JP3611385B2 - Resin composition for paint - Google Patents

Resin composition for paint Download PDF

Info

Publication number
JP3611385B2
JP3611385B2 JP34047195A JP34047195A JP3611385B2 JP 3611385 B2 JP3611385 B2 JP 3611385B2 JP 34047195 A JP34047195 A JP 34047195A JP 34047195 A JP34047195 A JP 34047195A JP 3611385 B2 JP3611385 B2 JP 3611385B2
Authority
JP
Japan
Prior art keywords
component
epoxy
parts
epoxy resin
active hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34047195A
Other languages
Japanese (ja)
Other versions
JPH09176565A (en
Inventor
祐一 伊東
忠司 斉藤
利行 田中
誠之 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP34047195A priority Critical patent/JP3611385B2/en
Publication of JPH09176565A publication Critical patent/JPH09176565A/en
Application granted granted Critical
Publication of JP3611385B2 publication Critical patent/JP3611385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エポキシ樹脂を用いた塗料用原料樹脂を改質するに当たり、変性剤となる多官能アルカノールアミンと第二級アルキルアミンをエポキシ樹脂中の分子鎖の好適な部分に導入することにより、耐水性や密着性を改良する一液性常温乾燥型塗料用樹脂組成物に関するものであり、該樹脂組成物は建材用プライマー、自動車部品等に有用である。
【0002】
【従来の技術】
従来、フェノール性水酸基を有する化合物とエピクロロヒドリンとの反応で得られるエポキシ樹脂は、反応性に富むエポキシ基を有するためアミン、ポリアミド、二塩基酸等により架橋され高分子化し、塗料用原料樹脂等に広く用いられている。
ところで、一般的にポリマーの性質はその分子量、分子量分布、立体構造、側鎖や末端の官能基の種類等に大きく影響される。例えば、小林英一他 ,第40回高分子学会年次大会要旨集 ,講演番号 III−4−19(1991) に開示されているように、ベンゼンジチオールとジビニルベンゼンからなり、ほぼ同じ連鎖分布を有するポリマーにおいて、その分子末端が−SH又は−CH=CHであるものと、チオフェノールとスチレンで末端封鎖されたものとでは、それらの熱的性質はかなり異なる。
【0003】
エポキシ樹脂においても、様々な官能基を導入して性能の改質を行なってきた。その官能基を導入する手段として、多官能アルカノールアミンや第二級アルキルアミンがしばしば用いられている。
具体的には、金属素材表面の水酸基や水分子と水素結合をなし、塗膜の密着性を向上させるために、ビスフェノールA型エポキシ樹脂にはない第一級水酸基をアルカノールアミンにより導入したり、また、その耐水性を向上させるために、アルキルアミンによりアルキル基を導入したり、更には密着性と耐水性を合わせ持つようにアルカノールアミンとアルキルアミンを併用することも試みられている。
しかし、いずれの場合でも得られる塗膜では、密着性は向上するが耐水性は不充分であったり、また耐水性試験後の密着性は劣ったりなど、この密着性と耐水性のバランスを充分に取るのは非常に困難であり、どちらかを犠牲にせざるをえなかった。
【0004】
【発明が解決しようとする課題】
本発明は、得られる塗膜において、とりわけ密着性と耐水性が両立する一液性常温乾燥型塗料用エポキシ樹脂を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記の課題を解決するために鋭意検討した結果、多官能アルカノールアミン(B)、第二級アルキルアミン(C)、更には、多官能アルカノールアミン(B)とエポキシ基の反応によって生成する第二級アミンのエポキシ基に対する反応性に着目した。
すなわち、エポキシ樹脂を改質するに当たり、従来のようにエポキシ樹脂に多官能アルカノールアミン(B)と第二級アルキルアミン(C)を同時に反応させると、多官能アルカノールアミン(B)がエポキシ基と反応し、続いて、多官能アルカノールアミン(B)と第二級アルキルアミン(C)がエポキシ基と反応して生成した第二級アルキルアミンが、その系に残存しているエポキシ基と反応する。そして、多官能アルカノールアミン(B)と第二級アルキルアミン(C)がエポキシ基と反応して生成した第二級アルカノールアミン末端で重合が終了するエポキシ樹脂変性物となる。
このため、このエポキシ樹脂変性物では、ポリマーの性質に大きく影響する分子末端基は、第二級アルキルアミン(C)由来の骨格、又は、エポキシ基と多官能アルカノールアミン(B)が反応して生成した第二級アルカノールアミンであり、この第二級アルカノールアミンはエポキシ樹脂の耐水性を損なう。
【0006】
そこで、エポキシ樹脂(A)を多官能アルカノールアミン(B)と第二級アルキルアミン(C)により改質する際、まず、エポキシ樹脂(A)を多官能アルカノールアミン(B)だけで変性し、次に、その系に残存しているエポキシ基を第二級アルキルアミン(C)で変性することにより、得られるエポキシ樹脂変性物では、その分子末端が完全に第二級アルキルアミン(C)由来の置換基だけになるという事実を見出し、本発明に至った。
