JP3612126B2 - Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability - Google Patents

Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability Download PDF

Info

Publication number
JP3612126B2
JP3612126B2 JP33141495A JP33141495A JP3612126B2 JP 3612126 B2 JP3612126 B2 JP 3612126B2 JP 33141495 A JP33141495 A JP 33141495A JP 33141495 A JP33141495 A JP 33141495A JP 3612126 B2 JP3612126 B2 JP 3612126B2
Authority
JP
Japan
Prior art keywords
rolling
hot
formability
plane anisotropy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33141495A
Other languages
Japanese (ja)
Other versions
JPH09170027A (en
Inventor
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33141495A priority Critical patent/JP3612126B2/en
Publication of JPH09170027A publication Critical patent/JPH09170027A/en
Application granted granted Critical
Publication of JP3612126B2 publication Critical patent/JP3612126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性の面内異方性の小さい軟質熱延鋼板の製造方法に関するものである。なお、ここでいう軟質熱延鋼板は、表面処理原板として利用することもできるものである。
【0002】
【従来の技術】
軟質熱延鋼板の標準的な製造工程を以下に記する。
高炉から得られる銑鉄は4%程度のCを含むが、純酸素を吹き込むことにより転炉精錬段階で、C含有量は0.05%程度まで低減される。極低炭素鋼を製造するには、その後真空脱ガス装置で脱炭処理が行なわれるが、最近では、そのC含有量を10ppm 程度まで下げることが可能になってきた。現在日本では、スラブは大半が連続鋳造により製造されている。
【0003】
連続鋳造で製造されたスラブは、3つのルートで熱間圧延へ供される。
1つはCC−DR(Continuous Casting and Direct Rolling )と称され、再加熱することなしに直接熱延される場合で、熱エネルギー的には最も効率的なルートである。この場合、鋳片の温度が大きく下がらないように設備的な対策が必要なことと、鋳片の手入れができないため、表面品質の劣化を招く可能性があるなどの欠点もある。
【0004】
2つ目のルートはスラブを冷塊にし、その後加熱炉で再加熱して熱間圧延に供するルートである。3つ目は1つ目と2つ目の中間で、スラブを完全に冷やす前に加熱炉に入れる方式で、HCR(Hot Charge)と称されている。スラブ温度がγ→α変態を起こす前に再加熱される場合をAルート、一度γ/α変態点以下になる場合をBルートと名付けられている。再加熱の温度は1150〜1250℃が一般に採用されている。
【0005】
熱間圧延は一般に、数回の粗圧延を行なった後、5〜7スタンドの連続熱間圧延機でAr変態点以上の仕上温度で行ない、板厚1〜6mm程度の熱延板を製造する。
以上の標準的な製造工程に対して、最近、IF鋼で熱間圧延を一部Ar変態点以下(フェライト域)で積極的に行なう技術が開発されている。
【0006】
その際、潤滑圧延を行なうと深絞り性が向上することが明らかになり(特開昭59−59827号公報)、圧延安定性の観点から粗圧延材を先行する粗圧延材に接続して連続的に仕上圧延する技術(特開平4−224635号公報)が開示されている。この技術は、従来注目されていなかった熱延での集合組織制御を積極的に利用したもので、深絞り性に有利な集合組織を形成するためには、熱延板を再結晶させることが必要となる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のAr変態点以上の仕上温度で製造された熱延鋼板は、一般的に、逆V型の大きな面内異方性を示すことが多い。場合によっては、面内のr値の最小値 r min は0.3近くになることもある。成形限界が r min に支配される場合も多いため、この面内異方性の低減は重要な課題である。この問題は特に薄手材で顕在化している。
【0008】
また、上記のIF鋼をAr変態点以下で仕上圧延し、その後再結晶させる技術の場合は、既存のホットストリップ設備で巻き取ると、ランアウトテーブルが長いため板温度が低下して巻取処理だけでは再結晶が十分に起こらず、優れた特性を得ることが難しい。
【0009】
これらの問題点を解決する方策として、熱延板を連続焼鈍により再結晶処理することが考えられるが、この場合は製造コストが高くなる経済的欠点がある。なお、フェライト域熱延による集合組織制御は、r値の向上には寄与するが、異方性の減少には必ずしも有効ではない。
【0010】
そこで本発明は、上記課題を有利に解決して、熱延鋼板のr値の面内異方性を極力減少させ、特に r min を向上させて、深絞り性を向上させることのできる、成形性の面内異方性の小さい軟質熱延鋼板の製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者は、熱延鋼板の面内異方性の集合組織の観点で詳細に検討したところ、表層部の集合組織が大きな面内異方性を引き起こしていることを見出した。 すなわち、熱間圧延では、ロールと圧延片の間の摩擦係数が大きいため、板厚の表面近傍では、板厚中心部では存在しないせん断歪みが大きく、それによって結晶回転が板厚中心部と顕著に異なり、異質の集合組織が形成される。この集合組織の相違は、その後変態した後も質は変わるものの存在する。
【0012】
この変態後の表層部の集合組織が、大きな面内異方性の原因になっている。薄手材で材質の面内異方性が顕在化するのは、板厚が薄くなるほど、せん断歪みの影響を受けた集合組織を持つ層が相対的に増えるためと考えられる。
【0013】
そこで本発明者は、γ域熱延での集合組織制御の研究を精力的に行ない、表層部の集合組織形成を中心部のそれに近づけることが、面内異方性を小さくする方策であることを見出した。また、r値を高くする集合組織を中心層に形成するには、成分の限定が必要なことが明らかになった。本発明は、この集合組織制御の研究の成果に基づく。
【0014】
本発明の要旨は次の通りである。
(1) 重量比で、
C :0.01%以下、
N :0.01%以下、
Al:0.005%以上、1.0%以下
を含み、
TiおよびNbのいずれか一方または双方をC/12+N/14<Ti/48+Nb/93+0.0001なる条件を満足するように含有する鋼のスラブを熱間圧延する際に、Ar3 変態点+100℃以下、Ar3 変態点以上の温度で合計圧下率が50%以上の圧延を、潤滑を施して摩擦係数が0.2以下の条件で行ない、Ar 3 変態点以上で仕上圧延後、800℃までの平均冷却速度を15℃/sec 以上とし、780℃以下の温度で巻き取ることを特徴とする成形性の面内異方性の小さい軟質熱延鋼板の製造方法。
【0015】
(2) 鋼成分として、さらに、重量比で、B:0.0002%以上、0.005%以下を含むことを特徴とする (1)記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。
(3) 粗圧延後、先行材と後行材とを接合して仕上圧延することを特徴とする (1)または(2) 記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。
(4) 粗圧延後、先行材と後行材とを接合して仕上圧延すると共に、仕上圧延機と巻取機間の張力を5MPa以上とすることを特徴とする (1)または(2) 記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。
【0016】
以下に本発明を詳細に説明する。
本発明において、CおよびN量を0.01%以下としたのは、0.01%を超える量の添加は加工性の劣化を招くためである。
C,N,Ti,Nbの添加量の間にC/12+N/14<Ti/48+Nb/93+0.0001の関係式を満足するように限定したのは、この条件を満足することにより、鋼中のC,Nを大部分TiあるいはNbの炭窒化物として析出させることができ、熱延鋼板の集合組織形成がr値に好ましい結果になるためである。
【0017】
Alの含有量の下限を0.005%としたのは、脱酸を十分に行なうためである。上限は加工性の観点で1.0%に限定した。
Bは、2次加工性の向上に寄与するので、用途によっては、その効果が明瞭に現われる0.0002%以上の添加が必要である。また、過剰の添加は加工性を悪化させるので上限を0.005%とした。
【0018】
他の成分については特に限定しないが、強度を高め、加工性を著しく悪くしない範囲であるMn≦1%、Si≦1%、P≦0.1%の添加は、本発明の趣旨を何ら損ずるものではない。
【0019】
次に、プロセス条件の限定理由について述べる。
前記したように、表層部の集合組織形成を中心部のそれに近づけることが面内異方性を小さくするので、それを実現する熱延条件が限定条件になる。その限定条件は、Ar変態点+100℃以下、Ar変態点以上の温度で、合計圧下率が50%以上の圧延を、潤滑を施して摩擦係数が0.2以下の条件で行なうことである。
【0020】
圧延時に潤滑を施すことにより、ロールと圧延板の間の摩擦係数が0.2以下になると、表面のせん断歪みを低減できる。
しかし、潤滑圧延での全圧下率が小さいと面内異方性を小さくする集合組織の形成が不十分になるため、少なくとも50%以上の圧下を1パスあるいは多パスにより加える必要がある。
【0021】
その際、潤滑圧延での圧延温度が高すぎると再結晶、粒成長が顕著に起きて集合組織の尖鋭化が阻まれるので、Ar3 +100℃を上限とした。また、Ar3 変態点未満で圧延されると、場合によっては未再結晶組織が残存したり、結晶粒の粗大化が起こり、靭性の劣化やプレス加工時に肌荒れが生じる危険性があるので、潤滑圧延温度及び熱延温度の下限はAr3 とした。
【0022】
また、仕上圧延後、800℃までの平均冷却速度を15℃/sec 以上と限定したのは、15℃/sec 未満の冷却速度で冷却すると成品板の結晶粒が大きくなることがあり、プレス加工時に肌荒れが生じる可能性があるためである。
【0023】
巻取温度の上限を780℃としたのは、結晶粒の粗大化が起こる可能性があるだけでなく、コイルの焼付きが起こる可能性も高いためである。巻取温度の下限は限定する必要はなく、常温まで冷やしてから巻き取っても構わない。
【0024】
冷却速度の上限も限定する必要はなく、本発明鋼では変態が速く進行するために、冷却速度を高めてもマルテンサイトのような硬化相は生成しないので、加工性の著しい劣化は起きない。
【0025】
潤滑圧延では、ロールバイトへの噛み込みの際、噛み込み不良やスリップなどが起こる可能性が高い。そのため、1スラブ毎に圧延する場合、ホットストリップの先端が巻き取られるまで、潤滑を施さないのが一般的な操業である。しかしこの場合、無潤滑部と潤滑部が長手方向で存在し、それらの特性が互いに異なるため、品質管理上支障をきたすことがある。
【0026】
その対策として、粗圧延後、先行の熱延板に該粗圧延材を接合して連続的に熱間圧延を行なえば、無潤滑部を無くすことができるので好ましい。これにより品質の安定性が確保できる。
【0027】
また、仕上圧延機と巻取機までの張力を5MPa以上にすると、r値の向上が見られる。但し、過剰な張力を加えると板破断が起こる可能性があるので、上限は50MPa以下にすることが好ましい。
【0028】
【発明の実施の形態】
本発明の実施の形態を実施例により説明する。
実施例には表1に示した成分組成を有する鋼を用いた。鋼種A〜Gは本発明鋼、H、Iは比較鋼である。熱延条件と成品板のr値=(r+r90+2r45)/4、Δr値=(r+r90−2r45)/2、rmin を表2に示す。Δr値は、E1、YP、TSなどの機械的性質の異方性とも対応するので、異方性の代表的指標として用いる。
【0029】
ここで、rは、圧延方向に平行に切り出した試験片でのr値、r90は、圧延方向に垂直に切り出した試験片でのr値、r45は、圧延方向と45゜の方向に切り出した試験片でのr値である。rmin は、r、r90、r45のうちの最小値である。
その他の製造条件は、スラブ加熱温度:1200℃、板厚:1.4mm、巻取温度:600℃前後であった。
【0030】
【表1】

Figure 0003612126
【0031】
【表2】
Figure 0003612126
【0032】
本発明の範囲を満足した実験番号1、2、3、6、7、9、10、12、14、16、18、20の材料は、Δr値の絶対値が低く、r値、rmin が比較的高い。一方、γ域熱延時に摩擦係数が0.2以下でなかった実験番号5、13、15、17、19、21の材料は、潤滑圧延により摩擦係数をほぼ半減した材料に比べΔr値の絶対値が大きく、r値、rmin 値も小さい。Ar変態点+100℃以下、Ar変態点以上の温度での摩擦係数が0.2以下の圧延の全圧下率が40%と低かった実験番号4の材料のr値は、無潤滑圧延材に比べて顕著な向上は見られなかった。
【0033】
また、仕上温度がAr変態点未満であった実験番号8の材料は、r値が低い。仕上圧延後、800℃までの平均冷却速度が10℃/sec と遅かった実験番号11の材料のr値も、比較的低い。本発明鋼の範囲外の鋼を用いた実験番号22、23の材料は、低いr値を示す。
【0034】
本実施例で実験番号1、6、7、9、12、13、16、17、22は、熱延する際に、粗圧延後、先行の粗圧延材に該粗圧延材を接合して、連続的に熱延したものである。その際の仕上圧延機と巻取機間の張力は、通常20MPa前後であるが、実験番号7では故意に張力を3MPaにして圧延した。他の条件はほぼ同じ実験番号1の材料に比べ、実験番号7の材料は、r値が若干劣る。
【0035】
【発明の効果】
本発明により、熱間圧延時の圧延荷重ならびにトルクを潤滑圧延により低減できるだけでなく、材質面においても異方性を低減することができ、工業的に価値の高い発明である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a soft hot-rolled steel sheet having a small formability in-plane anisotropy. In addition, the soft hot-rolled steel plate here can also be utilized as a surface treatment original plate.
[0002]
[Prior art]
The standard manufacturing process for soft hot-rolled steel sheets is described below.
The pig iron obtained from the blast furnace contains about 4% of C. By blowing pure oxygen, the C content is reduced to about 0.05% at the converter refining stage. In order to manufacture an ultra-low carbon steel, decarburization processing is subsequently performed using a vacuum degassing apparatus. Recently, it has become possible to reduce the C content to about 10 ppm. Currently in Japan, most slabs are manufactured by continuous casting.
[0003]
A slab produced by continuous casting is subjected to hot rolling by three routes.
One is called CC-DR (Continuous Casting and Direct Rolling), which is the most efficient route in terms of heat energy when directly hot rolled without reheating. In this case, there are also disadvantages such as the need for equipment measures so that the temperature of the slab does not drop greatly, and the slab cannot be maintained, and the surface quality may be deteriorated.
[0004]
The second route is a route in which the slab is made into a cold lump and then reheated in a heating furnace for hot rolling. The third is between the first and the second, and is called HCR (Hot Charge) in which the slab is placed in a heating furnace before it is completely cooled. The case where the slab temperature is reheated before the γ → α transformation is named A route, and the case where the slab temperature is once below the γ / α transformation point is named the B route. The reheating temperature is generally 1150 to 1250 ° C.
[0005]
In general, hot rolling is performed several times of rough rolling, and then is performed at a finishing temperature not lower than the Ar 3 transformation point by a continuous hot rolling mill of 5 to 7 stands to produce a hot rolled sheet having a thickness of about 1 to 6 mm. To do.
Recently, a technique has been developed in which the hot rolling of IF steel is partly performed below the Ar 3 transformation point (ferrite region) for the above standard manufacturing process.
[0006]
At that time, it is clear that deep drawing performance is improved when lubricated rolling is performed (Japanese Patent Application Laid-Open No. 59-59827). From the viewpoint of rolling stability, the rough rolled material is continuously connected to the preceding rough rolled material. A technique (JP-A-4-224635) for finish rolling is disclosed. This technology actively utilizes texture control in hot rolling, which has not been attracting attention in the past, and in order to form a texture that is advantageous for deep drawability, it is possible to recrystallize hot rolled sheets. Necessary.
[0007]
[Problems to be solved by the invention]
However, in general, a hot-rolled steel sheet produced at a finishing temperature equal to or higher than the above-mentioned Ar 3 transformation point often exhibits a large reverse V-type in-plane anisotropy. In some cases, the minimum value r min of the in-plane r value may be close to 0.3. Since the forming limit is often governed by r min, this reduction of in-plane anisotropy is an important issue. This problem is particularly apparent with thin materials.
[0008]
In addition, in the case of the technology in which the above IF steel is finish-rolled below the Ar 3 transformation point and then recrystallized, if the existing hot strip equipment is used for winding, the plate temperature decreases due to the long runout table, and the winding process Recrystallization does not occur sufficiently, and it is difficult to obtain excellent characteristics.
[0009]
As a measure for solving these problems, it is conceivable to recrystallize the hot-rolled sheet by continuous annealing. In this case, however, there is an economic disadvantage that the manufacturing cost increases. The texture control by hot rolling in the ferrite region contributes to the improvement of the r value, but is not necessarily effective in reducing the anisotropy.
[0010]
Therefore, the present invention advantageously solves the above problems, reduces the in-plane anisotropy of the r value of the hot-rolled steel sheet as much as possible, particularly improves r min, and improves deep drawability. It aims at providing the manufacturing method of a soft hot-rolled steel plate with small in-plane anisotropy of a property.
[0011]
[Means for Solving the Problems]
The inventor has studied in detail from the viewpoint of the in-plane anisotropy texture of the hot-rolled steel sheet, and found that the texture of the surface layer portion causes a large in-plane anisotropy. That is, in hot rolling, since the coefficient of friction between the roll and the rolled piece is large, shear strain that does not exist in the center of the plate thickness is large near the surface of the plate thickness. Different textures are formed. This difference in texture exists although the quality changes after transformation.
[0012]
The texture of the surface layer portion after this transformation causes a large in-plane anisotropy. The reason why the in-plane anisotropy of the material becomes apparent in the thin material is considered to be that the layer having the texture affected by the shear strain relatively increases as the plate thickness decreases.
[0013]
Therefore, the present inventor has energetically studied texture control in γ region hot rolling, and approaching the formation of the texture of the surface layer portion closer to that of the central portion is a measure to reduce the in-plane anisotropy. I found. Further, it has been clarified that the components need to be limited in order to form a texture having a high r value in the central layer. The present invention is based on the results of this texture control research.
[0014]
The gist of the present invention is as follows.
(1) By weight ratio,
C: 0.01% or less,
N: 0.01% or less,
Al: 0.005% or more, including 1.0% or less,
When hot rolling a steel slab containing either or both of Ti and Nb so as to satisfy the condition of C / 12 + N / 14 <Ti / 48 + Nb / 93 + 0.0001, Ar 3 transformation point + 100 ° C. or less , Rolling at a temperature equal to or higher than the Ar 3 transformation point and a total rolling reduction of 50% or higher under lubrication and a coefficient of friction of 0.2 or lower; after finish rolling above the Ar 3 transformation point , up to 800 ° C. A method for producing a soft hot-rolled steel sheet having a small formability in-plane anisotropy, wherein the average cooling rate is 15 ° C./sec or more and winding is performed at a temperature of 780 ° C. or less.
[0015]
(2) The steel component further includes, by weight ratio, B: 0.0002% or more and 0.005% or less. Soft heat with small in-plane anisotropy of formability according to (1) A method for producing rolled steel sheets.
(3) After rough rolling, the preceding material and the succeeding material are joined and finish-rolled. (1) or (2) The soft hot-rolled steel sheet having small formability in-plane anisotropy according to (1) or (2) Production method.
(4) After rough rolling, the preceding material and the following material are joined and finish-rolled, and the tension between the finishing mill and the winder is 5 MPa or more. (1) or (2) The manufacturing method of the soft hot-rolled steel sheet with small in-plane anisotropy of the formability of description.
[0016]
The present invention is described in detail below.
In the present invention, the amount of C and N is set to 0.01% or less because addition of an amount exceeding 0.01% causes deterioration of workability.
The reason that the relational expression of C / 12 + N / 14 <Ti / 48 + Nb / 93 + 0.0001 is satisfied among the amounts of addition of C, N, Ti, and Nb is that by satisfying this condition, This is because C and N can be precipitated mostly as carbonitrides of Ti or Nb, and the formation of a texture of the hot-rolled steel sheet is favorable for the r value.
[0017]
The reason why the lower limit of the Al content is set to 0.005% is to sufficiently perform deoxidation. The upper limit was limited to 1.0% from the viewpoint of workability.
Since B contributes to the improvement of secondary workability, depending on the application, it is necessary to add 0.0002% or more where the effect clearly appears. Moreover, since excessive addition deteriorates workability, the upper limit was made 0.005%.
[0018]
The other components are not particularly limited, but the addition of Mn ≦ 1%, Si ≦ 1%, and P ≦ 0.1%, which are in a range that increases the strength and does not significantly deteriorate the workability, impairs the spirit of the present invention. It is not a thing.
[0019]
Next, the reason for limiting the process conditions will be described.
As described above, bringing the texture formation of the surface layer portion closer to that of the central portion reduces the in-plane anisotropy, so the hot rolling condition for realizing it becomes a limiting condition. The limiting conditions are as follows: rolling at a temperature of Ar 3 transformation point + 100 ° C. or lower and a temperature of Ar 3 transformation point or higher and a total rolling reduction of 50% or higher under lubrication and a friction coefficient of 0.2 or less. is there.
[0020]
By applying lubrication during rolling, when the friction coefficient between the roll and the rolled sheet becomes 0.2 or less, the shear strain on the surface can be reduced.
However, since the formation of a texture that reduces the in-plane anisotropy becomes insufficient when the total rolling reduction in lubrication rolling is small, it is necessary to apply at least 50% or more rolling by one pass or multiple passes.
[0021]
At that time, if the rolling temperature in the lubricating rolling is too high, recrystallization and grain growth occur remarkably and the sharpening of the texture is prevented, so Ar 3 + 100 ° C. was set as the upper limit. Further, when it is rolled by Ar less than 3 transformation point, or remain non-recrystallized structure is in some cases, occur coarsening of crystal grains, since there is a risk of roughening occurs when toughness degradation and pressing, lubricant The lower limit of the rolling temperature and the hot rolling temperature was Ar 3 .
[0022]
In addition, after finishing rolling, the average cooling rate up to 800 ° C. is limited to 15 ° C./sec or more. When cooling at a cooling rate of less than 15 ° C./sec. This is because sometimes rough skin may occur.
[0023]
The upper limit of the coiling temperature is set to 780 ° C. because not only the crystal grains may be coarsened but also the possibility of coil seizure is high. There is no need to limit the lower limit of the winding temperature, and winding may be performed after cooling to room temperature.
[0024]
There is no need to limit the upper limit of the cooling rate, and in the steel of the present invention, the transformation proceeds fast, so that even if the cooling rate is increased, a hardened phase such as martensite is not generated, so that the workability does not deteriorate significantly.
[0025]
In lubricated rolling, there is a high possibility that a biting failure or a slip will occur when biting into a roll bite. Therefore, when rolling for each slab, it is a common operation not to lubricate until the tip of the hot strip is wound up. However, in this case, the non-lubricated portion and the lubricated portion are present in the longitudinal direction and their characteristics are different from each other, which may hinder quality control.
[0026]
As a countermeasure, after rough rolling, it is preferable to join the rough rolled material to the preceding hot-rolled sheet and continuously perform hot rolling because the non-lubricated portion can be eliminated. This ensures quality stability.
[0027]
Further, when the tension between the finishing mill and the winder is 5 MPa or more, the r value is improved. However, if excessive tension is applied, there is a possibility that plate breakage may occur, so the upper limit is preferably 50 MPa or less.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to examples.
In the examples, steel having the composition shown in Table 1 was used. Steel types A to G are steels of the present invention, and H and I are comparative steels. Table 2 shows the hot rolling conditions and the r value of the product plate = (r 0 + r 90 + 2r 45 ) / 4, Δr value = (r 0 + r 90 −2r 45 ) / 2, and rmin. Since the Δr value also corresponds to the anisotropy of mechanical properties such as E1, YP, and TS, it is used as a representative index of anisotropy.
[0029]
Here, r 0 is an r value in a test piece cut out parallel to the rolling direction, r 90 is an r value in a test piece cut out perpendicular to the rolling direction, and r 45 is a direction 45 ° to the rolling direction. It is an r value in the test piece cut out. rmin is the minimum value of r 0 , r 90 , and r 45 .
Other manufacturing conditions were slab heating temperature: 1200 ° C., plate thickness: 1.4 mm, and winding temperature: around 600 ° C.
[0030]
[Table 1]
Figure 0003612126
[0031]
[Table 2]
Figure 0003612126
[0032]
The materials of Experiment Nos. 1, 2, 3, 6, 7, 9, 10, 12, 14, 16, 18, 20 satisfying the scope of the present invention have a low absolute value of Δr value, and the r value and rmin are compared. High. On the other hand, the materials of Experiment Nos. 5, 13, 15, 17, 19, and 21 in which the friction coefficient was not 0.2 or less at the time of hot rolling in the γ region had an absolute value of Δr as compared with the material whose friction coefficient was almost halved by lubrication rolling. The value is large, and the r value and the rmin value are also small. The r value of the material of Experiment No. 4 in which the total rolling reduction of the rolling with a friction coefficient of 0.2 or less at a temperature of Ar 3 transformation point + 100 ° C. or lower and a temperature of Ar 3 transformation point or higher is as low as 40% is a non-lubricated rolled material There was no significant improvement compared to.
[0033]
Further, the material of Experiment No. 8 whose finishing temperature was lower than the Ar 3 transformation point has a low r value. The r value of the material of Experiment No. 11 whose average cooling rate up to 800 ° C. was as low as 10 ° C./sec after finish rolling was also relatively low. The materials of Experiment Nos. 22 and 23 using steel outside the range of the steel of the present invention show a low r value.
[0034]
In this example, the experiment numbers 1, 6, 7, 9, 12, 13, 16, 17, and 22 are obtained by joining the rough rolled material to the preceding rough rolled material after rough rolling when hot rolling, Continuously hot rolled. At that time, the tension between the finishing mill and the winder is usually around 20 MPa, but in Experiment No. 7, the tension was intentionally set at 3 MPa. In other conditions, the material of experiment number 7 is slightly inferior in r value compared to the material of experiment number 1 which is almost the same.
[0035]
【The invention's effect】
According to the present invention, not only the rolling load and torque at the time of hot rolling can be reduced by lubrication rolling, but also anisotropy can be reduced in terms of material, which is an industrially valuable invention.

Claims (4)

重量比で、
C :0.01%以下、
N :0.01%以下、
Al:0.005%以上、1.0%以下
を含み、
TiおよびNbのいずれか一方または双方をC/12+N/14<Ti/48+Nb/93+0.0001なる条件を満足するように含有する鋼のスラブを熱間圧延する際に、Ar3 変態点+100℃以下、Ar3 変態点以上の温度で合計圧下率が50%以上の圧延を、潤滑を施して摩擦係数が0.2以下の条件で行ない、Ar 3 変態点以上で仕上圧延後、800℃までの平均冷却速度を15℃/sec 以上とし、780℃以下の温度で巻き取ることを特徴とする成形性の面内異方性の小さい軟質熱延鋼板の製造方法。
By weight,
C: 0.01% or less,
N: 0.01% or less,
Al: 0.005% or more, including 1.0% or less,
When hot rolling a steel slab containing either or both of Ti and Nb so as to satisfy the condition of C / 12 + N / 14 <Ti / 48 + Nb / 93 + 0.0001, Ar 3 transformation point + 100 ° C. or less , Rolling at a temperature equal to or higher than the Ar 3 transformation point and a total rolling reduction of 50% or higher under lubrication and a coefficient of friction of 0.2 or lower; after finish rolling above the Ar 3 transformation point , up to 800 ° C. A method for producing a soft hot-rolled steel sheet having a small formability in-plane anisotropy, wherein the average cooling rate is 15 ° C./sec or more and winding is performed at a temperature of 780 ° C. or less.
鋼成分として、さらに、重量比で、B:0.0002%以上、0.005%以下を含むことを特徴とする請求項1記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。2. The soft hot-rolled steel sheet having small formability in-plane anisotropy of formability according to claim 1, further comprising, as a steel component, B: 0.0002% or more and 0.005% or less by weight. Production method. 粗圧延後、先行材と後行材とを接合して仕上圧延することを特徴とする請求項1または2記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。3. The method for producing a soft hot-rolled steel sheet with small formability in-plane anisotropy according to claim 1 or 2, characterized in that after rough rolling, the preceding material and the following material are joined and finish-rolled. 粗圧延後、先行材と後行材とを接合して仕上圧延すると共に、仕上圧延機と巻取機間の張力を5MPa以上とすることを特徴とする請求項1または2記載の成形性の面内異方性の小さい軟質熱延鋼板の製造方法。3. The formability of claim 1 or 2, wherein after rough rolling, the preceding material and the succeeding material are joined and finish-rolled, and the tension between the finishing mill and the winder is 5 MPa or more. A method for producing a soft hot-rolled steel sheet having small in-plane anisotropy.
JP33141495A 1995-12-20 1995-12-20 Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability Expired - Fee Related JP3612126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33141495A JP3612126B2 (en) 1995-12-20 1995-12-20 Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33141495A JP3612126B2 (en) 1995-12-20 1995-12-20 Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability

Publications (2)

Publication Number Publication Date
JPH09170027A JPH09170027A (en) 1997-06-30
JP3612126B2 true JP3612126B2 (en) 2005-01-19

Family

ID=18243419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33141495A Expired - Fee Related JP3612126B2 (en) 1995-12-20 1995-12-20 Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability

Country Status (1)

Country Link
JP (1) JP3612126B2 (en)

Also Published As

Publication number Publication date
JPH09170027A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JPS613844A (en) Manufacture of hot rolled steel sheet superior in formability
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JP3612126B2 (en) Method for producing soft hot-rolled steel sheet with small in-plane anisotropy of formability
JP3383144B2 (en) Method for producing hot-rolled steel sheet for processing with low in-plane anisotropy of formability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3544771B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JPH10183255A (en) Production of hot rolled steel sheet small in plane anisotropy of r value
JP3046663B2 (en) Method for producing hot-rolled steel sheet with excellent deep drawability using thin slab
JP3544770B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JP2840459B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JPH10330844A (en) Manufacture of cold rolled steel sheet excellent in formability
JPH10330882A (en) Cold rolled steel sheet excellent in formability, and its production
JP3046366B2 (en) Manufacturing method of steel sheet for deep drawing
KR100293218B1 (en) Method for manufacturing hot rolled steel sheet having superior deep drawability
JPH02104620A (en) Production of non-oriented magnetic steel sheet having low iron loss
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
JP3860662B2 (en) Manufacturing method of steel sheet with excellent ridging resistance and deep drawability
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JP3126851B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JP3843478B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability
JP3793254B2 (en) Method for producing cold-rolled steel sheet with excellent formability
JPH07103424B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees