行った。得られたテレフタル酸の粒径分布とスラリートルクを表−1に示す。
【0016】
【表1】

Figure 0003612724
【0017】
【発明の効果】
本発明によれば、晶析条件を変えたテレフタル酸または粉砕したテレフタル酸を別々に作った後で混合するような複雑な工程を経ずに、テレフタル酸とグリコール類を混合する際のスラリー性に優れたテレフタル酸を得ることができる。
【図面の簡単な説明】
【図1】第1晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図2】第1晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図3】第2晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図4】第2晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図5】第3晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図6】第3晶析槽へ入るテレフタル酸水溶液の一部をバイパスしたときの本発明の装置の一例を示す概念図である。
【図7】比較例1を示す概念図である。
【図8】比較例2を示す概念図である。
【符号の説明】
1 第1晶析槽
2 第2晶析槽
3 第3晶析槽
4 第4晶析槽
5 第5晶析槽
6 配管
7〜10 バイパス配管[0001]
[Industrial application fields]
The present invention relates to a method for producing terephthalic acid. More specifically, the present invention relates to a method for producing terephthalic acid excellent in slurry characteristics suitable as a raw material for producing polyester by a so-called direct polymerization method in which terephthalic acid and glycols are directly reacted.
[0002]
[Prior art]
When a polyester such as polyethylene terephthalate is produced by a direct polymerization method of terephthalic acid and glycols, terephthalic acid is usually mixed with glycols such as ethylene glycol and sent to the reaction system in a slurry state to be subjected to the reaction. At this time, the slurry is desirably as uniform and fluid as possible in order to maintain a good polymerization reaction state. In order to obtain a slurry having such characteristics, a large amount of glycols may be used with respect to terephthalic acid. However, excessive amounts of glycols increase the generation of side reaction products during the polycondensation reaction, and these cause the melting point of the polymer. Lowering of heat resistance and heat stability, and further causing coloring of the polymer. In order to avoid these problems, it is desirable to react glycols with terephthalic acid in an amount close to the theoretical amount of chemicals. However, if the amount of glycols used is reduced, the fluidity of the slurry will decrease. There is a possibility that problems such as an increase in the power required for stirring the slurry preparation tank and the reactor, supply failure, and in some cases, no slurrying may occur.
[0003]
Therefore, terephthalic acid that forms a slurry having good fluidity and reactivity with the minimum amount of glycols is optimal as a raw material for the direct polymerization method of polyethylene terephthalate. In order to improve the fluidity of the slurry, it is generally known to use a powder having a wide particle size distribution. As a method for obtaining terephthalic acid with good fluidity of the slurry, Japanese Patent Laid-Open No. 48-29735 discloses terephthalic acid particles having an average particle diameter of 100 μm or more and relatively large particle diameters, and the terephthalic acid having relatively large particle diameters. A method is described in which terephthalic acid particles having an average particle size of 50 μm or more and 60% or less of the average particle size of the acid particles are mixed in a ratio of 70 to 85% to 30 to 15%. However, this method requires two or more types of crystallization steps with different conditions in order to produce terephthalic acid having different average particle sizes. In addition, terephthalic acid produced under different conditions must be stored separately and then mixed, which is uneconomical.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for easily obtaining terephthalic acid having excellent slurry properties when mixing glycols such as ethylene glycol and terephthalic acid without complicated steps.
[0005]
[Means for Solving the Problems]
As a result of intensive studies by the inventor in view of the above problems, the amount of the fine powder region (for example, 30 μm or less) in the particle size distribution of terephthalic acid has a great influence on the improvement of the slurry property. When cooling and crystallizing a terephthalic acid solution or terephthalic acid slurry that has undergone a refining process in multiple crystallization tanks, a part of the terephthalic acid solution is bypassed and supplied to the subsequent crystallization tank to continuously cool and crystallize. The present inventors have found that terephthalic acid which is controlled and has excellent slurry properties when mixing terephthalic acid and glycols can be obtained.
[0006]
That is, the gist of the present invention is that three or more crystallization tanks in which terephthalic acid solution or slurry purified under reducing conditions under high temperature and high pressure using water or a hydrous solvent as a medium are arranged in series. In the method of continuously cooling and crystallizing by sequentially passing, a part of the terephthalic acid solution or slurry having a temperature of 190 ° C. or higher is bypassed and sent to a subsequent crystallizing tank, and is characterized by cooling and crystallizing. It exists in the manufacturing method of the terephthalic acid excellent in the slurry characteristic.
[0007]
Hereinafter, the present invention will be described in detail.
Terephthalic acid is generally produced by oxidizing paraxylene. As the oxidation reaction of paraxylene, a so-called SD method is generally employed in which paraxylene is reacted with molecular oxygen in an acetic acid solvent in the presence of a catalyst containing, for example, cobalt, manganese and bromine at 170 to 230 ° C. The crude terephthalic acid obtained by such a reaction usually contains 50 to 10,000 ppm of 4-carboxybenzaldehyde as an impurity on a weight basis. The crude terephthalic acid is usually made into a slurry of 10 to 40% by weight with respect to water or a water-containing solvent. Next, this slurry is pressurized to a pressure slightly higher than the reaction pressure by a pressure pump, and is sent to the heating and dissolving step to obtain a crude terephthalic acid aqueous solution.
[0008]
This crude terephthalic acid aqueous solution is passed through a reactor having a catalyst containing a platinum group metal, and the crude terephthalic acid is purified under reducing conditions at high temperature and pressure in the reactor. As reducing conditions, hydrogen is usually supplied to the reactor. The catalyst containing a platinum group metal is usually selected from palladium, ruthenium, rhodium, osmium, iridium, platinum and the like, or a metal oxide thereof. These metals or metal oxides can be used as a catalyst as they are, but are preferably used by supporting them on a carrier insoluble in a terephthalic acid solution, such as activated carbon. As the reaction conditions, the crude terephthalic acid aqueous solution is brought into contact with the catalyst at a temperature of usually 220 to 320 ° C, preferably 260 to 300 ° C. When hydrogen gas is used, typically 0.05~10Nm 3 to crude terephthalic acid solution 1000 kg, preferably supplied in a proportion of 0.1 to 3 nm 3.
[0009]
The terephthalic acid solution that has undergone the above-described reductive purification step is usually cooled to 70 to 200 ° C. and crystallized in a multistage crystallization tank. The number of stages of the multistage crystallization tank is usually 3 to 8 stages, preferably 4 to 6 stages in consideration of the impurity content and particle properties of the terephthalic acid to be obtained, equipment costs, and the like. Moreover, the temperature difference of each crystallization tank is 10-60 degreeC normally. For the crystallization, a solvent evaporative cooling method is usually used, and the crystallization tank is usually equipped with a stirrer, a pressure adjusting device, and a device for cooling and refluxing or extracting steam. The crystallized terephthalic acid crystal is solid-liquid separated by centrifugation or the like and then dried to obtain high purity terephthalic acid.
[0010]
In the present invention, when passing through the multistage crystallization tanks arranged in series as described above, and finally cooling and crystallization to a temperature at which most of the terephthalic acid is precipitated, one of the terephthalic acid solution or slurry is used. The part is bypassed to the subsequent crystallization tank through the bypass pipe of the crystallization tank and continuously cooled and crystallized.
In this way, by bypassing a part of the terephthalic acid solution or slurry to the subsequent crystallization tank via the crystallization tank bypass pipe, the temperature difference or pressure difference between the crystallization tanks increases, and the terephthalic acid crystals It is presumed that the crystallization speed is increased and the crystallization particles are finely divided. Further, it is presumed that the increase in the pressure difference increases the flash impact at the time of the pressure drop, causes the crystallized particles to be crushed, and further promotes the pulverization.
[0011]
The bypass is performed by supplying a terephthalic acid solution or slurry of 190 ° C. or higher, preferably 200 ° C. or higher, directly to the subsequent crystallization tank by skipping one or more stages of the subsequent crystallization tank. When the temperature of the fluid to be bypassed is lower than 190 ° C., the amount of terephthalic acid that precipitates even when cooled rapidly is small, so that a sufficient amount of fine crystals are not generated, and the resulting terephthalic acid slurry Improvement in properties is insufficient. The bypass amount may be appropriately adjusted according to the desired physical properties of terephthalic acid, but is usually 5 to 70% by weight, preferably 5 to 30% by weight, based on the total amount of the terephthalic acid solution or slurry. If the amount of bypass is less than 5% by weight, the resulting terephthalic acid may not be sufficiently improved in the properties of the slurry, while if it exceeds 70% by weight, impurities increase.
[0012]
The bypass method will be specifically described with reference to the drawings. For example, when the crystallization process has a five-stage crystallization tank, if the crystallization temperature of the first crystallization tank and the second crystallization tank is 190 ° C. or higher, for example, as shown in FIGS. A method of bypassing the terephthalic acid aqueous solution entering the crystallization tank from the bypass pipe 7 to the fourth crystallization tank or the second crystallization tank, and the slurry discharged from the first crystallization tank as shown in FIGS. A method of bypassing to the fifth crystallization tank or the third crystallization tank through the first crystallization tank bypass pipe 8, and the slurry from the second crystallization tank as shown in FIGS. The method of bypassing to the 5th crystallization tank or the 4th crystallization tank through the tank bypass piping 9 is mentioned.
[0013]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples at all unless it exceeds the summary.
Comparative Example 1
The crystallization tank shown in FIG. 7 in which five crystallization tanks of the same structure having a stirrer are arranged in series is continuously supplied with a 30% by weight aqueous solution of 290 ° C. terephthalic acid purified under reducing conditions at high temperature and high pressure. did. The temperature of each crystallization tank is 240 degreeC of 1st crystallization tank, 200 degreeC of 2nd crystallization tank, 185 degreeC of 3rd crystallization tank, 175 degreeC of 4th crystallization tank, and 150 degreeC of 5th crystallization tank.
[0014]
Crystallization was carried out step by step through 5 crystallization tanks. Table 1 shows the particle size distribution and slurry torque of the obtained terephthalic acid.
The particle size distribution is the particle size distribution on the sieve by the wet classification method, and the slurry torque is a stirring torque when mixing at a ratio of 1.1 mol of ethylene glycol to 1 mol of terephthalic acid and stirring with two blade type blades. It is. The lower the slurry torque, the better the slurry characteristics.
[0015]
Example 1
As shown in FIG. 1, the same procedure as in Comparative Example 1 was performed except that 15% of the terephthalic acid aqueous solution entering the first crystallization tank was supplied to the fourth crystallization tank through the bypass pipe 7. Table 1 shows the particle size distribution and slurry torque of the obtained terephthalic acid.
Example 2
As shown in FIG. 4, the same procedure as in Comparative Example 1 was performed except that 30% by weight of the slurry sent from the first crystallization tank to the second crystallization tank was supplied to the third crystallization tank through the bypass pipe 8. Table 1 shows the particle size distribution and slurry torque of the obtained terephthalic acid.
Comparative Example 2
As shown in FIG. 8, the same procedure as in Comparative Example 1 was performed except that 30% by weight of the slurry sent from the third crystallization tank to the fourth crystallization tank was supplied to the fifth crystallization tank through the bypass pipe 10. Table 1 shows the particle size distribution and slurry torque of the obtained terephthalic acid.
[0016]
[Table 1]
Figure 0003612724
[0017]
【The invention's effect】
According to the present invention, terephthalic acid with different crystallization conditions or pulverized terephthalic acid are separately prepared and then mixed with terephthalic acid and glycols without complicated steps such as mixing. Excellent terephthalic acid can be obtained.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of an apparatus of the present invention when a part of an aqueous terephthalic acid solution entering a first crystallization tank is bypassed.
FIG. 2 is a conceptual diagram showing an example of the apparatus of the present invention when a part of the terephthalic acid aqueous solution entering the first crystallization tank is bypassed.
FIG. 3 is a conceptual diagram showing an example of the apparatus of the present invention when a part of the terephthalic acid aqueous solution entering the second crystallization tank is bypassed.
FIG. 4 is a conceptual diagram showing an example of the apparatus of the present invention when a part of the aqueous terephthalic acid solution entering the second crystallization tank is bypassed.
FIG. 5 is a conceptual diagram showing an example of the apparatus of the present invention when a part of the terephthalic acid aqueous solution entering the third crystallization tank is bypassed.
FIG. 6 is a conceptual diagram showing an example of the apparatus of the present invention when a part of the aqueous terephthalic acid solution entering the third crystallization tank is bypassed.
7 is a conceptual diagram showing a comparative example 1. FIG.
FIG. 8 is a conceptual diagram showing a comparative example 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st crystallization tank 2 2nd crystallization tank 3 3rd crystallization tank 4 4th crystallization tank 5 5th crystallization tank 6 Piping 7-10 Bypass piping

Claims (2)

粗テレフタル酸を、水または含水溶媒を媒体として、高温高圧下、還元条件下で精製したテレフタル酸溶液またはスラリーを、直列に配列した3槽以上の晶析槽を逐次通過させて連続的に冷却晶析する方法において、温度が190℃以上のテレフタル酸溶液またはスラリーの一部をバイパスさせて後段の晶析槽に送り、冷却晶析することを特徴とする、スラリー特性に優れたテレフタル酸の製造方法。Crude terephthalic acid is continuously cooled by passing it through three or more crystallization tanks arranged in series successively with terephthalic acid solution or slurry purified under reducing conditions at high temperature and high pressure using water or water-containing solvent as a medium. In the crystallization method, a part of the terephthalic acid solution or slurry having a temperature of 190 ° C. or higher is bypassed and sent to the subsequent crystallization tank, and cooling crystallization is performed. Production method. テレフタル酸溶液またはスラリー全量の5〜70重量%をバイパスさせることを特徴とする、請求項1に記載のスラリー特性に優れたテレフタル酸の製造方法。The method for producing terephthalic acid with excellent slurry characteristics according to claim 1, wherein 5 to 70% by weight of the total amount of the terephthalic acid solution or the slurry is bypassed.
JP01185594A 1994-02-03 1994-02-03 Method for producing terephthalic acid with excellent slurry characteristics Expired - Lifetime JP3612724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01185594A JP3612724B2 (en) 1994-02-03 1994-02-03 Method for producing terephthalic acid with excellent slurry characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01185594A JP3612724B2 (en) 1994-02-03 1994-02-03 Method for producing terephthalic acid with excellent slurry characteristics

Publications (2)

Publication Number Publication Date
JPH07215914A JPH07215914A (en) 1995-08-15
JP3612724B2 true JP3612724B2 (en) 2005-01-19

Family

ID=11789348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01185594A Expired - Lifetime JP3612724B2 (en) 1994-02-03 1994-02-03 Method for producing terephthalic acid with excellent slurry characteristics

Country Status (1)

Country Link
JP (1) JP3612724B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648372B2 (en) * 1998-02-13 2005-05-18 株式会社日立製作所 Recovery method of terephthalic acid
AU2002349699A1 (en) 2001-12-03 2003-06-17 Mitsubishi Chemical Corporation Pipeline transportation method for lase-of-polymerization liquid
JP4747544B2 (en) * 2004-09-30 2011-08-17 株式会社日立プラントテクノロジー Method for purifying terephthalic acid
KR101454034B1 (en) * 2006-05-08 2014-10-27 미츠비시 가스 가가쿠 가부시키가이샤 Method of crystallization

Also Published As

Publication number Publication date
JPH07215914A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
CN1059429C (en) Method for preparing terephthalic acid
KR101159409B1 (en) Oxidation reactor for manufacturing aromatic carboxylic acid and mothod or manufacturing aromatic carboxylic acid by using the same
JPH0451539B2 (en)
JP3612724B2 (en) Method for producing terephthalic acid with excellent slurry characteristics
US10683253B2 (en) Method for producing high-purity terephthalic acid
EP1746081B1 (en) Production method of highly pure pyromellitic dianhydride
JPH08208561A (en) Production of terephthalic acid
JP4869758B2 (en) Method for producing high purity terephthalic acid
EP1062196B1 (en) Improved process for producing pure carboxylic acids
JPH08225489A (en) Production of terephthalic acid
CN101365673B (en) Method for high-purity terephthalic acid preparation
JPWO2005012218A1 (en) Method for producing terephthalic acid and terephthalic acid
JP2003521529A (en) Low temperature purification of naphthalenedicarboxylic acid
CN114787140A (en) Heat treatment of organic acids and purified 2, 5-furandicarboxylic acid
AU2001231289A1 (en) Low temperature purification of naphthalene dicarboxylic acids
TWI742248B (en) Energy and environmentally integrated method for production of aromatic dicarboxylic acids by oxidation
EP1860092A1 (en) Method for producing naphthalenedicarboxylic acid
JP3319032B2 (en) Method for producing terephthalic acid with excellent powder properties and slurry properties
CN114929679A (en) Heat treatment of water and purified 2, 5-furandicarboxylic acid
EP2085417A1 (en) Method for producing terephthalic acid-alkylene glycol mixture
RU2458038C2 (en) Method of producing crude aromatic dicarboxylic acid for hydrogenation purification
JP2008162958A (en) Method for producing highly pure terephthalic acid
JP4429393B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP2003128625A (en) Method for producing high purity naphthalenedicarboxylic acid
JP3355820B2 (en) Polyester production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

EXPY Cancellation because of completion of term