【0007】
すなわち、本発明は、エポキシ当量 300〜3000g/eq のエポキシ樹脂(A)、多官能アルカノールアミン(B)及び第二級アルキルアミン(C)からなる樹脂組成物において、まず、成分A中のエポキシ基に対し成分B中の活性水素が 0.2〜0.9 当量比の範囲で成分Aと成分Bとを反応させ(一段目反応)、次に、成分A中のエポキシ基に対し、成分C中の活性水素が 0.1〜0.8 当量比の範囲、かつ成分Bと成分C中の活性水素の合計が 1.0当量比になるように成分Cを加えて反応させる(二段目反応)ことを特徴とする一液性常温乾燥型塗料用樹脂組成物であり、また、該エポキシ樹脂(A)がビスフェノールA−ジグリジジルエーテル又はビスフェノールF−ジグリシジルエーテルであることを特徴とするものである。
【0008】
【発明の実施の形態】
本発明において、エポキシ樹脂(A)とは、ビスフェノールA−ジグリシジルエーテル、ビスフェノールF−ジグリシジルエーテル、ノボラックグリシジルエーテル、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル、テトラグリシジルアミノジフェニルメタン、3,4−エポキシ−6−メチルシクロヘキシルメチルカルボキシレート、トリグリシジルイソシアヌレート、3,4−エポキシシクロヘキシルメチルカルボキシレート、ポリプロピレンジグリシジルエーテル、ポリブタジエン又はポリスルフィドの両末端ジグリシジルエーテル修飾物等であり、これらの中、好ましくは、ビスフェノールA−ジグリシジルエーテルやビスフェノールF−ジグリシジルエーテルである。これらは、一種類又は二種類以上用いてもよい。
また、そのエポキシ当量は、好ましくは 300〜3000g/eq の範囲である。このエポキシ当量が 300g/eq 未満では、得られる塗膜の耐食性が悪くなり、また、3000g/eq を越えると、分子量増加に伴ない、粘度が上昇して取扱いにくくなり、いずれも好ましくない。
【0009】
本発明において、多官能アルカノールアミン(B)とは、活性水素を1分子中に2個以上有するアミンである。具体的には、3−アミノプロパノール、イソプロパノールアミン、モノプロパノールアミン、モノブタノールアミン、モノエタノールアミン等が挙げられる。また、本発明における第二級アルキルアミン(C)とは、活性水素を1分子中に1個有し、その他はアルキル基で置換されたアミンである。具体的には、ジエチルアミン、ジブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、N−エチル−1,2−ジメチルプロピルアミン、N−メチルヘキシルアミン等が挙げられる。
【0010】
本発明における樹脂組成物を製造する際に、上記のエポキシ樹脂(A)と多官能アルカノールアミン(B)、更には第二級アルキルアミン(C)を特定な当量比で配合し、2段階で反応させることが必須である。すなわち、まず、エポキシ樹脂(A)中のエポキシ基と多官能アルカノールアミン(B)中の活性水素をエポキシ基が残るように反応させ(一段目反応)、次に、この残存するエポキシ基に第二級アルキルアミン(C)中の活性水素を反応させる(二段目反応)。
その際、各成分の配合量は、一段目反応では、エポキシ樹脂(A)中のエポキシ基 1.0当量に対し多官能アルカノールアミン(B)中の活性水素が 0.2〜0.9 当量の範囲、二段目反応では、エポキシ樹脂(A)中のエポキシ基 1.0当量に対し第二級アルキルアミン(C)中の活性水素が 0.1〜0.8 当量の範囲、更にこれらの2段階反応において、エポキシ樹脂(A)中のエポキシ基に対し、多官能アルカノールアミン(B)と第二級アルキルアミン(C)中の活性水素の合計、
すなわち、{(成分Bと成分C中の活性水素の合計)/(成分A中のエポキシ基)}(当量比)が 1.0である。
【0011】
しかし、一段目反応において、成分A中のエポキシ基に対し成分B中の活性水素が 0.2当量比未満では、組成物の最終分子量が低くなり、得られる塗膜の密着性が劣り、また、これが 0.9当量比を越えると、密着性は向上するが最終分子量が上昇し塗料の取扱いが悪くなり、成分Cの添加量が減り耐水性は向上しない。また、二段目反応において、成分A中のエポキシ基に対し成分C中の活性水素が 0.1当量比未満では、得られる塗膜の密着性は向上するが耐水性は向上せず、これが 0.8当量比を越えると、密着性が劣る。更に、これらの2段階反応において、成分A中のエポキシ基に対し、成分Bと成分C中の活性水素の合計が 1.0当量比未満では、反応性置換基であるエポキシ基が残存し、組成物の経時安定性に劣り、また、これが 1.0当量比を越えると、低分子物である残存アミンが存在し、塗膜の物性を悪化させる。
【0012】
本発明において、上記のような2段階反応により樹脂組成物(樹脂溶液)を製造する際に、一段目では、エポキシ樹脂(A)を溶剤に溶解し、その溶液中に多官能アルカノールアミン(B)を加え、窒素雰囲気下、70〜150℃にて4〜10時間付加反応して高分子化させ、溶剤で粘度5〜70 poise程度に希釈し、樹脂溶液を得る。二段目では、これに第二級アルキルアミン(C)を加え、一段目と同様な条件にて反応させ、溶剤で希釈し、目的とする樹脂溶液を得る。この際、溶剤としては、トルエン、キシレン、シクロヘキサノン、メチルエチルケトン、イソプロピルアルコール、n−ブチルアルコール、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
【0013】
本発明において、一液性常温乾燥型塗料を製造するには、公知の方法による、すなわち、上記の樹脂溶液に防錆顔料、体質顔料、レベリング剤及び各種の添加剤を加え、ディスパー、サンドミル、ボールミル等を用いて混練・分散すればよい。
また、塗装方法としては、刷毛塗り、スプレー塗装、各種のコーター塗装等の一般的な方法により、上記のように得られる塗料を、素材に直接又は塗装前処理を施した後に塗装する。適用できる素材としては、各種の金属素材、例えば、冷延鋼板、亜鉛メッキ鋼板、合金化亜鉛メッキ鋼板、クロムメッキ鋼板、アルミニウムメッキ鋼板、スズメッキ鋼板、鉛メッキ鋼板、ニッケルメッキ鋼板、アルミニウム板、チタン板、ステンレス板;プラスチックス素材;無機質素材等が挙げられる。
【0014】
【実施例】
以下、実施例及び比較例により本発明を詳細に説明する。以下において、「部」と「%」は重量基準である。また、以下、使用する多官能アルカノールアミン(B)、第二級アルキルアミン(C)、及び一部の溶剤は、次の略号で示す。
3APOL: 3−アミノプロパノール、MEA:モノエタノールアミン;DBA:ジブチルアミン;IPA:イソプロピルアルコール、MEK:メチルエチルケトン:PMA:プロピレングリコールモノメチルエーテルアセテート。
更に、表1〜表4中、エポキシ樹脂(A)の種類は次の略号で示す。
BP−A :ビスフェノールA−ジグリシジルエーテル系エポキシ樹脂
BP−F :ビスフェノールF−ジグリシジルエーテル系エポキシ樹脂
【0015】
実施例1
ガラス製四つ口フラスコ(撹拌機、温度計、外部ヒーター、冷却管、凝縮器及び窒素導入管付き)にビスフェノールA−ジグリシジルエーテル系エポキシ樹脂(エポキシ当量1000g/eq )1000部を仕込み、トルエン 600部及びシクロヘキサノン 400部を加え溶解させる。次に、トルエンにて還流脱水後、窒素雰囲気下、3APOL(活性水素当量37.5g/eq )23部を加え 100℃にて反応させ(一段目反応)、4時間後と5時間後にそれぞれ反応溶液をサンプリングし、その粘度が一定になったことを確認した後、60℃まで冷却した。この溶液にDBA(活性水素当量 129g/eq )52部を加え、再び 100℃にて反応させ(二段目反応)、4時間後と5時間後にそれぞれ反応溶液をサンプリングし、その粘度が一定になったことを確認した後、室温まで冷却し、IPA 141部及びMEK 282部を加えて希釈し、固形分 45%及び粘度 23 poise の樹脂溶液を得た。
この樹脂溶液中、第二級アミンと第三級アミンの存在の有無をフーリエ変換式赤外線分光機にて確認し、それらの結果を表5に示す。この際、波数1200 cm −1での吸収ピークは第二級アミンの存在、またそのピークが低位の波数にシフトしていると第三級アミンの存在を示す。
【0016】
更に、この樹脂溶液 200部に、顔料として酸化チタン(R920 :商品名、デュポン社製)80部とリンモリブデン酸アルミニウム(菊池色素工業社製)10部、及び溶剤(トルエン:シクロヘキサノン:MEK:IPA=50:10:20:20重量比)60部を配合し、サンドミルを用いて混練・分散し、塗料を得た。この際、顔料の合計と樹脂溶液中の固形分との割合は 1.0/1.0重量比、酸化チタンとリンモリブデン酸アルミニウムとの割合は 80/10重量比であり、また、溶剤の量は、得られる塗料の粘度が 90〜110秒(フォードカップ#4)になるように調整される。
【0017】
この塗料をリン酸亜鉛処理鋼板(150mm ×70mm×0.8mm 厚さ)にエアースプレーにて塗装し、その膜厚さを 20μm に調整する。塗装後、この鋼板を 20℃にて7日間放置し、乾燥させ、試験板に供する。この試験板の塗膜物性を下記の方法により評価し、それらの結果を表6に示す。
・密着性: JIS−K−5400(1990.8.5.2)の碁盤目試験に準じて、碁盤目 100からの残り数を求めた。
・耐水性: 試験板の裏面と側面をポリエステルテープで覆い、これを 40℃の純水中に5日間浸漬する。その後、塗膜面のブリスター発生状態を目視観察し、耐水性を5段階で評価する。
◎・・異常なし、○・・1〜5個、△・・5〜10個、×・・10〜20個
××・・全面ブリスター
・水浸漬後の密着性: 耐水性を評価した試験板を 30分以内に、JIS−K−5400
(1990.8.5.2)の碁盤目試験に準じて、碁盤目 100からの残り数を求めた。
【0018】
実施例2〜7及び比較例3〜8
実施例1において、表1〜表4のように各成分の種類と量を変える以外、全く同様に操作し、樹脂溶液、塗料、更には試験板を得た。
この樹脂溶液中、第二級アミンと第三級アミンの存在の有無をフーリエ変換式赤外線分光機にて確認し、それらの結果を表5に示す。
この試験板の塗膜物性を実施例1の後半に記載の方法により評価し、それらの結果を表6〜表8に示す。
【0019】
【表1】

Figure 0003611385
【0020】
【表2】
Figure 0003611385
【0021】
比較例1
実施例1の前半において、3APOLとDBAを同時に一括して加えて1段階で反応させる以外、同様な操作を行なった。
すなわち、実施例1に用いたものと同じフラスコに、ビスフェノールA−ジグリシジルエーテル系エポキシ樹脂(エポキシ当量1000g/eq )1000部を仕込み、トルエン 600部及びシクロヘキサノン 400部を加え溶解させる。次に、トルエンにて還流脱水後、窒素雰囲気下、3APOL 30部とDBA 52部を加え 100℃にて反応させ、4時間後と5時間後にそれぞれ反応溶液をサンプリングし、その粘度が一定になったことを確認した後、室温まで冷却し、IPA 104部及びMEK 210部を加えて希釈し、固形分 45%及び粘度 22 poise の樹脂溶液を得た。この樹脂溶液中、第二級アミンと第三級アミンの存在の有無をフーリエ変換式赤外線分光機にて確認し、それらの結果を表5に示す。
更に、実施例1の後半において、この樹脂溶液を用いる以外は全く同様に操作し、塗料、更には試験板を得た。この試験板の塗膜物性を実施例1の後半に記載の方法により評価し、それらの結果を表7に示す。
【0022】
比較例2
実施例1の前半において、3APOLとDBAを逆の順序で加えて2段階で反応させる以外、同様な操作を行なった。
すなわち、実施例1に用いたものと同じフラスコに、ビスフェノールA−ジグリシジルエーテル系エポキシ樹脂(エポキシ当量 1000 g/eq )1000部を仕込み、トルエン 600部及びシクロヘキサノン 400部を加え溶解させる。次に、トルエンにて還流脱水後、窒素雰囲気下、DBA 52部を加え 100℃で反応させ(一段目反応)、4時間後と5時間後にそれぞれ反応溶液をサンプリングし、その粘度が一定になったことを確認した後、60℃まで冷却後、3APOL 30部を加え、再び 100℃にて反応させ(二段目反応)、4時間後と5時間後にそれぞれ反応溶液をサンプリングし、その粘度が一定になったことを確認した後、室温まで冷却し、IPA 104部及びMEK 210部を加えて希釈し、固形分 45%及び粘度 21 poise の樹脂溶液を得た。この樹脂溶液中、第二級アミンと第三級アミンの存在の有無をフーリエ変換式赤外線分光機にて確認し、それらの結果を表5に示す。
更に、実施例1の後半において、この樹脂溶液を用いる以外は全く同様に操作し、塗料、更には試験板を得た。この試験板の塗膜物性を実施例1の後半に記載の方法により評価し、それらの結果を表7に示す。
【0023】
【表3】
Figure 0003611385
【0024】
【表4】
Figure 0003611385
【0025】
【表5】
Figure 0003611385
【0026】
【表6】
Figure 0003611385
【0027】
【表7】
Figure 0003611385
【0028】
【表8】
Figure 0003611385
【0029】
【発明の効果】
本発明によれば、得られる樹脂組成物を用いた一液性常温乾燥型塗料は、変性剤となる多官能アルカノールアミンと第二級アルキルアミンの性能を引き出し、とりわけ密着性と耐水性にバランスが取れた良好な物である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, in modifying a raw material resin for paint using an epoxy resin, by introducing a polyfunctional alkanolamine and a secondary alkylamine as a modifier into a suitable part of the molecular chain in the epoxy resin, The present invention relates to a one-component room-temperature drying paint resin composition for improving water resistance and adhesion, and the resin composition is useful for building material primers, automobile parts and the like.
[0002]
[Prior art]
Conventionally, epoxy resins obtained by the reaction of a compound having a phenolic hydroxyl group and epichlorohydrin have a reactive epoxy group, and therefore are crosslinked and polymerized with amine, polyamide, dibasic acid, etc. Widely used for resins and the like.
By the way, in general, the properties of a polymer are greatly influenced by the molecular weight, molecular weight distribution, steric structure, type of functional groups at side chains and terminals, and the like. For example, as disclosed in Eiichi Kobayashi et al., 40th Annual Meeting of the Society of Polymer Science, Lecture Number III-4-19 (1991), it consists of benzenedithiol and divinylbenzene and has almost the same chain distribution. In the polymers having the thermal properties, those whose molecular ends are —SH or —CH═CH 2 and those end-capped with thiophenol and styrene are quite different.
[0003]
Epoxy resins have also been modified in performance by introducing various functional groups. As a means for introducing the functional group, a polyfunctional alkanolamine or a secondary alkylamine is often used.
Specifically, in order to form hydrogen bonds with hydroxyl groups and water molecules on the surface of the metal material, and to improve the adhesion of the coating film, a primary hydroxyl group not found in bisphenol A type epoxy resin is introduced by alkanolamine, In addition, in order to improve the water resistance, it has been attempted to introduce an alkyl group with an alkylamine or to use an alkanolamine and an alkylamine in combination so as to have both adhesion and water resistance.
However, the coating film obtained in any case has a sufficient balance between adhesion and water resistance, such as improved adhesion but insufficient water resistance and poor adhesion after water resistance test. It was very difficult to take, and I had to sacrifice one or the other.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an epoxy resin for a one-component room-temperature drying paint that has both adhesiveness and water resistance in the obtained coating film.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that polyfunctional alkanolamine (B), secondary alkylamine (C), and further, the reaction of polyfunctional alkanolamine (B) with an epoxy group. We focused on the reactivity of the secondary amine produced by the reaction to the epoxy group.
That is, in modifying the epoxy resin, when the polyfunctional alkanolamine (B) and the secondary alkylamine (C) are reacted simultaneously with the epoxy resin as in the prior art, the polyfunctional alkanolamine (B) is bonded to the epoxy group. Next, the secondary alkylamine formed by reacting the polyfunctional alkanolamine (B) and the secondary alkylamine (C) with the epoxy group reacts with the epoxy group remaining in the system. . And it becomes the epoxy resin modified product which superposition | polymerization complete | finishes by the secondary alkanolamine terminal produced | generated by reacting a polyfunctional alkanolamine (B) and secondary alkylamine (C) with an epoxy group.
For this reason, in this modified epoxy resin, the molecular end group that greatly affects the properties of the polymer is the reaction of the skeleton derived from the secondary alkylamine (C) or the epoxy group and the polyfunctional alkanolamine (B). It is the produced | generated secondary alkanolamine, This secondary alkanolamine impairs the water resistance of an epoxy resin.
[0006]
Therefore, when the epoxy resin (A) is modified with the polyfunctional alkanolamine (B) and the secondary alkylamine (C), first, the epoxy resin (A) is modified only with the polyfunctional alkanolamine (B), Next, by modifying the epoxy group remaining in the system with a secondary alkylamine (C), the resulting epoxy resin modified product has its molecular terminal completely derived from the secondary alkylamine (C). The present inventors have found the fact that only the substituents of
[0007]
That is, the present invention provides a resin composition comprising an epoxy resin (A) having an epoxy equivalent of 300 to 3000 g / eq, a polyfunctional alkanolamine (B) and a secondary alkylamine (C). Component A and Component B are reacted with each other in a range of 0.2 to 0.9 equivalent ratio of active hydrogen in Component B to the group (first stage reaction), Component C is added and reacted so that the active hydrogen in C is in the range of 0.1 to 0.8 equivalent ratio and the total of active hydrogen in component B and component C is 1.0 equivalent ratio (two-stage A one-component room-temperature drying paint resin composition characterized in that the epoxy resin (A) is bisphenol A-diglycidyl ether or bisphenol F-diglycidyl ether. What to do is there.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the epoxy resin (A) means bisphenol A-diglycidyl ether, bisphenol F-diglycidyl ether, novolac glycidyl ether, hexahydrophthalic acid glycidyl ester, dimer acid glycidyl ester, tetraglycidylaminodiphenylmethane, 3,4 -Epoxy-6-methylcyclohexyl methyl carboxylate, triglycidyl isocyanurate, 3,4-epoxycyclohexyl methyl carboxylate, polypropylene diglycidyl ether, polybutadiene or polysulfide modified at both ends diglycidyl ether, etc. Bisphenol A-diglycidyl ether and bisphenol F-diglycidyl ether are preferred. These may be used alone or in combination of two or more.
The epoxy equivalent is preferably in the range of 300 to 3000 g / eq. When this epoxy equivalent is less than 300 g / eq, the corrosion resistance of the resulting coating film is deteriorated, and when it exceeds 3000 g / eq, the viscosity increases as the molecular weight increases, making handling difficult.
[0009]
In the present invention, the polyfunctional alkanolamine (B) is an amine having two or more active hydrogens in one molecule. Specific examples include 3-aminopropanol, isopropanolamine, monopropanolamine, monobutanolamine, monoethanolamine and the like. The secondary alkylamine (C) in the present invention is an amine having one active hydrogen per molecule and the other substituted with an alkyl group. Specific examples include diethylamine, dibutylamine, diisobutylamine, di-sec-butylamine, N-ethyl-1,2-dimethylpropylamine, N-methylhexylamine and the like.
[0010]
When producing the resin composition in the present invention, the epoxy resin (A) and the polyfunctional alkanolamine (B), and further the secondary alkylamine (C) are blended at a specific equivalent ratio in two stages. It is essential to react. That is, first, the epoxy group in the epoxy resin (A) and the active hydrogen in the polyfunctional alkanolamine (B) are reacted so that the epoxy group remains (first-stage reaction). The active hydrogen in the secondary alkylamine (C) is reacted (second stage reaction).
At that time, the compounding amount of each component is 0.2 to 0.9 equivalent of active hydrogen in polyfunctional alkanolamine (B) with respect to 1.0 equivalent of epoxy group in epoxy resin (A) in the first stage reaction. In the second stage reaction, the active hydrogen in the secondary alkylamine (C) is in the range of 0.1 to 0.8 equivalents relative to 1.0 equivalent of the epoxy group in the epoxy resin (A). In the two-stage reaction, the total of active hydrogen in the polyfunctional alkanolamine (B) and secondary alkylamine (C) with respect to the epoxy group in the epoxy resin (A),
That is, {(total of active hydrogen in component B and component C) / (epoxy group in component A)} (equivalent ratio) is 1.0.
[0011]
However, in the first stage reaction, when the active hydrogen in component B is less than 0.2 equivalent ratio to the epoxy group in component A, the final molecular weight of the composition is low, and the adhesion of the resulting coating film is poor, If the ratio exceeds 0.9 equivalent ratio, the adhesion is improved, but the final molecular weight is increased and the handling of the paint is deteriorated, the amount of component C added is reduced, and the water resistance is not improved. In the second stage reaction, when the active hydrogen in the component C is less than 0.1 equivalent ratio with respect to the epoxy group in the component A, the adhesion of the resulting coating is improved but the water resistance is not improved. If it exceeds 0.8 equivalent ratio, the adhesion is poor. Furthermore, in these two-step reactions, when the total of active hydrogen in component B and component C is less than 1.0 equivalent ratio with respect to the epoxy group in component A, the epoxy group that is a reactive substituent remains, The composition is inferior in stability over time, and if it exceeds 1.0 equivalent ratio, residual amine which is a low molecular weight substance is present and the physical properties of the coating film are deteriorated.
[0012]
In the present invention, when the resin composition (resin solution) is produced by the two-stage reaction as described above, in the first stage, the epoxy resin (A) is dissolved in a solvent, and the polyfunctional alkanolamine (B ) In an atmosphere of nitrogen at 70 to 150 ° C. for 4 to 10 hours to polymerize, and diluted with a solvent to a viscosity of about 5 to 70 poise to obtain a resin solution. In the second stage, the secondary alkylamine (C) is added to this, and the reaction is carried out under the same conditions as in the first stage, and diluted with a solvent to obtain the desired resin solution. In this case, examples of the solvent include toluene, xylene, cyclohexanone, methyl ethyl ketone, isopropyl alcohol, n-butyl alcohol, propylene glycol monomethyl ether acetate and the like.
[0013]
In the present invention, a one-component room-temperature drying paint is produced by a known method, that is, adding a rust preventive pigment, an extender pigment, a leveling agent and various additives to the above resin solution, a disper, a sand mill, What is necessary is just to knead and disperse | distribute using a ball mill etc.
In addition, as a coating method, the paint obtained as described above is applied directly or after pre-painting treatment by a general method such as brush coating, spray coating, and various coater coatings. Applicable materials include various metal materials such as cold rolled steel sheet, galvanized steel sheet, alloyed galvanized steel sheet, chrome plated steel sheet, aluminum plated steel sheet, tin plated steel sheet, lead plated steel sheet, nickel plated steel sheet, aluminum plate, titanium Examples include plates, stainless steel plates; plastics materials; inorganic materials.
[0014]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. In the following, “part” and “%” are based on weight. In addition, hereinafter, the polyfunctional alkanolamine (B), secondary alkylamine (C), and some of the solvents used are indicated by the following abbreviations.
3APOL: 3-aminopropanol, MEA: monoethanolamine; DBA: dibutylamine; IPA: isopropyl alcohol, MEK: methyl ethyl ketone: PMA: propylene glycol monomethyl ether acetate.
Furthermore, in Tables 1 to 4, the type of epoxy resin (A) is indicated by the following abbreviation.
BP-A: bisphenol A-diglycidyl ether type epoxy resin BP-F: bisphenol F-diglycidyl ether type epoxy resin
Example 1
A glass four-necked flask (with a stirrer, thermometer, external heater, condenser, condenser and nitrogen inlet tube) was charged with 1000 parts of bisphenol A-diglycidyl ether epoxy resin (epoxy equivalent 1000 g / eq), toluene. Add 600 parts and 400 parts cyclohexanone and dissolve. Next, after refluxing dehydration with toluene, under nitrogen atmosphere, 23 parts of 3APOL (active hydrogen equivalent 37.5 g / eq) was added and reacted at 100 ° C. (first stage reaction). After 4 hours and 5 hours, respectively. The solution was sampled, and after confirming that the viscosity became constant, it was cooled to 60 ° C. To this solution, 52 parts of DBA (active hydrogen equivalent: 129 g / eq) was added and reacted again at 100 ° C. (second stage reaction). The reaction solution was sampled after 4 hours and 5 hours, respectively, and the viscosity was kept constant. After confirming that it was cooled, it was cooled to room temperature and diluted by adding 141 parts of IPA and 282 parts of MEK to obtain a resin solution having a solid content of 45% and a viscosity of 23 poise.
The presence or absence of secondary amine and tertiary amine in this resin solution was confirmed with a Fourier transform infrared spectrometer, and the results are shown in Table 5. At this time, the absorption peak at a wave number of 1200 cm −1 indicates the presence of a secondary amine, and the shift of the peak to a lower wave number indicates the presence of a tertiary amine.
[0016]
Further, 200 parts of this resin solution, 80 parts of titanium oxide (R920: trade name, manufactured by DuPont) and 10 parts of aluminum phosphomolybdate (manufactured by Kikuchi Dye Industry Co., Ltd.) and a solvent (toluene: cyclohexanone: MEK: IPA) = 50: 10: 20: 20 weight ratio) 60 parts were blended and kneaded and dispersed using a sand mill to obtain a paint. At this time, the ratio of the total pigment and the solid content in the resin solution is 1.0 / 1.0 weight ratio, the ratio of titanium oxide and aluminum phosphomolybdate is 80/10 weight ratio, The amount is adjusted so that the viscosity of the resulting paint is 90-110 seconds (Ford Cup # 4).
[0017]
This paint is applied to a zinc phosphate-treated steel plate (150 mm × 70 mm × 0.8 mm thickness) by air spray, and the film thickness is adjusted to 20 μm. After painting, the steel plate is left at 20 ° C. for 7 days, dried and used as a test plate. The coating film physical properties of this test plate were evaluated by the following methods, and the results are shown in Table 6.
-Adhesiveness: According to the cross cut test of JIS-K-5400 (1990.8.5.2), the remaining number from the cross cut 100 was determined.
-Water resistance: Cover the back and side of the test plate with polyester tape and immerse it in pure water at 40 ° C for 5 days. Then, the blister generation | occurrence | production state of a coating-film surface is observed visually, and water resistance is evaluated in five steps.
◎ ・ ・ No abnormality, ○ ・ ・ 1-5 pieces, △ ・ ・ 5-10 pieces, XX ・ ・ 10-20 pieces XX ・ ・ Full surface blister ・ Adhesion after immersion in water: Test plate evaluated for water resistance Within 30 minutes, JIS-K-5400
According to the cross cut test of (1990.8.5.2), the remaining number from the cross cut 100 was determined.
[0018]
Examples 2-7 and Comparative Examples 3-8
In Example 1, the same operation was carried out except that the types and amounts of the respective components were changed as shown in Tables 1 to 4, and a resin solution, a paint, and a test plate were obtained.
The presence or absence of secondary amine and tertiary amine in this resin solution was confirmed with a Fourier transform infrared spectrometer, and the results are shown in Table 5.
The coating film physical properties of this test plate were evaluated by the method described in the latter half of Example 1, and the results are shown in Tables 6-8.
[0019]
[Table 1]
Figure 0003611385
[0020]
[Table 2]
Figure 0003611385
[0021]
Comparative Example 1
In the first half of Example 1, the same operation was performed except that 3APOL and DBA were added simultaneously and reacted in one step.
That is, in the same flask as used in Example 1, 1000 parts of bisphenol A-diglycidyl ether-based epoxy resin (epoxy equivalent 1000 g / eq) is charged, and 600 parts of toluene and 400 parts of cyclohexanone are added and dissolved. Next, after reflux dehydration with toluene, under nitrogen atmosphere, 3 parts of APOL 30 parts and 52 parts of DBA were added and reacted at 100 ° C., and the reaction solution was sampled after 4 hours and 5 hours, respectively, and the viscosity became constant. After confirming this, the mixture was cooled to room temperature and diluted by adding 104 parts of IPA and 210 parts of MEK to obtain a resin solution having a solid content of 45% and a viscosity of 22 poise. The presence or absence of secondary amine and tertiary amine in this resin solution was confirmed with a Fourier transform infrared spectrometer, and the results are shown in Table 5.
Furthermore, in the latter half of Example 1, the same operation was carried out except that this resin solution was used, and paints and further test plates were obtained. The coating film properties of this test plate were evaluated by the method described in the latter half of Example 1, and the results are shown in Table 7.
[0022]
Comparative Example 2
In the first half of Example 1, the same operation was performed except that 3APOL and DBA were added in the reverse order and reacted in two stages.
That is, 1000 parts of bisphenol A-diglycidyl ether epoxy resin (epoxy equivalent 1000 g / eq) is charged into the same flask used in Example 1, and 600 parts of toluene and 400 parts of cyclohexanone are added and dissolved. Next, after refluxing dehydration with toluene, 52 parts of DBA was added in a nitrogen atmosphere and reacted at 100 ° C. (first stage reaction). After 4 hours and 5 hours, the reaction solution was sampled, and the viscosity became constant. After confirming that, 30 parts of 3APOL was added after cooling to 60 ° C., and reacted again at 100 ° C. (second stage reaction). The reaction solution was sampled after 4 hours and 5 hours, respectively. After confirming that the temperature became constant, the mixture was cooled to room temperature and diluted by adding 104 parts of IPA and 210 parts of MEK to obtain a resin solution having a solid content of 45% and a viscosity of 21 poise. The presence or absence of secondary amine and tertiary amine in this resin solution was confirmed with a Fourier transform infrared spectrometer, and the results are shown in Table 5.
Furthermore, in the latter half of Example 1, the same operation was carried out except that this resin solution was used, and paints and further test plates were obtained. The coating film properties of this test plate were evaluated by the method described in the latter half of Example 1, and the results are shown in Table 7.
[0023]
[Table 3]
Figure 0003611385
[0024]
[Table 4]
Figure 0003611385
[0025]
[Table 5]
Figure 0003611385
[0026]
[Table 6]
Figure 0003611385
[0027]
[Table 7]
Figure 0003611385
[0028]
[Table 8]
Figure 0003611385
[0029]
【The invention's effect】
According to the present invention, the one-component room-temperature drying paint using the resulting resin composition draws out the performance of polyfunctional alkanolamine and secondary alkylamine as modifiers, and in particular, balances adhesion and water resistance. It is a good product that can be removed.

Claims (2)

エポキシ当量 300〜3000g/eq のエポキシ樹脂(A)、多官能アルカノールアミン(B)及び第二級アルキルアミン(C)からなる樹脂組成物において、まず、成分A中のエポキシ基に対し成分B中の活性水素が 0.2〜0.9 当量比の範囲で成分Aと成分Bとを反応させ(一段目反応)、次に、成分A中のエポキシ基に対し、成分C中の活性水素が 0.1〜0.8 当量比の範囲、かつ成分Bと成分C中の活性水素の合計が 1.0当量比になるように成分Cを加えて反応させる(二段目反応)ことを特徴とする一液性常温乾燥型塗料用樹脂組成物。In a resin composition comprising an epoxy resin (A) having an epoxy equivalent of 300 to 3000 g / eq, a polyfunctional alkanolamine (B) and a secondary alkylamine (C), first, in the component B with respect to the epoxy group in the component A In the range of 0.2 to 0.9 equivalent ratio of active hydrogen, component A and component B are reacted (first stage reaction). Next, the active hydrogen in component C is reacted with the epoxy group in component A. The reaction is performed by adding Component C so that the total of active hydrogen in Component B and Component C is in the range of 0.1 to 0.8 equivalent ratio, and the equivalent ratio is 1.0 (second stage reaction). A one-component room-temperature drying paint resin composition. 該エポキシ樹脂(A)が、ビスフェノールA−ジグリジジルエーテル又はビスフェノールF−ジグリシジルエーテルであることを特徴とする請求項1に記載の一液性常温乾燥型塗料用樹脂組成物。2. The one-component room-temperature drying paint resin composition according to claim 1, wherein the epoxy resin (A) is bisphenol A-diglycidyl ether or bisphenol F-diglycidyl ether.
JP34047195A 1995-12-27 1995-12-27 Resin composition for paint Expired - Fee Related JP3611385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34047195A JP3611385B2 (en) 1995-12-27 1995-12-27 Resin composition for paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34047195A JP3611385B2 (en) 1995-12-27 1995-12-27 Resin composition for paint

Publications (2)

Publication Number Publication Date
JPH09176565A JPH09176565A (en) 1997-07-08
JP3611385B2 true JP3611385B2 (en) 2005-01-19

Family

ID=18337284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34047195A Expired - Fee Related JP3611385B2 (en) 1995-12-27 1995-12-27 Resin composition for paint

Country Status (1)

Country Link
JP (1) JP3611385B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046534B2 (en) * 2006-03-14 2012-10-10 株式会社東芝 Two-component epoxy resin composition and epoxy resin composition
JP6616722B2 (en) * 2015-03-31 2019-12-04 ベック株式会社 Film forming material
JP6706595B2 (en) * 2016-06-07 2020-06-10 ベック株式会社 Film forming method

Also Published As

Publication number Publication date
JPH09176565A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US5789498A (en) Curing catalyst for use in epoxy resin and heat curing coating composition containing the same
EP0166906B1 (en) A process for coating a corroded metal surface on the basis of polyoxyalkyleneamine modified epoxy resins
US3985695A (en) Water reducible epoxy ester coating composition
JP4763190B2 (en) Gas barrier paint composition and paint
US4609686A (en) 100 percent solids epoxy, nitrile coating compositions and method of making same
US4832748A (en) Coating composition
US4162244A (en) Coating compositions
JP3611385B2 (en) Resin composition for paint
JPS6136319A (en) Curing agent for thermosetting resin paint, its preparation and coating method
WO1985001506A1 (en) Self-curing resin composition
JP2799401B2 (en) Epoxy resin composition for paint
JP2828703B2 (en) Paint resin
JPH04136079A (en) Organic solvent base thermosetting coating composition
JPH08283656A (en) Solid epoxy resin composition for rapidly curable powder coating
JPS6017415B2 (en) Manufacturing method of thermosetting resin
JPH0121191B2 (en)
JPH0244848B2 (en) TOSOYONET SUKOKASEIJUSHISOSEIBUTSU
KR800001195B1 (en) Epoxy resin composition cored by reaction product of phenol carboxylic acids with polyamino compounds
JPS598767A (en) Composition for coating material
JPS63170472A (en) Coating composition for undercoating
JP3449472B2 (en) Paint binder and paint composition
JPS592311B2 (en) Chelate binding epoxy powder coating resin composition
US4816300A (en) Process for the preparation of carboxylated amide binders
JPS63175077A (en) Coating composition
JPH0514792B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees