JP3611285B2 - Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system - Google Patents

Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system Download PDF

Info

Publication number
JP3611285B2
JP3611285B2 JP13107999A JP13107999A JP3611285B2 JP 3611285 B2 JP3611285 B2 JP 3611285B2 JP 13107999 A JP13107999 A JP 13107999A JP 13107999 A JP13107999 A JP 13107999A JP 3611285 B2 JP3611285 B2 JP 3611285B2
Authority
JP
Japan
Prior art keywords
concentration
detection target
target component
cooling system
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13107999A
Other languages
Japanese (ja)
Other versions
JP2000321393A (en
Inventor
高揚 小林
孝三 吉川
浩文 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13107999A priority Critical patent/JP3611285B2/en
Publication of JP2000321393A publication Critical patent/JP2000321393A/en
Application granted granted Critical
Publication of JP3611285B2 publication Critical patent/JP3611285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉の冷却系における検出対象成分の濃度をオンラインで常時計測もしくは監視する方法及び装置に関し、特に、加圧水型原子炉の一次冷却系における冷却水中のB,Li成分濃度をオンラインで計測もしくは算出し、この計測結果に基づいてB,Li成分濃度を規定値に制御する方法及び装置に関するものである。また、本発明は、上述したような方法及び装置において用いられる検出対象成分の計測システムに関し、更に、該計測システムにおいて用いられる測定セルに関するものである。
【0002】
【従来の技術】
周知のように、加圧水型原子炉(PWR)の反応度制御は、制御棒位置だけでなく、一次冷却系における冷却水中のホウ素濃度を変更することにより行っているため、冷却水の水質管理が特に重要である。即ち、PWRの一次冷却系の水質管理は、インコネル600やステンレス鋼のような一次系構成材料の腐食抑制ひいては放射能低減を達成することであり、このため、水質基準値を定めて管理を行っている。
【0003】
前述したように、PWRでは反応度制御のために冷却水にホウ素を添加しているが、ホウ素は水質を酸性にするので、一次冷却系構成材料の腐食抑制の観点から、水酸化リチウムを添加することにより、phを調整している。水酸化リチウムを添加しphを上げた場合、インコネル600やステンレス鋼の腐食を十分低く保つことができる。しかし、水酸化リチウム量はジルカロイの腐食や水素脆化の点からある程度以上に高くできない。従って、ホウ素濃度に対応したリチウム濃度管理が実施されており、その一例が株式会社オーム社発行の「原子力ハンドブック」第186頁〜第193頁,”原子炉の水化学”に記載されている。
【0004】
また、上述した一次冷却系の冷却水と蒸気発生器において熱交換して蒸気となる二次側の水については、蒸気発生器伝熱管の健全性保持のために水質管理が重要であり、この二次水についても、例えばCa,Mg,Cr,Fe,Cu,Ni,Na,Cl(塩素)等の水質基準値が定められている。
【0005】
一方、沸騰水形原子炉(BWR)の冷却水は、ホウ素注入による反応度制御を一般的には行わないため、中性純水が用いられているので、その水質管理は、冷却系の構成材料であるステンレス鋼,炭素鋼,ステライト,インコネルその他の材料に対する中性純水の関与の度合いに基づいて基準が定められる。従って、BWRプラントの水質管理は、炉水及び給水に関して例えばシリカ等の不純物の基準値を設定し、該基準値を超えないように行われる。
【0006】
従来の水質管理の仕方について、その管理対象物質、例えば加圧水型原子炉の冷却水中のB,Liについて図12を参照して代表的に説明すると、B,Liの濃度計測は、サンプリング室において、PWRプラントのサンプルラインから試料採取用容器に冷却水サンプルを手作業で汲み取り(サンプリングラインのパージのために15分間程度の待ち時間が必要)、放射化学分析室まで人手で運び込み、化学分析器等の分析装置により、又は滴定法を利用した手分析により分析値を得る方式をとっていた。便宜上、これを既知分析法と称する。
【0007】
また、図示しないが、原子炉冷却水中のB,Li濃度計測に用いられた適用例はないが、応用可能と考えられるレーザを用いた微量分析法としては、下記の方法が提案されている。
(1)レーザ光を対象とする固・液・気体サンプルに集光して成分をプラズマ化させ、そのプラズマ発光を検出して微量成分濃度を測定するLBS法(レーザブレークダウン法)。
(2)検出すべき成分の電子エネルギ差に対応した波長を持つレーザ光を入射し、励起された測定対象成分が発する発光強度を検出して微量成分濃度を測定するLIF法(レーザ誘起発光法)。
【0008】
【発明が解決しようとする課題】
しかし、上述した既知分析法では、分析結果を得るまでに図12に示す以下の過程を経る必要がある。
(1)原子炉冷却系統のサンプリングライン(サンプリング室)において一定量の冷却水サンプルを試料採取用容器に分取する。
(2)採取したサンプル容器を測定設備のある放射化学分析室まで運搬する。
(3)この分析室にてサンプル中のB,Li定量分析を実施する。Liについては、固有の波長の光を吸収するという原子の光吸収現象を利用して元素の定量を行う原子吸光法により、Bについては、NaOH滴定により手分析を実施する。
【0009】
このように、従来の既知分析法では、測定場からの試料の採取から分析結果が得られるまで、かなりの時間(30〜60分)を要するために、原子炉冷却水中のB,Li成分濃度の迅速な計測及び結果処理の実現にはほど遠い技術であり、原子力発電プラントの運転に関わる他の諸工程の進行に遅延等の影響を与える場合が多い。また、上述した既知分析法について主にサンプル輸送過程の自動化を考えた場合、サンプル試料の輸送装置、輸送配管、装置設置施設等が必要となり、装置が高価となる欠点を有している。
【0010】
また、従来のレーザを用いる計測法については、プラズマ生成用レーザ光のみ用いるLBS法や、計測対象成分の電子エネルギ差に対応した波長を持つレーザ光を入射するLIF法が存在しているが、それぞれ単独では下記のような欠点を有している。
(1)プラズマ生成用パルスレーザ光を用いた従来のLBS法ではppbレベルまでの検出限界濃度が得られない。
(2)励起用パルスレーザ光を用いた従来のLIF法のみでは成分の結合状態の影響が大きいため十分な定量精度が確保できない。
【0011】
従って、本発明の第1の目的は、原子炉冷却系の水における検出対象成分の濃度をオンラインで迅速に精度良く計測可能とする方法及び装置を提供することである。
また、本発明の別の目的は、加圧水型原子炉の一次冷却系における冷却水中のB,Li成分濃度をオンラインで迅速に精度良く計測し、この計測結果に基づいて一次冷却系のB,Li成分濃度を規定値に制御する方法及び装置を提供することである。
更に、本発明は、上述したような方法及び装置において用いることができる検出対象成分の計測システムと、該計測システムにおいて用いられる測定セルとを提供することを目的とするものである。
【0012】
【課題を解決するための手段】
前述した第1の目的を達成するためには、まず、原子炉冷却系中の検出対象成分の濃度(単に、「原子炉冷却水濃度」ということもある。)をオンラインで常時監視する必要であり、このために本発明の第1の様相では、冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する方法であって、前記冷却系に前記検出対象成分の測定場を設定し、該測定場の冷却水に対しプラズマ生成用パルスレーザ光を照射し、前記プラズマ生成用パルスレーザ光の照射により発生するプラズマ光に基づいて前記検出対象成分の濃度値を検出し、該濃度値を表す濃度信号により前記冷却系の冷却水注入制御弁を開閉制御することを特徴とするものである。
【0013】
本発明の別の様相によると、レーザを用いたLBS法及びLIF法を組み合わせている。これにより、原子炉冷却水中に含まれる検出対象成分をppbオーダーのレベルまで高精度で定量可能な方法及び装置を提供する。
上記目的を達成するため、本発明は、冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する方法であって、前記冷却系に前記検出対象成分の測定場を設定し、該測定場の冷却水に対しプラズマ生成用パルスレーザ光と検出対象成分の励起用パルスレーザ光とを同期して照射し、前記プラズマ生成用パルスレーザ光の照射及び前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光強度に基づいて前記検出対象成分の濃度値を検出し、該濃度値を表す濃度信号により前記冷却系の冷却水注入制御弁を開閉制御することを特徴とする検出対象成分の濃度制御方法を提供する。
【0014】
また、上記目的を達成するため、本発明は、冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する装置であって、前記冷却系に設定された前記検出対象成分の測定場に配置される測定セルと、該測定セルの冷却水に対しプラズマ生成用パルスレーザ光及び検出対象成分の励起用パルスレーザ光をそれぞれ同期して照射するプラズマ生成用パルスレーザ及び励起用パルスレーザと、前記プラズマ生成用パルスレーザ光の照射及び前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光強度に基づいて前記検出対象成分の濃度の実際値を連続的に算出する算出手段と、前記検出対象成分の濃度の前記実際値が前記規定値に対して許容しうか否かを判断する判断手段と、前記冷却系に接続された検出対象成分調整ラインの制御弁と、前記検出対象成分の濃度の前記実際値が異常値と判断された場合に、前記実際値が前記規定値に復帰するように前記制御弁を開閉制御する制御手段とを備える、検出対象成分の濃度制御装置を提供する。
【0015】
別の様相に係る本発明は、蒸気発生器に高温側配管及び低温側配管からなる一次冷却系により連絡する加圧水型原子炉に関し、該原子炉において、前記一次冷却系の冷却水中におけるB,Li成分の濃度を規定値に制御するための装置であって、前記一次冷却系の高温側に設定された前記B,Li成分の測定場に配置される測定セルと、該測定セルの冷却水に対しプラズマ生成用パルスレーザ光及び前記B,Li成分の励起用パルスレーザ光をそれぞれ同期して照射するプラズマ生成用パルスレーザ及び励起用パルスレーザと、前記プラズマ生成用パルスレーザ光の照射及び前記励起用パルスレーザ光の照射により前記B,Li成分から発する発光強度に基づいて前記B,Li成分の濃度の実際値を算出する算出手段と、前記一次冷却系の前記低温側配管に接続されたB,Li成分調整ラインの制御弁と、前記B,Li成分の濃度の前記実際値が異常値と判断された場合に、前記実際値が前記規定値に復帰するように前記制御弁を開閉制御する制御手段とを備える、検出対象成分の濃度制御装置を提供する。
【0016】
具体的には、B,Li成分に対する分析精度を向上させるためにレーザ光を2段階(LBS法)で照射する。プラズマ生成用パルスレーザ光を原子炉冷却水に集光/入射し、原子炉冷却水中の成分をプラズマ化させ、プラズマを生成させてから一定時間後に、先のレーザ光で誘起されたプラズマ中に更に、励起用のパルスレーザ光を入射し、プラズマ中に存在するB,Li成分をレーザ励起する。プラズマ生成用パルスレーザ光及び励起用パルスレーザ光の照射により励起されたB,Li成分が発する発光強度を光検出器を用いて検出し、B,Li成分が発する発光強度をプラズマ部に存在する成分組成で補正することにより、サンプルとしての原子炉冷却水中に含まれるB,Li成分をppbオーダーの微量レベルまで即座に直接定量する。
【0017】
また、本発明は、水の通流及びレーザ光の貫入を許容するように測定場に配置された測定セルと、該測定セル内の水に対しパルスエネルギ10〜40mJのプラズマ生成用パルスレーザ光を発射するプラズマ生成用レーザと、前記水に含まれる検出対象成分の励起用パルスレーザ光を前記プラズマ生成用パルスレーザ光と同期して発射する励起用レーザと、前記プラズマ生成用パルスレーザ光の照射及び前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光の強度に基づいて前記検出対象成分の濃度の実際値を算出する算出手段とを備える検出対象成分の濃度計測システムを提供する。ここで、請求項7に記載まように、前記プラズマ生成用パルスレーザ光及び前記励起用パルスレーザ光の発射間隔は1μs〜13μsの範囲にあることが好ましい。また、請求項8に記載のように、前記プラズマ生成用パルスレーザ光又は前記励起用パルスレーザ光の照射の0.1〜1μs後に、波長幅が0.1hm以下で前記検出対象成分を再励起する波長に調整したレーザ光を照射する波長可変レーザを更に備えることが好適である(LIF法)。
【0018】
更に、前記算出手段はコンピュータであり、前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光強度を酸素原子から発する発光線に基づいて補正することが好適である。
【0019】
また、本発明によると、測定セルは、ほぼ六面体であって、前記プラズマ生成用パルスレーザ光及び前記励起用パルスレーザ光が入射する第1面には封止手段を介して光透過ガラスが設けられ、該第1面と対峙する第2面には封止手段を介してレーザトラップ板が設けられ、前記第1面及び前記第2面を除いて対峙する2面には前記水の通流を許容する入口及び出口が設けられ、対峙する残りの2面に前記プラズマ光及び前記発光を透過する光透過ガラスが封止手段を介して設けられている。
【0020】
【発明の実施の形態】
次に、添付図面を参照して、本発明の好適な実施の形態について説明するが、図中、同一符号は同一又は対応部分を示すものとする。また、本発明は、以下の説明から分かるように、この実施形態に限定されるものではなく、種々の改変が可能である。
【0021】
図1は、本発明による方法及び装置が適用される加圧水型原子炉プラントの制御系を概略的に示すもので、堅固な格納容器1内には、蒸気発生器2及び原子炉3が配置されている。配管8に設けられた冷却水ポンプ5により原子炉3内に送り込まれた一次冷却水は加熱されて高温高圧となり、配管6を経由して蒸気発生器2の水室の入口側2aに入り、多数の伝熱管2bを通流する間に、配管7から供給される給水を加熱して冷却され、水室の出口側2cから蒸気発生器2を出る。そして、冷却水ポンプ5により再び原子炉3に循環される。
【0022】
蒸気発生器において加熱された給水は蒸気となって、配管9を介して蒸気タービン(図示せず)に供給される。また、原子炉3の高温側から蒸気発生器2に延びる一次冷却系の配管6には、炉心における冷却水の沸騰を抑えるために、飽和圧力を超える加圧状態に冷却水を維持する加圧器4が設けられている。
【0023】
また、一次冷却系を構成する低温側の配管8には、冷却水ポンプ5の上流側で冷却水の一部を抽出する抽出ライン10aと、該冷却水の一部を冷却水ポンプ5の下流側で上記配管8に戻す充填ライン10bとを含む化学体積制御系10が接続されている。この化学体積制御系10の抽出ライン10aには、脱塩塔11及び体積制御タンク12が設けられ、充填ライン10bには、充填ポンプ13に加え、ほう酸タンク14、1次系薬品タンク15等が設けられており、化学体積制御系10の機能は、一次冷却系への冷却水の充填補給、冷却水中の腐食生成物及び核分裂生成物の除去、ほう酸濃度の調整等である。なお、抽出ライン10aには制御弁37も設けられているが、これの動作については後述する。
【0024】
かかる加圧水型原子炉プラントにおいて、本発明に従って例えば一次冷却水のB,Li成分濃度を管理もしくは制御する装置は、パルスレーザ光を生成して一次冷却系の冷却水に照射するための装置と、この照射により得られた情報から最終的にB,Li成分濃度を算出するための装置と、算出されたB,Li成分濃度に基づいて一次冷却系のB,Li量を調整するための装置とを備える。冷却水にレーザ光を照射するための装置の測定場は、図1において、例えば、一次冷却系の高温側配管6の途中に、或いは加圧器4の液相部外周面に、符号▲1▼、▲2▼で示す位置に設定することができる。
【0025】
次に、図2は、本発明に従って例えば一次冷却水のB,Li成分濃度を管理もしくは制御する装置20の概要を示している。図2において、同装置20は、プラズマ生成用パルスレーザ21により発射されたパルスレーザ光を、ミラー22,23、レンズ28等を用いて測定場25に設けられた測定セル内の原子炉冷却水に集光し、該測定セル内に存在する化学種を図7の(a)に図解したようにプラズマ化させる。プラズマ生成用パルスレーザ21のレーザ出力は、本発明の実施形態では10〜40mJとする。図10は、Liの場合におけるレーザ出力と信号強度との実験結果を表しており、この結果から、レーザ出力は、液体中でのプラズマ化に適合するように10〜40mJとすることが好適であることが分かる。また、このプラズマ生成用パルスレーザ21からのレーザ光発射と同期させて、一定時間後に、冷却水中のB,Li成分の発光強度を増すためのB,Li選択励起用パルスレーザ26の出力を、前述したようにミラー22,23及びレンズ28を介してレーザ誘起されたプラズマ中に、新たにミラー27等を介して図7の(b)に示すように入射する。図11は、プラズマ生成用パルスレーザ光及び励起用パルスレーザ光の発射間隔と信号強度との関係をLiの場合について示す本発明の実験結果であり、発射間隔もしくはパルス間隔は1μs〜13μsとすることができ、好適には1.2μs〜8.2μs、更に好適には1.8μs〜6.0μsである。なお、図10及び図11の縦軸の信号強度には単位が省略されているが、これは信号強度比と考えてもよいためである。
【0026】
プラズマ生成用レーザ光により発生するプラズマ光を検出し、プラズマ部の成分組成を同定した上で、B,Li励起用パルスレーザ光の照射により励起されたB,Li成分が発する発光強度を分光器及び検出器を用いて検出する。即ち、図2及び図3において、上述のプラズマ発光及び成分励起用レーザ光により励起されたB,Liが発する発光は、レンズ29a,29bで集光され、それぞれの光は、光ファイバ30a,30bを介して分光器31a,31bに入射される。また、ミラー23により反射された光の一部はパワーメータ33によりレーザ出力に換算され、パーソナルコンピュータ34bに送られる。このパーソナルコンピュータ34bは検出器32bに接続されると共に、別のパーソナルコンピュータ34aにも接続されており、図示しないモニターにデータを出力してLi,Bの濃度をデジタル値で例えば10分おきに表示することができる。B,Li成分が発する発光スペクトルは、分光器31b及び検出器32bで測定され、パーソナルコンピュータ34bに送られ、Li及びBのピーク強度I,ILiが読み取られる。一方、酸素(O)の発光スペクトルの測定は、分光器31a及び検出器32aからの入力に基づいてパーソナルコンピュータ34aで行われ、Oピーク強度Iの読み取りが行われ、読み取られたOピーク強度Iはパーソナルコンピュータ34bに送られる。このようにして各信号はコンピュータ34bに転送され、そこで、Oピーク強度Iに対するピーク強度I,ILiの比をとって補正した補正ピーク強度ILi*,I*を求め、その値に、Li検量線の傾きであるfLi、B検量線の傾きであるfBをそれぞれ乗算すれば、Li濃度(CLi)及びB濃度(CB)を得られる。一例として、図8には、Li水溶液の発光スペクトルが例示されている。
【0027】
このようにして、プラズマ発光の信号により、測定場25の成分組成を求め、その情報により発光強度の補正を行い、測定場25に存在するB,Li成分の濃度を算出する。このように、B,Li成分が発する発光強度を、プラズマ部の成分組成である酸素の発光線で補正することにより、原子炉冷却水中のB,Li濃度をppbオーダーまで高精度に測定する。35は、プラズマ生成用パルスレーザ21及びB,Li選択励起用パルスレーザ26の発振と検出器32a,32bの作動とを同期させる周知の同期装置である。
【0028】
本発明で使用するプラズマ生成用パルスレーザ光と成分励起用パルスレーザ光の波長の例を下記に示すが、これはYAGレーザが安価に容易に入手しうるために使用されているだけであり、他のレーザ光でもよいことは勿論である。
プラズマ用及び成分励起用レーザ波長…
1064nm(YAGレーザの基本波)
532nm(YAGレーザの第2高調波)又は
355nm(YAGレーザの第3高調波)
【0029】
上述の記載から分かるように、本発明ではLBS法及びLIF法を組み合わせている。この組み合わせによって、それぞれの欠点を解消することが可能となる。具体的には、第1のプラズマ生成用レーザ光で局所的な場所の温度を10000℃〜20000℃に上昇させるため、殆ど全ての化学種が原子状態となる。この時点で化学種の結合状態による励起波長の変化は考慮する必要はなくなり、プラズマ化されたB,Liの原子を対象として、これらを励起するレーザ光を入射するだけで、B,Liの濃度計測を満足できる。つまり、LBS法を2段階用いるシステムとなるが、これによりLBS法1段階の場合と比較して、検出感度が大幅に向上(3桁から5桁程度)する。
【0030】
次に、再び図1に戻って本発明の原子力発電プラントにおける適用例について説明する。前述したように、一次冷却系の高温側配管6の一部又は加圧器4の液相部外周面に測定場25を設定し、ここに、LBS2段階方式のB,Li成分濃度の制御方法もしくは装置20の成分濃度計測システム20a(図2において鎖線で囲まれた部分)を導入する。原子炉冷却水中のB,Li濃度は、原子炉制御等の事情から、ある規定された値に常時保つ必要がある。そのため、B,Li成分濃度の制御装置20を化学体積制御系10と連係させ、B,Li濃度の実際の計測値及び維持すべき既定値に基づいて、B,Li成分の必要となる希釈/濃縮及び除去量を算出し、原子力発電プラント運転員に表示する。
【0031】
即ち、上記の計測手順に従って得られた分析結果は、原子力発電プラントの中央制御室36に配置しうる制御板指示部(図示せず)に濃度表示されると共に、更に同中央制御室36のコンピュータ34a,34bで処理され、B,Liに対する測定時点での濃度基準値との比較評価を行い、体積制御系10に関する希釈/除去/濃縮操作が必要であると判断された場合に、その操作量の具体的指示値を改めて中央制御室36の制御板指示部に表示するだけでなく、該指示値に基づいて、化学体積制御系10の抽出ライン10aに設けられた制御弁37を開閉し、抽出ライン10aの通水量を制御する。即ち、測定もしくは検出濃度値が設定範囲の下限値よりも低くなったときは、制御弁37を開き、その逆に設定範囲の上限値よりも高くなったときは、制御弁37を閉じる。
【0032】
このように、LBS2段階方式のB,Li成分濃度の計測システム20aの測定場を原子炉一次冷却系の高温側配管6に設定すると共に、該計測システム20aの分析結果のコンピュータ処理に基づいて、一次冷却系の低温側配管8に連絡する化学体積制御系10の冷却水抽出ライン10aに設けられた制御弁37を制御することにより、原子炉冷却水中のB,Li成分濃度のリアルタイム計測が可能となり、一次冷却系のB,Li濃度値を常時オンライン処理できることにより、原子炉の反応度制御及び水質管理をより効率的に運営でき、これは、定期検査等の工程期間を短縮させることにも繋がる。
【0033】
この場合、測定場に設けられる測定セル40としては、図5及び図6に示すものが好適である。図5及び図6において、該測定セル40は、ほぼ正六面体であって、実施形態では、対峙する上下の2面に試料水である通常70〜80℃の冷却水の入口側通流管41a,出口側通流管41bが取り付けられ(図6)、そしてプラズマ生成用パルスレーザ光及び励起用パルスレーザ光が入射する面には、封止手段もしくは振動防止手段であるゴム製或いはプラスチック製のようなO−リング42を介して光透過ガラス43が設けられる。また、この光透過ガラス43と対峙する面には、同様の封止手段42を介してレーザトラップ板44が設けられる。該レーザトラップ板44はトラップ効果の高いテフロン板とするのが好適であり、測定セル本体及び通流管はステンレス鋼製とするのが好適である。対峙する残りの2面にはプラズマ光及び発光を透過する光透過ガラス45、46が同様の封止手段42を介して設けられている(図5)。
【0034】
なお、図4に示すように、測定感度を更に向上させるために、プラズマ生成用パルスレーザ光又は励起用パルスレーザ光の照射の0.1〜1μs後に、波長幅が0.1hm以下で検出対象成分を励起する波長に調整したレーザ光を照射する波長可変レーザ50を更に備えることができる。該波長可変レーザ50も同期装置35に接続されており、波長可変レーザ50からのレーザ光はミラー51,52と前述のミラー22,23等を介して測定セル内の冷却水に照射される。このLBS/LIF複合方式を用いれば、更に検出感度を向上させることができる。
B,Li選択励起用レーザ波長…
B:208.89nm又は249.68nm
Li:274.12nm,323.26nm又は670.78
【0035】
【発明の効果】
本発明によれば、冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する方法であって、前記冷却系に前記検出対象成分の測定場を設定し、該測定場の冷却水に対しプラズマ生成用パルスレーザ光を照射し、前記プラズマ生成用パルスレーザ光の照射により発生するプラズマ光に基づいて前記検出対象成分の濃度値を検出し、該濃度値を表す濃度信号により前記冷却系の冷却水注入制御弁を開閉制御する。また、本発明の制御方法によると、冷却系に検出対象成分の測定場を設定し、該測定場の冷却水に対しプラズマ生成用パルスレーザ光と検出対象成分の励起用パルスレーザ光とを同期して照射し、前記プラズマ生成用パルスレーザ光の照射により発生するプラズマ光と前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光強度とに基づいて前記検出対象成分の濃度値を検出し、該濃度値を表す濃度信号により前記冷却系の冷却水注水制御弁を開閉制御する。そのため、本発明によれば、冷却系の濃度値を常時オンライン処理できることにより、原子炉の反応度制御及び水質管理をより効率的に運営でき、これは、定期検査等の工程期間を短縮させることにも繋がる。
【0036】
また、原子炉冷却水の水質管理担当作業者が、サンプリング時、サンプル輸送時、分析時を通じてサンプルに含まれる放射性腐食生成物から受ける被曝の可能性を避けることができるため、作業者の健康管理にも大きく寄与する。
更に、以上のレーザによる濃度計測が確立することで、従来法での作業試料の採取、分析装置への輸送及び測定作業そのものに要する時間が無くなるため、原子炉冷却水中のB,Liのような成分のリアルタイムな濃度把握が可能となり、濃度管理に関連する作業が効率化する。
【0037】
また、別の本発明のように、測定セル内の水に対し発射されるプラズマ生成用パルスレーザ光のパルスエネルギを10〜40mJに設定しておけば、冷却水中の検出対象成分でも検出するのに適するエネルギレベルとなり、冷却水中の成分でも効果的に検出することができる。本発明の実施形態のように、プラズマ生成用パルスレーザ光及び励起用パルスレーザ光の発射間隔を1μs〜13μsの範囲にしておけば、測定感度が向上する。また、本発明の実施形態のように、プラズマ生成用パルスレーザ光又は励起用パルスレーザ光の照射の0.1〜1μs後に、波長幅が0.1hm以下で検出対象成分を励起する波長に調整したレーザ光を照射する波長可変レーザを設ければ、測定感度を更に向上させることができる。
【0038】
また、励起用パルスレーザ光の照射により検出対象成分から発する発光強度を酸素原子から発する発光線に基づいて補正すれば測定精度をより向上させることができる。
【0039】
別の様相の本発明によれば、測定セルには、プラズマ生成用パルスレーザ光及び励起用パルスレーザ光が入射する面に対峙する面に、封止手段を介してレーザトラップ板が設けられているため、レーザ光を効果的にトラップすることができ、また、封止手段により漏水を防止したり、振動を吸収したりすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る検出対象成分の濃度制御方法及び装置が適用された加圧水型原子炉プラントの概要図である。
【図2】本発明の検出対象成分の濃度測定装置を示す概要図である。
【図3】図2の濃度制御装置で実行される手順を図解した説明図である。
【図4】本発明の検出対象成分の更に高感度な濃度測定装置を示す概要図である。
【図5】図2及び図4の濃度制御装置において用いられている測定セルの断面図である。
【図6】図2及び図4の濃度制御装置において用いられている測定セルの側面図である。
【図7】(a)はLBS法適用過程を示し、(b)はLIF適用過程を示す本発明の測定原理概念図である。
【図8】Li水溶液発光スペクトルの波長と強度(%)の関係を示す図表である。
【図9】Liの場合についてYAGレーザ照射からの経過時間と信号強度との関係を示す図表である。
【図10】Liの場合についてレーザ出力と信号強度との関係を示す図表である。
【図11】Liの場合についてパルス間隔と信号強度との関係を示す図表である。
【図12】原子力発電所における従来のB,Li濃度測定手順を図解する説明図である。
【符号の説明】
2…蒸気発生器、3…加圧水型原子炉、4…加圧器、6…一次冷却系の高温側配管、8…一次冷却系の低温側配管、10…化学体積制御系、10a…抽出ライン、10b…充填ライン、20…濃度制御装置、21…プラズマ生成用パルスレーザ、25…測定場、26…B,Li選択励起用パルスレーザ、34a,34b…コンピュータ(算出手段)、37…制御弁、40…測定セル、41a…入口側通流管(入口)、41b…出口側通流管(出口)、42…O−リング(封止手段)、43,45,46…石英ガラス(光透過ガラス)、44…レーザトラップ板(テフロン板)、50…波長可変レーザ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for constantly measuring or monitoring the concentration of a component to be detected in a reactor cooling system online, and in particular, the B and Li component concentrations in cooling water in a primary cooling system of a pressurized water reactor are on-line. The present invention relates to a method and an apparatus for measuring or calculating and controlling B and Li component concentrations to specified values based on the measurement results. The present invention also relates to a measurement system for a detection target component used in the method and apparatus as described above, and further relates to a measurement cell used in the measurement system.
[0002]
[Prior art]
As is well known, the reactivity control of a pressurized water reactor (PWR) is performed by changing the boron concentration in the cooling water in the primary cooling system as well as the position of the control rod. Of particular importance. In other words, the water quality management of the primary cooling system of the PWR is to achieve the corrosion suppression of the primary system constituent materials such as Inconel 600 and stainless steel, and hence the reduction of the radioactivity. For this reason, the water quality standard value is set and managed. ing.
[0003]
As described above, boron is added to cooling water for reactivity control in PWR. However, since boron makes water quality acidic, lithium hydroxide is added from the viewpoint of inhibiting corrosion of the primary cooling system constituent materials. By doing so, ph is adjusted. When lithium hydroxide is added to increase ph, the corrosion of Inconel 600 and stainless steel can be kept sufficiently low. However, the amount of lithium hydroxide cannot be increased beyond a certain level in view of Zircaloy corrosion and hydrogen embrittlement. Therefore, lithium concentration management corresponding to the boron concentration is performed, and an example thereof is described in “Nuclear Power Handbook”, pages 186 to 193, published by Ohm Co., Ltd., “Reactor Water Chemistry”.
[0004]
In addition, for the secondary side cooling water and the secondary side water that is converted into steam in the steam generator, water quality management is important for maintaining the soundness of the steam generator heat transfer tube. For secondary water, for example, water quality reference values such as Ca, Mg, Cr, Fe, Cu, Ni, Na, Cl (chlorine) are determined.
[0005]
On the other hand, since the boiling water reactor (BWR) cooling water does not generally perform reactivity control by boron injection, neutral pure water is used. Standards are established based on the degree of involvement of neutral pure water in the materials stainless steel, carbon steel, stellite, inconel and other materials. Therefore, the water quality management of the BWR plant is performed so as to set a reference value of impurities such as silica for the reactor water and the feed water so as not to exceed the reference value.
[0006]
With regard to the conventional water quality management method, the management target substances, for example, B and Li in the cooling water of the pressurized water reactor will be described representatively with reference to FIG. The cooling water sample is manually drawn from the sample line of the PWR plant to the sampling container (a waiting time of about 15 minutes is required for purging the sampling line), and is manually transported to the radiochemical analysis room. The analysis value was obtained by the analysis device of 1 or by manual analysis using a titration method. For convenience, this is referred to as a known analysis method.
[0007]
Although not shown, there is no application example used for measuring the B and Li concentrations in the reactor cooling water, but the following method has been proposed as a microanalysis method using a laser that is considered to be applicable.
(1) An LBS method (laser breakdown method) in which a laser beam is focused on a solid, liquid, or gas sample to convert the component into plasma and the plasma emission is detected to measure a trace component concentration.
(2) LIF method (laser-induced emission method) in which a laser beam having a wavelength corresponding to the electron energy difference of the component to be detected is incident, the emission intensity emitted from the excited measurement target component is detected, and the concentration of the trace component is measured ).
[0008]
[Problems to be solved by the invention]
However, in the known analysis method described above, it is necessary to go through the following process shown in FIG. 12 before obtaining the analysis result.
(1) A certain amount of cooling water sample is taken into a sampling container in a sampling line (sampling chamber) of the reactor cooling system.
(2) Transport the collected sample container to the radiochemical analysis room with the measuring equipment.
(3) B and Li quantitative analysis in the sample is performed in this analysis room. For Li, a manual analysis is carried out by atomic absorption, in which the element is quantified by utilizing the light absorption phenomenon of atoms, which absorbs light of a specific wavelength, and for B, by NaOH titration.
[0009]
Thus, in the conventional known analysis method, since it takes a considerable time (30 to 60 minutes) until the analysis result is obtained from the collection of the sample from the measurement field, the B and Li component concentrations in the reactor cooling water are required. This is a technology far from the realization of rapid measurement and result processing, and often affects the progress of other processes related to the operation of the nuclear power plant, such as delay. Further, when automation of the sample transport process is considered mainly for the above-described known analysis method, a sample specimen transport device, transport piping, device installation facility, and the like are required, resulting in a disadvantage that the device is expensive.
[0010]
In addition, as a conventional measurement method using a laser, there are an LBS method using only a laser beam for plasma generation and an LIF method in which a laser beam having a wavelength corresponding to an electron energy difference of a measurement target component is incident. Each of them has the following drawbacks.
(1) In the conventional LBS method using a pulsed laser beam for plasma generation, a detection limit concentration up to the ppb level cannot be obtained.
(2) Only the conventional LIF method using the excitation pulse laser beam has a great influence on the combined state of the components, so that sufficient quantitative accuracy cannot be ensured.
[0011]
Accordingly, a first object of the present invention is to provide a method and an apparatus that can quickly and accurately measure the concentration of a detection target component in water of a reactor cooling system.
Another object of the present invention is to quickly and accurately measure the B and Li component concentrations in the cooling water in the primary cooling system of the pressurized water reactor online, and based on the measurement results, the B and Li components in the primary cooling system are measured. It is to provide a method and apparatus for controlling a component concentration to a specified value.
Furthermore, an object of the present invention is to provide a measurement system for a detection target component that can be used in the method and apparatus as described above, and a measurement cell used in the measurement system.
[0012]
[Means for Solving the Problems]
In order to achieve the first object described above, first, it is necessary to constantly monitor online the concentration of the component to be detected in the reactor cooling system (sometimes simply referred to as “reactor cooling water concentration”). For this reason, in the first aspect of the present invention, in a nuclear reactor having a cooling system, a method for controlling the concentration of a detection target component in cooling water of the cooling system to a specified value, the The measurement field of the detection target component is set, the pulsed laser light for plasma generation is irradiated to the cooling water of the measurement field, and the detection target component is detected based on the plasma light generated by the irradiation of the pulsed laser light for plasma generation. The concentration value is detected, and the cooling water injection control valve of the cooling system is controlled to open and close by a concentration signal representing the concentration value.
[0013]
According to another aspect of the present invention, the LBS method using a laser and the LIF method are combined. This provides a method and apparatus capable of quantifying the detection target component contained in the reactor cooling water with high accuracy to the level of the ppb order.
In order to achieve the above object, the present invention provides a method for controlling a concentration of a detection target component in cooling water of a cooling system to a specified value in a nuclear reactor having a cooling system, wherein the detection target component is included in the cooling system. The measurement field is set, and the cooling water of the measurement field is irradiated with the pulsed laser beam for plasma generation and the excitation pulsed laser beam for the component to be detected in synchronization, and the irradiation with the pulsed laser beam for plasma generation and the The concentration value of the detection target component is detected based on the emission intensity emitted from the detection target component by irradiation with the excitation pulse laser beam, and the cooling water injection control valve of the cooling system is controlled to open and close by the concentration signal representing the concentration value. A concentration control method for a detection target component is provided.
[0014]
In order to achieve the above object, the present invention is an apparatus for controlling a concentration of a detection target component in cooling water of a cooling system to a specified value in a nuclear reactor having a cooling system, and is set in the cooling system. A plasma cell for irradiating the measurement cell disposed in the measurement field of the detection target component and the cooling laser water of the measurement cell with the plasma generation pulse laser beam and the excitation pulse laser beam of the detection target component in synchronization with each other The actual value of the concentration of the detection target component is continuously based on the pulse laser and the excitation pulse laser, and the emission intensity emitted from the detection target component by the irradiation of the plasma generation pulse laser light and the excitation pulse laser light. Connected to the cooling system, calculating means for automatically calculating, determining means for determining whether the actual value of the concentration of the detection target component is acceptable for the specified value, and The control valve of the detected detection target component adjustment line and the control valve are controlled to open and close so that the actual value returns to the specified value when the actual value of the concentration of the detection target component is determined to be an abnormal value. And a concentration control device for the detection target component.
[0015]
The present invention according to another aspect relates to a pressurized water reactor that communicates with a steam generator through a primary cooling system including a high-temperature side pipe and a low-temperature side pipe. In the reactor, B, Li in the cooling water of the primary cooling system is provided. An apparatus for controlling the concentration of a component to a specified value, the measurement cell being arranged at the measurement field of the B and Li components set on the high temperature side of the primary cooling system, and the cooling water of the measurement cell The plasma generation pulse laser and the excitation pulse laser that irradiate the plasma generation pulse laser beam and the excitation pulse laser light of the B and Li components in synchronization with each other, and the irradiation and excitation of the plasma generation pulse laser light, respectively. Calculating means for calculating the actual values of the concentrations of the B and Li components based on the emission intensity emitted from the B and Li components by the irradiation of the pulse laser light for use, and before the primary cooling system When the actual values of the B and Li component adjustment lines connected to the low temperature side pipe and the B and Li component concentrations are determined to be abnormal values, the actual values are restored to the specified values. And a control means for controlling opening and closing of the control valve.
[0016]
Specifically, the laser beam is irradiated in two stages (LBS method) in order to improve the analysis accuracy for the B and Li components. A pulsed laser beam for plasma generation is focused / incident on the reactor cooling water, the components in the reactor cooling water are turned into plasma, and after a certain period of time has been generated, the plasma is induced in the plasma induced by the previous laser beam. Further, a pulse laser beam for excitation is incident, and B and Li components existing in the plasma are laser excited. The light emission intensity emitted by the B and Li components excited by the irradiation of the plasma generation pulse laser light and the excitation pulse laser light is detected using a photodetector, and the light emission intensity emitted by the B and Li components exists in the plasma portion. By correcting with the component composition, the B and Li components contained in the reactor cooling water as a sample are immediately and directly quantified to a minute level of ppb order.
[0017]
The present invention also provides a measurement cell disposed in a measurement field so as to allow water flow and laser light penetration, and a pulsed laser beam for plasma generation having a pulse energy of 10 to 40 mJ with respect to water in the measurement cell. A laser for generating plasma, an excitation laser for emitting a pulse laser beam for excitation of a detection target component contained in the water in synchronization with the pulse laser beam for plasma generation, and a pulse laser beam for plasma generation Provided is a concentration measurement system for a detection target component, comprising: calculation means for calculating an actual value of the concentration of the detection target component based on the intensity of light emitted from the detection target component by irradiation and irradiation of the excitation pulse laser beam. . Here, as described in claim 7, it is preferable that an emission interval of the plasma generation pulse laser beam and the excitation pulse laser beam is in a range of 1 μs to 13 μs. In addition, as described in claim 8, 0.1 to 1 μs after irradiation with the pulsed laser beam for plasma generation or the pulsed laser beam for excitation, the component to be detected is re-excited with a wavelength width of 0.1 hm or less. It is preferable to further include a wavelength tunable laser that irradiates a laser beam adjusted to a wavelength to be adjusted (LIF method).
[0018]
Further, it is preferable that the calculation means is a computer and corrects the emission intensity emitted from the detection target component by irradiation with the excitation pulse laser beam based on the emission line emitted from the oxygen atom.
[0019]
According to the present invention, the measurement cell is substantially hexahedron, and light transmitting glass is provided on the first surface on which the pulsed laser beam for plasma generation and the pulsed laser beam for excitation are incident via a sealing means. The second surface facing the first surface is provided with a laser trap plate via a sealing means, and the two surfaces facing each other except for the first surface and the second surface flow the water. An inlet and an outlet that allow the light to pass through are provided, and light-transmitting glass that transmits the plasma light and the light emission is provided on the remaining two surfaces facing each other through a sealing means.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals denote the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.
[0021]
FIG. 1 schematically shows a control system of a pressurized water reactor plant to which the method and apparatus according to the present invention is applied. In a solid containment vessel 1, a steam generator 2 and a reactor 3 are arranged. ing. The primary cooling water sent into the nuclear reactor 3 by the cooling water pump 5 provided in the pipe 8 is heated to become high temperature and high pressure, and enters the water chamber inlet side 2 a via the pipe 6, While flowing through a large number of heat transfer tubes 2b, the feed water supplied from the piping 7 is heated and cooled, and exits the steam generator 2 from the outlet side 2c of the water chamber. Then, it is circulated again to the reactor 3 by the cooling water pump 5.
[0022]
The feed water heated in the steam generator becomes steam and is supplied to the steam turbine (not shown) through the pipe 9. Further, a primary cooling system pipe 6 extending from the high temperature side of the reactor 3 to the steam generator 2 has a pressurizer for maintaining the cooling water in a pressurized state exceeding the saturation pressure in order to suppress the boiling of the cooling water in the core. 4 is provided.
[0023]
The low-temperature side pipe 8 constituting the primary cooling system includes an extraction line 10a for extracting a part of the cooling water upstream of the cooling water pump 5 and a part of the cooling water downstream of the cooling water pump 5. A chemical volume control system 10 including a filling line 10b returning to the pipe 8 on the side is connected. The extraction line 10a of the chemical volume control system 10 is provided with a desalting tower 11 and a volume control tank 12, and the filling line 10b includes a boric acid tank 14, a primary chemical tank 15 and the like in addition to a filling pump 13. The functions of the chemical volume control system 10 are provided to refill the primary cooling system with cooling water, remove corrosion products and fission products in the cooling water, adjust boric acid concentration, and the like. The extraction line 10a is also provided with a control valve 37, which will be described later.
[0024]
In such a pressurized water reactor plant, for example, according to the present invention, an apparatus for managing or controlling the B and Li component concentrations of the primary cooling water, an apparatus for generating pulsed laser light and irradiating the cooling water of the primary cooling system, An apparatus for finally calculating the B and Li component concentrations from the information obtained by this irradiation, and an apparatus for adjusting the amounts of B and Li in the primary cooling system based on the calculated B and Li component concentrations Is provided. The measurement field of the apparatus for irradiating the cooling water with laser light is, for example, in the middle of the high temperature side pipe 6 of the primary cooling system or on the outer peripheral surface of the liquid phase part of the pressurizer 4 in FIG. , (2) can be set.
[0025]
Next, FIG. 2 shows an outline of an apparatus 20 for managing or controlling the B and Li component concentrations of, for example, primary cooling water according to the present invention. In FIG. 2, the apparatus 20 uses a laser beam emitted from a pulsed laser 21 for plasma generation in a reactor cooling water in a measurement cell provided in a measurement field 25 using mirrors 22 and 23, a lens 28, and the like. The chemical species existing in the measurement cell are converted into plasma as illustrated in FIG. The laser output of the plasma generating pulse laser 21 is 10 to 40 mJ in the embodiment of the present invention. FIG. 10 shows experimental results of laser output and signal intensity in the case of Li. From this result, it is preferable that the laser output be 10 to 40 mJ so as to be compatible with plasma in liquid. I know that there is. The output of the pulse laser 26 for selective excitation of B and Li for increasing the emission intensity of the B and Li components in the cooling water after a certain time in synchronization with the laser beam emission from the plasma generation pulse laser 21 is as follows. As described above, the light is incident on the plasma induced through the mirrors 22 and 23 and the lens 28 as shown in FIG. 7B through the mirror 27 and the like. FIG. 11 is an experimental result of the present invention showing the relationship between the emission interval of the pulse laser beam for plasma generation and the excitation pulse laser beam and the signal intensity in the case of Li, and the emission interval or pulse interval is 1 μs to 13 μs. It is preferably 1.2 μs to 8.2 μs, more preferably 1.8 μs to 6.0 μs. Note that although the unit is omitted from the signal intensity on the vertical axis in FIGS. 10 and 11, this may be considered as a signal intensity ratio.
[0026]
After detecting the plasma light generated by the laser beam for plasma generation and identifying the component composition of the plasma part, the emission intensity emitted by the B and Li components excited by the irradiation of the pulse laser beam for B and Li excitation is measured. And using a detector. That is, in FIG. 2 and FIG. 3, the light emitted by B and Li excited by the above-described plasma light emission and component excitation laser light is collected by the lenses 29a and 29b, and the respective lights are optical fibers 30a and 30b. To the spectrometers 31a and 31b. A part of the light reflected by the mirror 23 is converted into a laser output by the power meter 33 and sent to the personal computer 34b. The personal computer 34b is connected to the detector 32b and is also connected to another personal computer 34a. The personal computer 34b outputs data to a monitor (not shown) and displays the Li and B concentrations as digital values, for example, every 10 minutes. can do. The emission spectra emitted by the B and Li components are measured by the spectroscope 31b and the detector 32b, sent to the personal computer 34b, and the peak intensities I of Li and B B , I Li Is read. On the other hand, the emission spectrum of oxygen (O) is measured by the personal computer 34a based on the inputs from the spectroscope 31a and the detector 32a, and the O peak intensity I O Is read, and the read O peak intensity I O Is sent to the personal computer 34b. In this way, each signal is transferred to the computer 34b where the O peak intensity I O Peak intensity I for B , I Li Corrected peak intensity I corrected by taking the ratio of Li *, I B By obtaining * and multiplying that value by fLi, which is the slope of the Li calibration curve, and fB, which is the slope of the B calibration curve, Li concentration (CLi) and B concentration (CB) can be obtained. As an example, FIG. 8 illustrates an emission spectrum of an aqueous Li solution.
[0027]
In this way, the component composition of the measurement field 25 is obtained from the signal of the plasma emission, the emission intensity is corrected based on the information, and the concentrations of the B and Li components existing in the measurement field 25 are calculated. In this way, the B and Li concentrations in the reactor cooling water are measured with high accuracy to the ppb order by correcting the emission intensity emitted by the B and Li components with the oxygen emission line that is the component composition of the plasma part. 35 is a known synchronizing device that synchronizes the oscillation of the pulse laser 21 for plasma generation 21 and the pulse laser 26 for selective excitation of B and Li and the operation of the detectors 32a and 32b.
[0028]
Examples of the wavelengths of the pulsed laser beam for plasma generation and the pulsed laser beam for component excitation used in the present invention are shown below, but this is only used because the YAG laser can be easily obtained at a low cost, Of course, other laser beams may be used.
Laser wavelength for plasma and component excitation ...
1064nm (YAG laser fundamental wave)
532 nm (second harmonic of YAG laser) or
355 nm (third harmonic of YAG laser)
[0029]
As can be seen from the above description, the present invention combines the LBS method and the LIF method. By this combination, it is possible to eliminate each drawback. Specifically, since the temperature of the local location is raised to 10000 ° C. to 20000 ° C. with the first plasma generating laser beam, almost all chemical species are in an atomic state. At this time, it is not necessary to consider the change of the excitation wavelength due to the bonding state of the chemical species. The concentration of B and Li can be obtained only by injecting the laser beam for exciting the plasmaized B and Li atoms. Satisfy the measurement. That is, although the system uses the LBS method in two stages, the detection sensitivity is greatly improved (about 3 to 5 digits) as compared with the case of the LBS method in one stage.
[0030]
Next, returning to FIG. 1 again, an application example in the nuclear power plant of the present invention will be described. As described above, the measurement field 25 is set on a part of the high-temperature side pipe 6 of the primary cooling system or the outer peripheral surface of the liquid phase part of the pressurizer 4, and here, the LBS two-stage B, Li component concentration control method or A component concentration measurement system 20a (a portion surrounded by a chain line in FIG. 2) of the apparatus 20 is introduced. The B and Li concentrations in the reactor cooling water must always be kept at a certain specified value for reasons such as reactor control. Therefore, the controller 20 for the B and Li component concentrations is linked to the chemical volume control system 10, and the dilution / requirement of the B and Li components is required based on the actual measured values of the B and Li concentrations and the predetermined values to be maintained. The concentration and removal amount is calculated and displayed to the nuclear power plant operator.
[0031]
That is, the analysis result obtained in accordance with the above measurement procedure is displayed in concentration on a control panel indicating unit (not shown) that can be arranged in the central control room 36 of the nuclear power plant, and further the computer of the central control room 36 When it is determined that a dilution / removal / concentration operation related to the volume control system 10 is necessary by performing a comparative evaluation with the concentration reference value at the time of measurement for B and Li after being processed in 34a and 34b. In addition to displaying the specific indication value again on the control plate indication portion of the central control chamber 36, based on the indication value, the control valve 37 provided in the extraction line 10a of the chemical volume control system 10 is opened and closed, The amount of water passing through the extraction line 10a is controlled. That is, when the measured or detected concentration value becomes lower than the lower limit value of the set range, the control valve 37 is opened. Conversely, when the measured or detected concentration value becomes higher than the upper limit value of the set range, the control valve 37 is closed.
[0032]
Thus, while setting the measurement field of the measurement system 20a of the B, Li component concentration of the LBS two-stage method to the high temperature side pipe 6 of the reactor primary cooling system, based on the computer processing of the analysis result of the measurement system 20a, By controlling the control valve 37 provided in the cooling water extraction line 10a of the chemical volume control system 10 connected to the low temperature side pipe 8 of the primary cooling system, real time measurement of B and Li component concentrations in the reactor cooling water is possible. As a result, the B and Li concentration values of the primary cooling system can always be processed online, so that the reactivity control and water quality management of the reactor can be operated more efficiently. This also shortens the process period for periodic inspections, etc. Connected.
[0033]
In this case, as the measurement cell 40 provided in a measurement field, what is shown in FIG.5 and FIG.6 is suitable. 5 and 6, the measurement cell 40 is substantially a regular hexahedron, and in the embodiment, the inlet side flow pipe 41 a for cooling water, which is usually 70 to 80 ° C., which is sample water on the two upper and lower surfaces facing each other. , The outlet side flow pipe 41b is attached (FIG. 6), and the surface on which the plasma generating pulse laser beam and the excitation pulse laser beam are incident is made of rubber or plastic which is sealing means or vibration preventing means. A light transmission glass 43 is provided through such an O-ring 42. In addition, a laser trap plate 44 is provided on the surface facing the light transmitting glass 43 through the same sealing means 42. The laser trap plate 44 is preferably a Teflon plate having a high trapping effect, and the measurement cell body and the flow pipe are preferably made of stainless steel. Light transmitting glasses 45 and 46 that transmit plasma light and light emission are provided on the remaining two surfaces facing each other through similar sealing means 42 (FIG. 5).
[0034]
In addition, as shown in FIG. 4, in order to further improve the measurement sensitivity, the wavelength width is 0.1 hm or less after 0.1 to 1 μs after irradiation with the plasma generation pulse laser beam or the excitation pulse laser beam. A tunable laser 50 that irradiates a laser beam adjusted to a wavelength for exciting the component can be further provided. The wavelength tunable laser 50 is also connected to the synchronizing device 35, and the laser light from the wavelength tunable laser 50 is irradiated to the cooling water in the measurement cell via the mirrors 51 and 52, the above-described mirrors 22 and 23, and the like. If this LBS / LIF combined method is used, the detection sensitivity can be further improved.
B, Li selective excitation laser wavelength ...
B: 208.89 nm or 249.68 nm
Li: 274.12 nm, 323.26 nm or 670.78
[0035]
【The invention's effect】
According to the present invention, in a nuclear reactor having a cooling system, a method for controlling the concentration of a detection target component in cooling water of the cooling system to a specified value, wherein the measurement field of the detection target component is set in the cooling system And irradiating the cooling water of the measurement field with a pulsed laser beam for plasma generation, detecting a concentration value of the component to be detected based on the plasma light generated by the irradiation of the pulsed laser beam for plasma generation, The cooling water injection control valve of the cooling system is controlled to open and close by a concentration signal representing the value. In addition, according to the control method of the present invention, the measurement field of the detection target component is set in the cooling system, and the pulsed laser beam for plasma generation and the excitation pulse laser beam of the detection target component are synchronized with the cooling water of the measurement field. And detecting the concentration value of the detection target component based on the plasma light generated by the irradiation of the plasma generation pulse laser light and the emission intensity emitted from the detection target component by the irradiation of the excitation pulse laser light. Then, the cooling water injection control valve of the cooling system is controlled to open and close by a concentration signal representing the concentration value. Therefore, according to the present invention, the concentration value of the cooling system can always be processed online, so that the reactivity control and water quality management of the reactor can be operated more efficiently, which shortens the process period such as periodic inspection. It leads to.
[0036]
In addition, workers in charge of water quality management of reactor cooling water can avoid the possibility of exposure from radioactive corrosion products contained in the sample during sampling, sample transportation, and analysis. It also contributes greatly.
Furthermore, since the concentration measurement by the above laser is established, the time required for the collection of the work sample in the conventional method, the transportation to the analyzer and the measurement work itself is eliminated. The concentration of components can be grasped in real time, and work related to concentration management becomes efficient.
[0037]
Further, as in another embodiment of the present invention, if the pulse energy of the plasma generation pulse laser beam emitted to the water in the measurement cell is set to 10 to 40 mJ, the detection target component in the cooling water can be detected. Therefore, it is possible to effectively detect components in the cooling water. As in the embodiment of the present invention, the measurement sensitivity is improved by setting the emission intervals of the plasma generation pulse laser beam and the excitation pulse laser beam in the range of 1 μs to 13 μs. In addition, as in the embodiment of the present invention, the wavelength width is adjusted to a wavelength that excites the detection target component with a wavelength width of 0.1 hm or less 0.1 to 1 μs after irradiation with the pulsed laser beam for generating plasma or the pulsed laser beam for excitation. The measurement sensitivity can be further improved by providing a wavelength tunable laser that emits the laser beam.
[0038]
Further, the measurement accuracy can be further improved by correcting the emission intensity emitted from the detection target component by irradiation with the excitation pulse laser beam based on the emission line emitted from the oxygen atom.
[0039]
According to another aspect of the present invention, the measurement cell is provided with a laser trap plate via a sealing means on a surface opposite to a surface on which the plasma generation pulse laser beam and the excitation pulse laser beam are incident. Therefore, the laser beam can be effectively trapped, and the sealing means can prevent water leakage and absorb vibration.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a pressurized water reactor plant to which a concentration control method and apparatus for detection target components according to an embodiment of the present invention is applied.
FIG. 2 is a schematic diagram showing a concentration measuring device for a detection target component of the present invention.
FIG. 3 is an explanatory diagram illustrating a procedure executed by the concentration control apparatus of FIG. 2;
FIG. 4 is a schematic diagram showing a concentration measuring apparatus with higher sensitivity of the detection target component of the present invention.
5 is a cross-sectional view of a measurement cell used in the concentration control apparatus of FIGS. 2 and 4. FIG.
6 is a side view of a measurement cell used in the concentration control apparatus of FIGS. 2 and 4. FIG.
7A is a conceptual diagram of the measurement principle of the present invention showing an LBS method application process, and FIG. 7B is an LIF application process.
FIG. 8 is a graph showing the relationship between the wavelength and intensity (%) of the Li aqueous solution emission spectrum.
FIG. 9 is a chart showing the relationship between the elapsed time from YAG laser irradiation and the signal intensity in the case of Li.
FIG. 10 is a chart showing the relationship between laser output and signal intensity for Li.
FIG. 11 is a chart showing the relationship between pulse interval and signal intensity for Li.
FIG. 12 is an explanatory diagram illustrating a conventional procedure for measuring B and Li concentrations in a nuclear power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 2 ... Steam generator, 3 ... Pressurized water reactor, 4 ... Pressurizer, 6 ... High temperature side piping of primary cooling system, 8 ... Low temperature side piping of primary cooling system, 10 ... Chemical volume control system, 10a ... Extraction line, DESCRIPTION OF SYMBOLS 10b ... Filling line, 20 ... Concentration control apparatus, 21 ... Plasma generation pulse laser, 25 ... Measurement field, 26 ... B, Li selective excitation pulse laser, 34a, 34b ... Computer (calculation means), 37 ... Control valve, 40 ... measurement cell, 41a ... inlet side flow pipe (inlet), 41b ... outlet side flow pipe (outlet), 42 ... O-ring (sealing means), 43, 45, 46 ... quartz glass (light transmission glass) ) 44... Laser trap plate (Teflon plate) 50. Tunable laser.

Claims (6)

水の通流及びレーザ光の貫入を許容するように測定場に配置された測定セルと、
該測定セル内の水に対しパルスエネルギ10〜40mJのプラズマ生成用パルスレーザ光を発射するプラズマ生成用レーザと、
前記水に含まれる検出対象成分の励起用パルスレーザ光を前記プラズマ生成用パルスレーザ光と同期して発射する励起用レーザと、
前記プラズマ生成用パルスレーザ光の照射により発生するプラズマ光及び前記励起用パルスレーザ光の照射により前記検出対象成分から発する発光強度を酸素原子から発する発光線に基づいて補正することにより前記検出対象成分の濃度の実際値を算出する算出手段とを備え、
前記プラズマ生成用パルスレーザ光及び前記励起用パルスレーザ光の発射間隔は1μs〜13μsの範囲にある検出対象成分の濃度計測システム。
A measuring cell arranged in the measuring field to allow water flow and laser light penetration;
A plasma generating laser that emits a pulsed laser beam for generating plasma with a pulse energy of 10 to 40 mJ to water in the measurement cell;
An excitation laser that emits the excitation pulse laser beam of the detection target component contained in the water in synchronization with the plasma generation pulse laser beam;
The detection target component is corrected by correcting emission intensity emitted from the detection target component by irradiation of the plasma generation pulse laser light and the excitation pulse laser light based on an emission line emitted from an oxygen atom. Calculating means for calculating the actual value of the concentration of
A concentration measurement system for a component to be detected in which a discharge interval between the plasma generation pulse laser beam and the excitation pulse laser beam is in a range of 1 μs to 13 μs.
前記プラズマ生成用パルスレーザ光又は前記励起用パルスレーザ光の照射の0.1〜1μs後に、波長幅が0.1nm以下で前記検出対象成分を再励起する波長に調整したレーザ光を照射する波長可変レーザを更に備える請求項1に記載の濃度計測システム。After 0.1 to 1 μs after irradiation with the pulsed laser light for plasma generation or the excitation pulsed laser light, a laser beam adjusted to a wavelength for reexciting the detection target component with a wavelength width of 0.1 nm or less is applied. The concentration measurement system according to claim 1, further comprising a wavelength tunable laser. 前記測定セルは、ほぼ六面体であって、前記プラズマ生成用パルスレーザ光及び前記励起用パルスレーザ光が入射する第1面には封止手段を介して光透過ガラスが設けられ、
該第1面と対峙する第2面には封止手段を介してレーザトラップ板が設けられ、
前記第1面及び前記第2面を除いて対峙する2面には前記水の通流を許容する入口及び出口が設けられ、
対峙する残りの2面に前記プラズマ光及び前記発光を透過する光透過ガラスが封止手段を介して設けられている請求項1または2に記載の濃度計測システム。
The measurement cell is substantially a hexahedron, and a light transmitting glass is provided through a sealing means on a first surface on which the pulsed laser beam for plasma generation and the pulsed laser beam for excitation are incident,
A laser trap plate is provided on the second surface facing the first surface via a sealing means,
The two surfaces facing each other except the first surface and the second surface are provided with an inlet and an outlet allowing the water flow,
3. The concentration measuring system according to claim 1 , wherein light-transmitting glass that transmits the plasma light and the light emission is provided on the remaining two surfaces facing each other through a sealing unit.
冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する方法であって、
前記冷却系に前記検出対象成分の測定場を設定し、請求項1乃至3の内のいずれか1項に記載の濃度計測システムを用いて前記検出対象成分の濃度の実際値を検出し、
該実際値及び前記規定値のコンピュータ処理に基づいて、前記冷却系に接続された検出対象成分調整ラインの制御弁を開閉制御する、検出対象成分の濃度制御方法。
In a nuclear reactor having a cooling system, a method of controlling the concentration of a detection target component in cooling water of the cooling system to a specified value,
A measurement field of the detection target component is set in the cooling system, and an actual value of the concentration of the detection target component is detected using the concentration measurement system according to any one of claims 1 to 3 .
A detection target component concentration control method for controlling opening and closing of a control valve of a detection target component adjustment line connected to the cooling system based on computer processing of the actual value and the specified value.
冷却系を有する原子炉において、該冷却系の冷却水中の検出対象成分の濃度を規定値に制御する装置であって、
前記検出対象成分の測定場が前記冷却系に設定された請求項1乃至3の内のいずれか1項に記載の濃度計測システムと、
該濃度計測システムにより検出された前記検出対象成分の濃度の実際値が前記規定値に対して許容し得るか否かを判断する判断手段と、
前記冷却系に接続された検出対象成分調整ラインの制御弁と、
前記検出対象成分の濃度の前記実際値が異常値と判断された場合に、前記実際値が前記規定値に復帰するように前記制御弁を開閉制御する制御手段とを備える、検出対象成分の濃度制御装置。
In a nuclear reactor having a cooling system, an apparatus for controlling the concentration of a detection target component in cooling water of the cooling system to a specified value,
The concentration measurement system according to any one of claims 1 to 3 , wherein a measurement field of the detection target component is set in the cooling system;
Determination means for determining whether an actual value of the concentration of the detection target component detected by the concentration measurement system is acceptable for the specified value;
A control valve of a detection target component adjustment line connected to the cooling system;
Concentration of the detection target component, comprising control means for controlling the opening and closing of the control valve so that the actual value returns to the specified value when the actual value of the concentration of the detection target component is determined to be an abnormal value. Control device.
蒸気発生器に高温側配管及び低温側配管からなる一次冷却系により連絡する加圧水型原子炉において、前記一次冷却系の冷却水中におけるB,Li成分の濃度を規定値に制御するための装置であって、
前記B,Li成分の測定場が前記一次冷却系の高温側に設定された請求項1乃至3の内のいずれか1項に記載の濃度計測システムと、
前記一次冷却系の前記低温側配管に接続されたB,Li成分調整ラインの制御弁と、
前記濃度計測システムにより検出された前記B,Li成分の濃度の実際値が異常値と判断された場合に、該実際値が前記規定値に復帰するように前記制御弁を開閉制御する制御手段とを備える、原子炉冷却水濃度の制御装置。
In a pressurized water reactor that communicates with a steam generator through a primary cooling system comprising a high temperature side pipe and a low temperature side pipe, it is an apparatus for controlling the concentrations of B and Li components in the cooling water of the primary cooling system to specified values. And
The concentration measurement system according to any one of claims 1 to 3 , wherein a measurement field for the B and Li components is set on a high temperature side of the primary cooling system;
A control valve of a B, Li component adjustment line connected to the low temperature side pipe of the primary cooling system;
Control means for controlling the opening and closing of the control valve so that the actual value returns to the specified value when the actual value of the concentration of the B and Li components detected by the concentration measurement system is determined to be an abnormal value; A reactor cooling water concentration control device.
JP13107999A 1999-05-12 1999-05-12 Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system Expired - Fee Related JP3611285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13107999A JP3611285B2 (en) 1999-05-12 1999-05-12 Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13107999A JP3611285B2 (en) 1999-05-12 1999-05-12 Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system

Publications (2)

Publication Number Publication Date
JP2000321393A JP2000321393A (en) 2000-11-24
JP3611285B2 true JP3611285B2 (en) 2005-01-19

Family

ID=15049508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13107999A Expired - Fee Related JP3611285B2 (en) 1999-05-12 1999-05-12 Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system

Country Status (1)

Country Link
JP (1) JP3611285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032388A (en) * 2010-06-30 2012-02-16 Central Res Inst Of Electric Power Ind Method and device of measuring concentration of metallic surface adhesion component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510561B2 (en) * 2000-04-28 2004-03-29 三菱重工業株式会社 Coolant metal leak detection method and leak detector
JP3585473B2 (en) * 2002-06-13 2004-11-04 株式会社四国総合研究所 Seawater leak monitoring method and seawater leak monitoring device
JP2005147788A (en) * 2003-11-13 2005-06-09 Inst Nuclear Energy Research Rocaec Boric acid purification and reutilization system, and method, using reverse osmosis separation method
JP4176024B2 (en) * 2004-01-15 2008-11-05 株式会社東芝 Lithium leak detection device and lithium leak detection method
FR2910690B1 (en) * 2006-12-26 2009-04-03 Areva Np Sas METHOD FOR ESTIMATING THE CONCENTRATION IN A CHEMICAL ELEMENT IN THE PRIMARY COOLING LIQUID OF A NUCLEAR REACTOR
JP2013083511A (en) * 2011-10-07 2013-05-09 Ishikawajima Constr Materials Co Ltd Tubular structure
KR101403344B1 (en) * 2012-02-15 2014-06-11 한국수력원자력 주식회사 In-situ corrosion analysis apparatus for nuclear power plant using laser measurement
JP6022210B2 (en) * 2012-02-15 2016-11-09 一般財団法人電力中央研究所 Method and apparatus for measuring concentration of metal surface adhering component
WO2017032379A1 (en) 2015-08-23 2017-03-02 Copenhagen Atomics Aps Method for operating a molten salt nuclear reactor
RU2606369C1 (en) * 2015-09-16 2017-01-10 Сергей Константинович Манкевич System of measuring concentration of boric acid in power nuclear reactor heat carrier circuit
JP6783192B2 (en) * 2017-06-09 2020-11-11 日立Geニュークリア・エナジー株式会社 How to operate the boron recycling system and the boron recycling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032388A (en) * 2010-06-30 2012-02-16 Central Res Inst Of Electric Power Ind Method and device of measuring concentration of metallic surface adhesion component

Also Published As

Publication number Publication date
JP2000321393A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
JP3611285B2 (en) Concentration measurement system for components to be detected, and reactor cooling water concentration control method and apparatus using the concentration measurement system
Maurya et al. A review of the LIBS analysis for the plasma-facing components diagnostics
US5751416A (en) Analytical method using laser-induced breakdown spectroscopy
US7973285B2 (en) Apparatus for detecting the leakage of heavy water in nuclear reactor system and detection method using the same
EP3338283B1 (en) Method for operating a molten salt nuclear reactor
EP4012723A1 (en) Method for monitoring irradiation embrittlement of nuclear power plant reactor pressure vessel
US8855259B2 (en) System and method for detecting leakage of nuclear reactor coolant using laser induced emission spectrum
Yamada et al. In-situ X-ray Observation of Molten Pool Depth during Laser Micro Welding.
CN110931140B (en) Device for measuring leakage rate of primary circuit of water-cooled reactor and working method thereof
Andrews et al. Sensor technology for molten salt reactor off-gas systems
US20150115157A1 (en) Nuclear reactor fuel integrity monitor
CN108088813B (en) On-line detection device for metal elements in molten salt
CN106908466A (en) A kind of online X-ray fluorescence spectra analysis system
US4882122A (en) Method and apparatus for obtaining a water sample from the core of a boiling water reactor
JP3510561B2 (en) Coolant metal leak detection method and leak detector
JP2000310596A (en) Element analyzer
KR101285530B1 (en) Method and system for monitoring leakage of steam generator tube of nuclear power plant using trace level of boron
KR101519799B1 (en) Method and System for Detecting Trace Boron using Ultraviolet-Visible Spectrophotometer and Ion Chromatography for Steam Generator Tube Leakage On-line Monitoring
JP4052398B2 (en) Multiple measurement analyzer
Galbács et al. Nuclear Applications of Laser‐Induced Breakdown Spectroscopy
JP2010210353A (en) Hydrogen analyzer for metal material and method for the same
JP2002372495A (en) Liquid quality analysis apparatus
RU2766300C1 (en) Laser system for detecting emergency operation of a nuclear reactor
Calderoni et al. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility
WO2011049366A2 (en) System and method for detecting defects of nuclear reactor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees