JP3610862B2 - Engine exhaust purification system - Google Patents

Engine exhaust purification system Download PDF

Info

Publication number
JP3610862B2
JP3610862B2 JP2000026273A JP2000026273A JP3610862B2 JP 3610862 B2 JP3610862 B2 JP 3610862B2 JP 2000026273 A JP2000026273 A JP 2000026273A JP 2000026273 A JP2000026273 A JP 2000026273A JP 3610862 B2 JP3610862 B2 JP 3610862B2
Authority
JP
Japan
Prior art keywords
catalyst
oxygen
fuel ratio
air
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000026273A
Other languages
Japanese (ja)
Other versions
JP2001214781A (en
Inventor
成章 柿▲ざき▼
雅智 角山
修 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000026273A priority Critical patent/JP3610862B2/en
Publication of JP2001214781A publication Critical patent/JP2001214781A/en
Application granted granted Critical
Publication of JP3610862B2 publication Critical patent/JP3610862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount

Description

【0001】
【発明の属する技術分野】
この発明はエンジンの排気浄化装置に関する。
【0002】
【従来の技術】
排気中の有害成分であるHC、CO、NOxを三元触媒(以下単に「触媒」という)により同時に浄化するには触媒の雰囲気を理論空燃比(以下単に「ストイキ」という)にしなければならないので、触媒の雰囲気がストイキの酸素濃度状態となるように、不足する酸素を吸収したり過剰な酸素を脱離する、いわゆる酸素ストレージ能力を触媒に持たせている。この結果、たとえば酸素を保持(吸収)していない状態の触媒に対して、ストイキよりリーン(以下単に「リーン」という)の排気を与えると、過剰分の酸素が瞬時に触媒内に吸収されるため、触媒の酸素保持量が飽和するまでは触媒雰囲気がストイキに保たれる。この逆に、酸素を保持した状態の触媒に対して、ストイキよりリッチ(以下単に「リッチ」という)の排気を与えると、触媒内の酸素が瞬時に脱離されて、雰囲気中に不足していた酸素が補われる。そのため、触媒に保持されていた酸素が全て脱離するまでは触媒雰囲気がストイキに保たれる。
【0003】
このように触媒が酸素ストレージ能力を持っているため、一時的な空燃比のずれから生じる酸素の過不足を触媒が補って触媒雰囲気をストイキに保つことができるのである。換言すると、触媒の酸素保持量が飽和量に達したり、触媒が酸素を保持していない状態となったりしてしまうと、HC、CO、NOxを浄化できなくなり、排気エミッションが悪化する。
【0004】
そこで、酸素ストレージ能力を十分に利用して排気エミッションの悪化を防止するため、所定時間当たりに触媒へ流入する過不足酸素量を計算し、この所定時間当たりの値に基づいて触媒酸素保持量を求め、この触媒酸素保持量が、酸素保持量の目標値と一致するようにフィードバック制御を行うようにしたものが提案されている(特開平5−195842号公報、同7−259602号公報参照)。
【0005】
【発明が解決しようとする課題】
ところで、先願装置(特願平10−295110号参照)では実験結果により触媒下流の空燃比がリーンとなった後も触媒に酸素が吸収されることを初めて見いだした。
【0006】
この知見を説明すると、排気の空燃比を13程度のリッチから16程度のリーンへと切換えたときの触媒前後の空燃比を測定した結果(実験結果)を図2に示す。同図において、A区間では触媒の酸素を吸収する速度が速く、触媒上流の空燃比(図では「F−A/F」で示す)がリーンであっても、触媒に流入する過剰酸素がすべて触媒に吸収されるため、触媒下流の空燃比(図では「R−F/A」で示す)はリーンを示していない(ストイキを示す)。これに対してB区間に移ると、流入する過剰酸素のすべては触媒に吸収されないので、触媒下流の空燃比がリーンになっている。つまり、触媒下流の空燃比がリーンになっているB区間においても、吸収の速度が遅いものの、酸素(もしくはNOなどの酸化物)が触媒に吸収されている。
【0007】
これをさらに説明すると、図示のものは触媒に担持される貴金属(以下単に「触媒金属」という)のほかに酸素吸収を助けるため添加剤(以下単に「酸素吸収補助剤」という)を有するものである。この場合、触媒金属(たとえば白金やロジウム)は物理吸着といって酸素を分子状態のまま吸着することによって酸素を吸収するものであるのに対して、酸素吸収補助剤(たとえば酸化セリウム、バリウム、卑金属)は化学結合により酸素を化合物の形にして吸収するという違いがあり、両者の酸素吸収(酸素脱離の場合も同様)の方法のこうした差異により酸素吸収の速度に速い成分と遅い成分とがあるものと思われる。なお、触媒金属に対しては吸着のほうが用語として正確であるが、ここでは酸素吸着や酸素吸収の速度の違いだけを問題とするので、触媒金属に対しても吸収を用いることとする。
【0008】
したがって、図2において、触媒下流の空燃比がストイキからリーンに変化するときの触媒酸素保持量を触媒金属による最大触媒酸素保持量とし、その後に酸素吸収補助剤により吸収される酸素量を酸素吸収補助剤による触媒酸素保持量とすれば、燃料カット時やリーンクランプ時(以下燃料カット時で代表させる)に触媒に吸収される酸素保持量を、触媒金属による最大触媒酸素保持量に酸素吸収補助剤による触媒酸素保持量を加えたものとしている。
【0009】
しかしながら、従来装置によれば、触媒下流の空燃比センサがリーンを示したタイミングでの触媒酸素保持量を最大触媒酸素保持量とし、この最大触媒酸素保持量の1/2を目標値とする構成であるため、B区間での酸素保持量(酸素吸収補助剤による触媒酸素保持量)を無視している。このため、燃料カットが解除され、触媒酸素保持量を目標値へと収める空燃比制御に戻ったときにエラーが生じると考えられる。
【0010】
そこで、燃料カット時のように触媒下流の空燃比がリーンを示す期間において、酸素吸収補助剤により触媒に吸収される酸素保持量をも含めて触媒酸素保持量を演算するとともに、触媒金属による最大触媒酸素保持量に酸素吸収補助剤による最大触媒酸素保持量を加えた値の1/2を目標値として設定し、酸素吸収補助剤により触媒に吸収される酸素保持量をも含めた触媒酸素保持量がこの目標値となるように空燃比制御を行うことで、燃料カット後や高出力後に触媒酸素保持量を目標値へと収める空燃比制御に戻ったときにエラーが生じるのを防止するようにすることが考えられる。
【0011】
しかしながら、実験を行ってみると、酸素吸収補助剤による酸素吸収または酸素脱離の速度は触媒金属による酸素吸収または酸素脱離の速度に比べて非常に遅い(ほとんど可制御でない)ため、触媒金属と酸素吸収補助剤の両者により吸収される酸素保持量の最大値に基づいて目標値を設定したのでは、触媒酸素保持量を目標値に戻すのに非常に時間がかかり、そのあいだ空燃比操作量がリッチ側やリーン側の一方にとどまり、排気有害成分を十分に低減できないことがわかった。すなわち、酸素吸収補助剤による触媒酸素保持量を目標値に取り込んでも、短時間の排気性能に対してなんら寄与しないのである。
【0012】
そこで本発明は、触媒金属と酸素吸収補助剤の少なくとも2つの成分を含む触媒を対象として、目標値を触媒金属による最大触媒酸素保持量のみに基づいて設定することにより、短時間の排気性能に対して寄与しない酸素吸収補助剤の影響を排除することを目的とする。
【0013】
【課題を解決するための手段】
第1の発明は、図6に示すように、エンジンの排気通路に配設された酸素保持能力を有する触媒であって酸素吸収または酸素脱離の速度が速い成分と遅い成分の少なくとも2つの成分を含む触媒21と、前記触媒21上流の排気空燃比を検出する触媒上流側センサ24と、この触媒上流側センサ21の出力に基づいて触媒上流の所定時間当たりの過不足酸素量を演算する手段26と、前記触媒21下流の排気空燃比を検出する触媒下流側センサ25と、この触媒下流側センサ25により検出される前記触媒21下流の排気空燃比がストイキの近傍であるとき、前記触媒上流の所定時間当たりの過不足酸素量に基づいて酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量HOSCnを演算する手段22と、空燃比制御条件の成立時に、そのときの前記酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量HOSCnが前記酸素吸収または酸素脱離の速度が速い成分のみに対する目標値となるようにエンジンの空燃比を制御する手段23とを備える。
【0014】
第2の発明では、第1の発明において前記酸素吸収または酸素脱離の速度が速い成分が触媒金属である。
【0015】
第3の発明では、第1の発明において前記酸素吸収または酸素脱離の速度が遅い成分が酸素吸収補助剤である。
【0016】
第4の発明では、第1から第3までのいずれか一つの発明において前記目標値が、前記酸素吸収または酸素脱離の速度が速い成分による最大触媒酸素保持量の1/2である。
【0017】
第5の発明では、第4の発明において前記最大触媒酸素保持量が予め定めた固定値である。
【0018】
第6の発明では、第4の発明において前記最大触媒酸素保持量が、触媒下流の排気空燃比がストイキからリーンに変化するときの前記酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量HOSCである。
【0019】
【発明の効果】
第1、第2、第3の発明では、酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量だけを演算するとともに、この演算値が酸素吸収または酸素脱離の速度が速い成分のみに対する目標値となるように空燃比を制御するので、目標値への収束が速まり、これによって短時間の排気性能に対して寄与しない酸素吸収の速度が遅い成分の影響を排除できる。
【0020】
目標値が酸素吸収または酸素脱離の速度が速い成分による最大触媒酸素保持量の1/2であれば、リーン側での触媒酸素保持量のオーバーフローやリッチ側での触媒酸素保持量の不足が生じにくいので、第4の発明によれば、触媒の十分な転換性能を維持できる。
【0021】
第5の発明によれば機種毎の対応が可能である。第6の発明によれば、触媒の劣化により触媒酸素保持量が減少する場合にも最適な目標値を与えることができる。
【0022】
【発明の実施の形態】
図1において、1はエンジン本体で、その吸気通路8には吸気絞り弁5の下流に位置して燃料噴射弁7が設けられ、コントロールユニット2からの噴射信号により運転条件に応じて所定の空燃比となるように、吸気中に燃料を噴射供給する。コントロールユニット2にはクランク角センサ4からの回転数信号、エアフローメータ6からの吸入空気量信号、水温センサ11からの冷却水温信号等が入力し、これらに基づいて運転状態を判断しながら、基本空燃比の得られる燃料噴射量Tpを決定し、これに各種の補正を行って燃料噴射量Tiを演算し、これを噴射信号に変換することで、燃料噴射量制御を行う。
【0023】
排気通路9には触媒10が設置される。この触媒10は、ストイキの運転時に最大の転換効率をもって、排気中のNOxの還元とHC、COの酸化を行う。その際、触媒10では、一時的な空燃比のずれから生じる酸素の過不足を酸素ストレージ能力(酸素保持能力)により補うことで、触媒雰囲気をストイキに保つ。
【0024】
触媒10の酸素保持量は
【0025】
【数1】
酸素保持量=Σ{排気量×(触媒上流の過不足酸素濃度−触媒下流の過不足酸素濃度)}
の式から求めることができる。
【0026】
ここで、数1式の「過不足酸素濃度」は、後述する図4で示すように、ストイキでの値を基準のゼロとして、そのときの空燃比を酸素濃度に換算した値である。たとえば、空燃比がリーンのときは、ストイキの酸素濃度よりも過剰となるので、過不足酸素濃度はプラスの値となり、また空燃比がリッチのときはストイキの酸素濃度よりも不足するので、マイナスの値となるわけである。
【0027】
ところで、一般的なエンジンでは触媒上流の空燃比センサ出力に基づき排気の平均空燃比がストイキと一致するように空燃比フィードバック制御(以下「ラムダコントロール」という)が行われるため、触媒下流の空燃比はほとんどストイキ(一定)であり、このとき触媒下流の過不足酸素濃度はほぼゼロになる。
【0028】
そこで、触媒下流の空燃比がストイキにあるあいだは、上記の数1式において触媒下流の過不足酸素濃度をゼロとした
【0029】
【数2】
酸素保持量=Σ(排気量×触媒上流の過不足酸素濃度)
の式により酸素保持量を計算する。
【0030】
この場合、白金やロジウムといった触媒金属のほかに酸化セリウム、バリウム、卑金属といった酸素吸収補助剤を有するものでは、燃料カット時に触媒に吸収される酸素保持量は、触媒金属による最大触媒酸素保持量に酸素吸収補助剤による触媒酸素保持量が加わったものになるので、両者を加えた値の1/2を目標値として設定することが考えられるのであるが、酸素吸収補助剤の酸素吸収の速度は触媒金属の酸素吸収の速度に比べて非常に遅い(ほとんど可制御でない)ため、コントロールユニット2では、触媒下流の排気空燃比がストイキの近傍であるとき、触媒上流の所定時間当たりの過不足酸素量に基づいて触媒金属による触媒酸素保持量だけを演算し、空燃比制御条件の成立時に、そのときの触媒金属による触媒酸素保持量が、触媒金属のみに対する目標値となるようにエンジンの空燃比を制御する。
【0031】
コントロールユニット2で行われるこれらの制御を、図3のフローチャートにしたがって説明する。
【0032】
なお、触媒上流の広域空燃比センサ3からの空燃比信号に基づき、コントロールユニット2では、ラムダコントロール条件(所定の空燃比制御条件)のときラムダコントロールを行う。
【0033】
ここで、ラムダコントロールは、詳細には触媒10上流の排気空燃比の平均値がストイキとなるように、空燃比フィードバック補正係数αを算出し、この補正係数αで基本噴射量Tpを補正する制御のことである。
【0034】
ただし、触媒上流のセンサ3は、広域空燃比センサであることから、
比例分=比例ゲイン×ΔA/F、
積分分=積分ゲイン×ΣΔA/F/T2、
ただし、ΔA/F:空燃比偏差(=実空燃比−ストイキ)
T2:積分区間(空燃比偏差の正負が反転してからの経過時間)、
の式により比例分と積分分とを求め、これらの和をα(=比例分+積分分)とする一般の比例積分制御を行う。
【0035】
図3の処理は、ラムダコントロールに関係なく一定時間毎(たとえば10ms毎)に実行する。
【0036】
まずS1では冷却水温等の条件により触媒10が活性化しているかどうかをみる。触媒10が活性化していなれば、触媒10の酸素ストレージ能力が働かないので、そのまま今回の処理を終了する。
【0037】
触媒10が活性化していれば、S2に進み、触媒上流の広域空燃比センサ(図では「F−A/Fセンサ」で略記)(触媒上流側センサ)の出力から、排気中の過不足酸素濃度FO2を図5のテーブルを検索することにより求めて、これを読み込む。
【0038】
ここで、排気中の過不足酸素濃度FO2とは、図4に示すように、ストイキでの値を基準のゼロとしてそのときの空燃比を酸素濃度に換算した値である。したがって、たとえば空燃比がリーンのときは、ストイキの酸素濃度よりも過剰となるので、FO2はプラスの値となり、また空燃比がリッチのときはストイキの酸素濃度よりも不足するので、マイナスの値となる。
【0039】
ところで、図4に示したように、広域空燃比センサ(図では「A/Fセンサ」で略記)には測定可能範囲がある。したがって、燃料カット時には測定範囲外のリーンになってしまうため、燃料カット時の空燃比(したがって燃料カット時の過不足酸素濃度)を求めることができない。しかしながら、混合気を燃焼させるときの要求空燃比(以下単に要求空燃比という)は決まっており、要求空燃比をカバーするだけの広域空燃比センサを用いれば、測定範囲外のリーンは必ず燃料カットの場合であるので、要求空燃比をカバーするだけの広域空燃比センサが測定範囲外のリーンを示したとき、そのときの過不足酸素濃度FO2を、図示のように大気に対する値(すなわち20.9%)とする。図4に示した関係をテーブルにしたのが図5である。
【0040】
このようにして、要求空燃比をカバーするだけの広域空燃比センサであっても、燃料カット時の過不足酸素濃度FO2を求めることができる。
【0041】
図3に戻り、S3では触媒下流のO2センサ(図では「R−O2センサ」で略記)(触媒下流側センサ)の出力と所定値を比較する。O2センサ出力が所定値以上(リッチ)であると判定した場合には触媒酸素保持量がなくなり、触媒10が触媒下流の空燃比をストイキに保てなくなったと判断し、S4に進んで触媒金属による触媒酸素保持量HOSCnをゼロにリセットする。ここで、HOSCに添えた「n」は今回値を表す。これに対して、前回値には「n−1」を付す。
【0042】
一方、Oセンサ出力が所定値以上でないときは、S5に進んで今度はOセンサ出力が所定値以下(リーン)であるかどうかをみる。リーンでない(つまり触媒下流の空燃比はストイキ)ときは、触媒上流の空燃比変動を触媒10が吸収していると判断し、S6に進む。
【0043】
ここで、S6に進んでくる場合には、▲1▼ラムダコントロールを行っているときと、▲2▼ラムダコントロールを行っていないときの2つの場合があるが、いずれも触媒下流の空燃比がストイキになっているときである。
【0044】
S6では、
【0045】
【数3】
HOSC=HOSCn−1+a×FO2×Q×t、
ただし、HOSC:今回の計算値、
HOSCn−1:前回の計算値、
a:定数(単位換算のための値を含む)、
FO2:過不足酸素濃度、
Q:排気流量(吸入空気流量で代用する)、
t:演算サイクル時間(10ms)、
の式により触媒金属による触媒酸素保持量HOSCを演算したあとS7に進む。
【0046】
ここで、数3式の右辺第2項のうちFO2×Q×tが演算サイクル時間当たり(所定時間当たり)の過不足酸素量であり、これに酸素吸着または酸素脱離の速度を決める定数aを乗算することによって演算サイクル時間当たりに触媒金属に吸着されるか触媒金属より脱離される酸素量を演算し、これを前回値HOSCn−1に加算することによって、触媒下流の空燃比がストイキにある期間の触媒金属による触媒酸素保持量が求まるのである。
【0047】
上記の数3式右辺第2項についてさらに述べると、演算サイクル時間当たりの過不足酸素量というのはストイキを中心とする酸素の過不足をみたときの表現である。言葉を換えると酸素が過剰となる側では数3式右辺第2項は触媒金属により演算サイクル時間当たりに保持される酸素量を、また酸素が不足する側では触媒金属より演算サイクル時間当たりに脱離される酸素量を表し、同第2項中の定数aが酸素が過剰となる側での酸素吸収の速度または酸素が不足する側での酸素脱離の速度を定めている。
【0048】
S5で触媒下流の空燃比がリーンとなったときはS6を飛ばしてS7に進む。
【0049】
S7ではラムダコントロール(図では「λコン」で略記)をしているかどうかをみる。ラムダコントロール条件は従来と同じで、触媒上流の広域空燃比センサ3が活性化していること等が成立したとき、ラムダコントロールが開始される。また、燃料カット時やエンジン高負荷時にはラムダコントロールがクランプ(停止)される。
【0050】
ラムダコントロールをしていれば、S8以降のPID制御に進み、ラムダコントロールをしていないときは、S8以降を飛ばす。つまり、触媒金属による触媒酸素保持量HOSCの演算は、触媒の活性後であれば常時行い、演算した触媒酸素保持量HOSCを目標値と一致させるフィードバック制御(触媒金属による触媒酸素保持量を触媒金属のみに対する目標値へと収める空燃比制御)は、ラムダコントロールを行っている場合に限っている。
【0051】
S8では、触媒金属による触媒酸素保持量HOSCと触媒酸素保持量の目標値(触媒金属による最大触媒酸素保持量HOSCyの1/2)との差(偏差)HOSCs
【0052】
【数4】
HOSCs=HOSC−HOSCy/2
の式により計算したあと、S9、S10、S11において
【0053】
【数5】
Hp=比例ゲイン×HOSCs
Hi=積分ゲイン×ΣHOSCs/T、
Hd=微分ゲイン×(HOSCs−HOSCsn−1)/t、
ただし、T:積分区間(触媒酸素保持量の偏差の正負が反転してからの経過時間)、
t:演算サイクル時間(10ms)、
の式よりフィードバック量の比例分Hp、積分分Hiおよび微分分Hdをそれぞれ演算し、これらを合わせた値をS12において燃料補正量H(フィードバック量)として今回の図3の処理を終了する。
【0054】
上記の触媒金属による最大触媒酸素保持量HOSCyは実験により予め求めてある固定値である。
【0055】
このようにして得られる燃料補正量Hを用い、図示しないフローにおいて、たとえば、
【0056】
【数6】
Ti=Tp×TFBYA×α×H×2+Ts、
ただし、Tp:基本噴射パルス幅、
TFBYA:目標当量比、
α:空燃比フィードバック補正係数、
Ts:無効パルス幅、
の式によりシーケンシャル噴射時の燃料噴射パルス幅Tiが計算される。そして、気筒毎にエンジン2回転に1回、所定の噴射タイミングでTiの時間、燃料噴射弁7が開かれ、燃料が吸気管内に噴射供給される。
【0057】
ここで、数6式右辺のTp、TFBYA、α、Tsは従来と同じである。たとえば、燃料カット時にα=1.0に、ラムダコントロール時にTFBYA=1.0になる。Tsはバッテリ電圧に応じた噴射パルス幅の補正分である。
【0058】
このように本実施形態では、触媒金属(酸素吸収または酸素脱離の速度が速い成分)による触媒酸素保持量だけを演算するとともに、この演算値が触媒金属のみに対する目標値となるように空燃比を制御するので、目標値への収束が速まり、これによって短時間の排気性能に対して寄与しない酸素吸収補助剤(酸素吸収または酸素脱離の速度が遅い成分)の影響を排除できる。
【0059】
また、目標値が触媒金属による最大触媒酸素保持量の1/2であれば、リーン側での触媒酸素保持量のオーバーフローやリッチ側での触媒酸素保持量の不足が生じにくいので、触媒の十分な転換性能を維持できる。
【0060】
また、目標値を予め定めた固定値とすることで、機種毎の対応が可能である。
【0061】
実施形態では目標値を予め定めた固定値とする場合で説明したが、触媒下流の排気空燃比がストイキからリーンに変化するときの触媒酸素保持量を触媒金属による最大触媒酸素保持量として学習し、この1/2を目標値として設定するようにしてもかまわない。これによって、触媒の劣化により触媒金属による触媒酸素保持量が減少する場合にも最適な目標値を与えることができる。
【図面の簡単な説明】
【図1】一実施形態の制御システム図。
【図2】排気の空燃比をリッチからリーンへと切換えたときの触媒前後の空燃比の測定結果を示す波形図。
【図3】触媒保持酸素量の演算と触媒保持酸素量のフィードバック制御を説明するためのフローチャート。
【図4】広域空燃比センサ出力と過不足酸素濃度の関係を示す特性図。
【図5】過不足酸素濃度のテーブルを示す図。
【図6】第1の発明のクレーム対応図。
【符号の説明】
2 コントロールユニット
3 広域空燃比センサ
10 触媒
13 Oセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an engine exhaust purification device.
[0002]
[Prior art]
In order to simultaneously purify HC, CO, and NOx, which are harmful components in the exhaust gas, with a three-way catalyst (hereinafter simply referred to as “catalyst”), the atmosphere of the catalyst must have a stoichiometric air-fuel ratio (hereinafter simply referred to as “stoichiometric”). The catalyst is provided with a so-called oxygen storage capability that absorbs deficient oxygen or desorbs excess oxygen so that the atmosphere of the catalyst becomes a stoichiometric oxygen concentration state. As a result, for example, if a lean exhaust (hereinafter simply referred to as “lean”) is given to the catalyst in a state where oxygen is not retained (absorbed), excess oxygen is instantaneously absorbed into the catalyst. Therefore, the catalyst atmosphere is kept stoichiometric until the oxygen retention amount of the catalyst is saturated. On the contrary, if exhaust gas richer than stoichiometric (hereinafter simply referred to as “rich”) is given to the catalyst in which oxygen is retained, oxygen in the catalyst is instantaneously desorbed and is insufficient in the atmosphere. Supplemental oxygen. Therefore, the catalyst atmosphere is kept stoichiometric until all the oxygen held in the catalyst is desorbed.
[0003]
Thus, since the catalyst has an oxygen storage capability, the catalyst can compensate for excess or deficiency of oxygen caused by a temporary air-fuel ratio shift and keep the catalyst atmosphere stoichiometric. In other words, if the oxygen retention amount of the catalyst reaches the saturation amount or the catalyst does not retain oxygen, HC, CO and NOx cannot be purified, and exhaust emission deteriorates.
[0004]
Therefore, in order to fully utilize the oxygen storage capacity and prevent deterioration of exhaust emissions, the amount of excess / deficient oxygen flowing into the catalyst per predetermined time is calculated, and the catalyst oxygen retention amount is calculated based on the value per predetermined time. Thus, there has been proposed a system in which feedback control is performed so that the catalyst oxygen retention amount coincides with the target value of the oxygen retention amount (see JP-A-5-195842 and JP-A-7-259602). .
[0005]
[Problems to be solved by the invention]
By the way, in the prior application device (see Japanese Patent Application No. 10-295110), it has been found for the first time that oxygen is absorbed by the catalyst even after the air-fuel ratio downstream of the catalyst becomes lean from the experimental results.
[0006]
Explaining this knowledge, FIG. 2 shows a result (experimental result) of measuring the air-fuel ratio before and after the catalyst when the air-fuel ratio of the exhaust gas is switched from about 13 rich to about 16 lean. In the same figure, in the section A, the oxygen absorption rate of the catalyst is fast, and even if the air-fuel ratio upstream of the catalyst (indicated by “FA / F” in the figure) is lean, all excess oxygen flowing into the catalyst is lost. Since it is absorbed by the catalyst, the air-fuel ratio downstream of the catalyst (indicated by “R / F / A” in the figure) does not indicate lean (shows stoichiometry). On the other hand, when moving to the B section, since all of the inflowing excess oxygen is not absorbed by the catalyst, the air-fuel ratio downstream of the catalyst is lean. That is, even in the B section where the air-fuel ratio downstream of the catalyst is lean, oxygen (or an oxide such as NO) is absorbed by the catalyst, although the absorption speed is slow.
[0007]
To explain this further, the one shown in the figure has an additive (hereinafter simply referred to as “oxygen absorption aid”) to assist oxygen absorption in addition to the noble metal supported on the catalyst (hereinafter simply referred to as “catalytic metal”). is there. In this case, the catalyst metal (for example, platinum or rhodium) absorbs oxygen by adsorbing oxygen in the molecular state, which is called physical adsorption, whereas the oxygen absorption auxiliary agent (for example, cerium oxide, barium, Base metal) has a difference in that it absorbs oxygen in the form of a compound by chemical bonding, and due to this difference in the method of oxygen absorption (similarly in the case of oxygen desorption), a component having a fast oxygen absorption rate and a component having a slow oxygen absorption rate. There seems to be. In addition, although adsorption is more accurate as a term for the catalyst metal, only the difference in the rate of oxygen adsorption and oxygen absorption is a problem here, so absorption is also used for the catalyst metal.
[0008]
Therefore, in FIG. 2, the catalyst oxygen retention amount when the air-fuel ratio downstream of the catalyst changes from stoichiometric to lean is set as the maximum catalyst oxygen retention amount by the catalyst metal, and the oxygen amount absorbed by the oxygen absorption auxiliary agent thereafter is the oxygen absorption amount. If the amount of catalyst oxygen retained by the auxiliary agent is used, the amount of oxygen retained by the catalyst at the time of fuel cut or lean clamp (hereinafter referred to as fuel cut) will be used to assist oxygen absorption to the maximum amount of catalyst oxygen retained by the catalyst metal. The amount of catalyst oxygen retained by the agent is added.
[0009]
However, according to the conventional apparatus, the catalyst oxygen retention amount at the timing when the air-fuel ratio sensor downstream of the catalyst indicates lean is set as the maximum catalyst oxygen retention amount, and 1/2 of this maximum catalyst oxygen retention amount is set as the target value. Therefore, the oxygen retention amount in the B section (catalyst oxygen retention amount by the oxygen absorption auxiliary agent) is ignored. For this reason, it is considered that an error occurs when the fuel cut is canceled and the air-fuel ratio control returns to the target value to keep the catalyst oxygen retention amount.
[0010]
Therefore, during the period in which the air-fuel ratio downstream of the catalyst is lean, such as when the fuel is cut, the catalyst oxygen retention amount is calculated including the oxygen retention amount absorbed by the catalyst by the oxygen absorption auxiliary agent, and the maximum amount due to the catalyst metal is calculated. 1/2 of the value obtained by adding the maximum catalyst oxygen retention amount by the oxygen absorption auxiliary agent to the catalyst oxygen retention amount is set as the target value, and the catalyst oxygen retention including the oxygen retention amount absorbed by the catalyst by the oxygen absorption auxiliary agent By performing air-fuel ratio control so that the amount becomes this target value, it is possible to prevent an error from occurring when returning to air-fuel ratio control that keeps the catalyst oxygen retention amount at the target value after fuel cut or after high output. Can be considered.
[0011]
However, when the experiment is performed, the rate of oxygen absorption or oxygen desorption by the oxygen absorption auxiliary agent is very slow (almost uncontrollable) compared with the rate of oxygen absorption or oxygen desorption by the catalyst metal. If the target value is set based on the maximum value of the oxygen retention amount absorbed by both the oxygen absorption aid and the oxygen absorption auxiliary agent, it takes a very long time to return the catalyst oxygen retention amount to the target value. It was found that the amount of gas remained on either the rich side or the lean side, and exhaust harmful components could not be reduced sufficiently. That is, even if the catalyst oxygen retention amount by the oxygen absorption auxiliary agent is taken in the target value, it does not contribute to the exhaust performance in a short time.
[0012]
Therefore, the present invention targets a catalyst containing at least two components of a catalyst metal and an oxygen absorption auxiliary agent, and sets a target value based only on the maximum catalyst oxygen retention amount by the catalyst metal, thereby achieving a short exhaust performance. The object is to eliminate the influence of oxygen-absorbing aids that do not contribute.
[0013]
[Means for Solving the Problems]
As shown in FIG. 6, the first invention is a catalyst having an oxygen holding ability, which is disposed in an exhaust passage of an engine, and has at least two components, ie, a component having a fast oxygen absorption or desorption rate and a component having a slow rate. , A catalyst upstream sensor 24 for detecting the exhaust air / fuel ratio upstream of the catalyst 21, and means for calculating the excess / deficient oxygen amount per predetermined time upstream of the catalyst based on the output of the catalyst upstream sensor 21 26, the catalyst downstream sensor 25 for detecting an exhaust air-fuel ratio of the catalyst 21 downstream, when the exhaust air-fuel ratio of the catalyst 21 downstream detected by the catalyst downstream sensor 25 is near stoichiometric, the catalyst upstream the means 22 for calculating a catalytic oxygen holding amount HOSC n rate of oxygen absorption or oxygen desorption is due to the fast component based on the excess or deficiency of oxygen amount per predetermined time, when establishment of the air-fuel ratio control conditions The oxygen-absorbing or controlling the air-fuel ratio of the engine to a target value rate of oxygen desorption catalyst oxygen holding amount HOSC n by fast component for only the oxygen absorbing or oxygen removal rate of release is fast component when the And means 23 for performing.
[0014]
In the second invention, the component having a high oxygen absorption or oxygen desorption rate in the first invention is a catalyst metal.
[0015]
In a third invention, the component having a slow oxygen absorption or oxygen desorption rate in the first invention is an oxygen absorption aid.
[0016]
In a fourth invention, in any one of the first to third inventions, the target value is ½ of a maximum catalyst oxygen retention amount by a component having a high oxygen absorption or oxygen desorption rate.
[0017]
In a fifth aspect, the maximum catalyst oxygen retention amount is a predetermined fixed value in the fourth aspect.
[0018]
According to a sixth aspect of the invention, in the fourth aspect of the invention, the maximum catalyst oxygen retention amount is a catalyst oxygen retention rate by a component having a fast oxygen absorption or oxygen desorption rate when the exhaust air-fuel ratio downstream of the catalyst changes from stoichiometric to lean. The quantity HOSC n .
[0019]
【The invention's effect】
In the first, second, and third inventions, only the amount of catalyst oxygen retained by a component having a high oxygen absorption or oxygen desorption rate is calculated, and only the component having a high oxygen absorption or oxygen desorption rate is calculated. Since the air-fuel ratio is controlled so as to reach the target value, the convergence to the target value is accelerated, thereby eliminating the influence of the slow oxygen absorption component that does not contribute to the short-term exhaust performance.
[0020]
If the target value is ½ of the maximum catalyst oxygen retention amount due to a component with a fast oxygen absorption or oxygen desorption rate, there is an overflow of the catalyst oxygen retention amount on the lean side or a shortage of the catalyst oxygen retention amount on the rich side. Therefore, according to the fourth invention, sufficient conversion performance of the catalyst can be maintained.
[0021]
According to the fifth invention, it is possible to cope with each model. According to the sixth aspect of the invention, the optimum target value can be given even when the catalyst oxygen retention amount decreases due to catalyst deterioration.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, reference numeral 1 denotes an engine body. A fuel injection valve 7 is provided in an intake passage 8 downstream of the intake throttle valve 5, and a predetermined empty state is determined according to an operating condition by an injection signal from the control unit 2. The fuel is injected and supplied into the intake air so as to achieve the fuel ratio. The control unit 2 receives a rotation speed signal from the crank angle sensor 4, an intake air amount signal from the air flow meter 6, a cooling water temperature signal from the water temperature sensor 11, etc. The fuel injection amount Tp at which the air-fuel ratio can be obtained is determined, various corrections are performed on the fuel injection amount Tp to calculate the fuel injection amount Ti, and this is converted into an injection signal, thereby controlling the fuel injection amount.
[0023]
A catalyst 10 is installed in the exhaust passage 9. The catalyst 10 reduces NOx in exhaust gas and oxidizes HC and CO with maximum conversion efficiency during stoichiometric operation. At that time, the catalyst 10 keeps the catalyst atmosphere stoichiometric by supplementing the excess or deficiency of oxygen caused by the temporary air-fuel ratio deviation by the oxygen storage capability (oxygen retention capability).
[0024]
The oxygen retention amount of the catalyst 10 is [0025]
[Expression 1]
Oxygen retention amount = Σ {displacement amount × (excess / deficient oxygen concentration upstream of catalyst−excess / deficient oxygen concentration downstream of catalyst)}
It can be obtained from the following formula.
[0026]
Here, the “excess / deficient oxygen concentration” in Equation 1 is a value obtained by converting the air-fuel ratio at that time into an oxygen concentration with the stoichiometric value as a reference zero, as shown in FIG. 4 described later. For example, when the air-fuel ratio is lean, the oxygen concentration is excessive than the stoichiometric oxygen concentration. Therefore, the excess / deficient oxygen concentration is a positive value, and when the air-fuel ratio is rich, the oxygen concentration is insufficient. This is the value of.
[0027]
By the way, in a general engine, air-fuel ratio feedback control (hereinafter referred to as “lambda control”) is performed based on the output of the air-fuel ratio sensor upstream of the catalyst so that the average air-fuel ratio of the exhaust gas matches the stoichiometric. Is almost stoichiometric (constant). At this time, the excess / deficient oxygen concentration downstream of the catalyst becomes almost zero.
[0028]
Therefore, while the air-fuel ratio downstream of the catalyst is stoichiometric, the excess / deficiency oxygen concentration downstream of the catalyst is set to zero in the above equation (1).
[Expression 2]
Oxygen retention amount = Σ (displacement amount x excess / deficient oxygen concentration upstream of catalyst)
The oxygen retention amount is calculated by the following formula.
[0030]
In this case, in addition to catalyst metals such as platinum and rhodium, those having oxygen absorption aids such as cerium oxide, barium, and base metals, the amount of oxygen retained by the catalyst when the fuel is cut is the maximum amount of catalyst oxygen retained by the catalyst metal. Since the amount of catalyst oxygen retained by the oxygen absorption auxiliary agent is added, it is conceivable to set 1/2 as the target value of both values, but the oxygen absorption rate of the oxygen absorption auxiliary agent is Since the oxygen absorption rate of the catalyst metal is very slow (almost not controllable), the control unit 2 has excess / deficient oxygen per predetermined time upstream of the catalyst when the exhaust air-fuel ratio downstream of the catalyst is close to the stoichiometry. Based on the amount, only the amount of catalyst oxygen retained by the catalyst metal is calculated, and when the air-fuel ratio control condition is satisfied, the amount of catalyst oxygen retained by the catalyst metal at that time is Controlling the air-fuel ratio of the engine so that the target value for only medium metal.
[0031]
These controls performed by the control unit 2 will be described with reference to the flowchart of FIG.
[0032]
Based on the air-fuel ratio signal from the wide-area air-fuel ratio sensor 3 upstream of the catalyst, the control unit 2 performs lambda control under the lambda control condition (predetermined air-fuel ratio control condition).
[0033]
Here, in detail, the lambda control calculates the air-fuel ratio feedback correction coefficient α so that the average value of the exhaust air-fuel ratio upstream of the catalyst 10 becomes stoichiometric, and corrects the basic injection amount Tp with this correction coefficient α. That is.
[0034]
However, since the sensor 3 upstream of the catalyst is a wide area air-fuel ratio sensor,
Proportional component = Proportional gain × ΔA / F,
Integral = integral gain × ΣΔA / F / T2,
Where ΔA / F: air-fuel ratio deviation (= actual air-fuel ratio-stoichiometric)
T2: integration interval (elapsed time since the sign of the air-fuel ratio deviation is reversed),
The proportional and integral components are obtained by the following formula, and general proportional-integral control is performed with the sum of these being α (= proportional component + integral component).
[0035]
The processing in FIG. 3 is executed at regular intervals (for example, every 10 ms) regardless of lambda control.
[0036]
First, in S1, it is checked whether or not the catalyst 10 is activated depending on conditions such as the cooling water temperature. If the catalyst 10 is not activated, the oxygen storage capacity of the catalyst 10 does not work, so the current process is terminated.
[0037]
If the catalyst 10 is activated, the process proceeds to S2, and the excess / deficient oxygen in the exhaust gas is detected from the output of the wide-area air-fuel ratio sensor upstream of the catalyst ( abbreviated as “FA / F sensor” in the figure) (catalyst upstream sensor). The density FO2 is obtained by searching the table of FIG. 5 and read.
[0038]
Here, the excess / deficient oxygen concentration FO2 in the exhaust is a value obtained by converting the air-fuel ratio at that time into an oxygen concentration with the stoichiometric value as a reference zero, as shown in FIG. Therefore, for example, when the air-fuel ratio is lean, it exceeds the stoichiometric oxygen concentration, so FO2 is a positive value. When the air-fuel ratio is rich, it is insufficient than the stoichiometric oxygen concentration. It becomes.
[0039]
Incidentally, as shown in FIG. 4, the wide-range air-fuel ratio sensor (abbreviated as “A / F sensor” in the figure) has a measurable range. Therefore, when the fuel is cut, it becomes lean outside the measurement range, so the air-fuel ratio at the time of fuel cut (and therefore the excess / deficient oxygen concentration at the time of fuel cut) cannot be obtained. However, the required air-fuel ratio (hereinafter simply referred to as the required air-fuel ratio) when the air-fuel mixture is combusted is determined, and if a wide-range air-fuel ratio sensor that only covers the required air-fuel ratio is used, the lean outside the measurement range is always cut by fuel. Therefore, when the wide-range air-fuel ratio sensor that only covers the required air-fuel ratio indicates leanness outside the measurement range, the excess / deficient oxygen concentration FO2 at that time is set to a value relative to the atmosphere (that is, 20.. 9%). FIG. 5 is a table showing the relationship shown in FIG.
[0040]
Thus, even with a wide-range air-fuel ratio sensor that only covers the required air-fuel ratio, the excess / deficiency oxygen concentration FO2 at the time of fuel cut can be obtained.
[0041]
Returning to FIG. 3, in S3, the output of the O 2 sensor downstream of the catalyst (abbreviated as “R-O2 sensor” in the figure) (catalyst downstream sensor) is compared with a predetermined value. When it is determined that the O 2 sensor output is greater than or equal to the predetermined value (rich), it is determined that the catalyst oxygen retention amount is lost and the catalyst 10 is unable to maintain the air-fuel ratio downstream of the catalyst at the stoichiometric condition. The catalyst oxygen retention amount HOSC n is reset to zero. Here, “n” attached to HOSC represents the current value. On the other hand, “n−1” is added to the previous value.
[0042]
On the other hand, when the O 2 sensor output is not equal to or greater than the predetermined value, the process proceeds to S5, and it is checked whether or not the O 2 sensor output is equal to or less than the predetermined value (lean). If it is not lean (that is, the air-fuel ratio downstream of the catalyst is stoichiometric), it is determined that the catalyst 10 has absorbed the air-fuel ratio fluctuation upstream of the catalyst, and the process proceeds to S6.
[0043]
Here, when proceeding to S6, there are two cases: (1) when lambda control is performed and (2) when lambda control is not performed. It ’s when you ’re stoic.
[0044]
In S6
[0045]
[Equation 3]
HOSC n = HOSC n-1 + a × FO 2 × Q × t,
However, HOSC n : calculated value this time,
HOSC n-1 : previous calculation value,
a: Constant (including value for unit conversion),
FO2: excess / deficient oxygen concentration,
Q: Exhaust flow rate (substitute with intake air flow rate),
t: calculation cycle time (10 ms),
After calculating the catalyst oxygen retention amount HOSC n by the catalyst metal by the following equation, the process proceeds to S7.
[0046]
Here, FO2 × Q × t in the second term on the right side of Equation 3 is the excess / deficiency oxygen amount per calculation cycle time (per predetermined time), and this is a constant a that determines the rate of oxygen adsorption or desorption. To calculate the amount of oxygen adsorbed to or desorbed from the catalyst metal per calculation cycle time, and adding this to the previous value HOSC n−1 , the air-fuel ratio downstream of the catalyst is stoichiometric. Thus, the amount of catalyst oxygen retained by the catalyst metal during a certain period can be obtained.
[0047]
The second term on the right side of Equation 3 will be further described. The excess / deficiency oxygen amount per calculation cycle time is an expression when the excess / deficiency of oxygen centered on stoichiometry is observed. In other words, on the side where oxygen is excessive, the second term on the right-hand side of Equation 3 is the amount of oxygen retained by the catalyst metal per calculation cycle time. On the side where oxygen is insufficient, the second term on the right side of equation 3 deviates from the catalyst metal per calculation cycle time. The constant a in the second term defines the oxygen absorption rate on the oxygen excess side or the oxygen desorption rate on the oxygen deficiency side.
[0048]
When the air-fuel ratio downstream of the catalyst becomes lean in S5, S6 is skipped and the process proceeds to S7.
[0049]
In S7, it is checked whether lambda control is performed (abbreviated as “λ-con” in the figure). Lambda control conditions are the same as in the prior art, and lambda control is started when the wide-area air-fuel ratio sensor 3 upstream of the catalyst is activated. Also, the lambda control is clamped (stopped) when fuel is cut or when the engine is heavily loaded.
[0050]
If the lambda control is performed, the process proceeds to the PID control after S8. If the lambda control is not performed, the process after S8 is skipped. In other words, the calculation of the catalyst oxygen holding amount HOSC n by the catalyst metal is performed continuously as long as it is after the activity of the catalyst, the calculated catalyst oxygen holding amount HOSC n feedback control to match the target value (the catalytic oxygen holding amount of the catalyst metal The air-fuel ratio control (within the target value for only the catalyst metal) is limited to the case where lambda control is performed.
[0051]
In S8, the difference (deviation) HOSCs n between the catalyst oxygen retention amount HOSC n by the catalyst metal and the target value of the catalyst oxygen retention amount (1/2 of the maximum catalyst oxygen retention amount HOSCy by the catalyst metal) is
[Expression 4]
HOSCs n = HOSC n -HOSCy / 2
In S9, S10, and S11 after calculation by the following equation:
[Equation 5]
Hp = proportional gain × HOSCs n ,
Hi = integral gain × ΣHOSCs n / T,
Hd = differential gain × (HOSCs n −HOSCs n−1 ) / t,
Where T: integration interval (elapsed time since the positive / negative of the deviation of the catalyst oxygen retention amount is reversed),
t: calculation cycle time (10 ms),
The proportional part Hp, the integral part Hi, and the derivative part Hd of the feedback amount are respectively calculated from the above equation, and the combined value is set as the fuel correction amount H (feedback amount) in S12, and the processing of FIG.
[0054]
The maximum catalyst oxygen retention amount HOSCy by the catalyst metal is a fixed value obtained in advance by experiments.
[0055]
In the flow (not shown) using the fuel correction amount H thus obtained, for example,
[0056]
[Formula 6]
Ti = Tp × TFBYA × α × H × 2 + Ts,
Where Tp: basic injection pulse width,
TFBYA: target equivalent ratio,
α: Air-fuel ratio feedback correction coefficient,
Ts: Invalid pulse width,
The fuel injection pulse width Ti at the time of sequential injection is calculated by the following formula. The fuel injection valve 7 is opened for a period of Ti at a predetermined injection timing once every two engine revolutions for each cylinder, and fuel is injected and supplied into the intake pipe.
[0057]
Here, Tp, TFBYA, α, and Ts on the right side of Equation 6 are the same as the conventional ones. For example, α = 1.0 when the fuel is cut, and TFBYA = 1.0 when the lambda is controlled. Ts is a correction amount of the injection pulse width corresponding to the battery voltage.
[0058]
As described above, in this embodiment, only the amount of catalyst oxygen retained by the catalyst metal (a component having a high oxygen absorption or oxygen desorption rate) is calculated, and the air-fuel ratio is set so that the calculated value becomes a target value for only the catalyst metal. Therefore, the convergence to the target value is accelerated, thereby eliminating the influence of an oxygen absorption auxiliary agent (a component having a slow rate of oxygen absorption or oxygen desorption) that does not contribute to short-term exhaust performance.
[0059]
Further, if the target value is 1/2 of the maximum catalyst oxygen retention amount by the catalyst metal, it is difficult to cause an overflow of the catalyst oxygen retention amount on the lean side or a shortage of the catalyst oxygen retention amount on the rich side. Conversion performance can be maintained.
[0060]
Further, by setting the target value to a predetermined fixed value, it is possible to cope with each model.
[0061]
In the embodiment, the target value is set to a predetermined fixed value. However, the catalyst oxygen retention amount when the exhaust air-fuel ratio downstream of the catalyst changes from stoichiometric to lean is learned as the maximum catalyst oxygen retention amount by the catalyst metal. ½ may be set as the target value. As a result, an optimum target value can be given even when the amount of catalyst oxygen retained by the catalyst metal decreases due to catalyst deterioration.
[Brief description of the drawings]
FIG. 1 is a control system diagram of one embodiment.
FIG. 2 is a waveform diagram showing the measurement results of the air-fuel ratio before and after the catalyst when the air-fuel ratio of exhaust gas is switched from rich to lean.
FIG. 3 is a flowchart for explaining calculation of the catalyst holding oxygen amount and feedback control of the catalyst holding oxygen amount.
FIG. 4 is a characteristic diagram showing the relationship between the wide-range air-fuel ratio sensor output and the excess / deficiency oxygen concentration.
FIG. 5 is a view showing a table of excess / deficient oxygen concentration.
FIG. 6 is a diagram corresponding to a claim of the first invention.
[Explanation of symbols]
2 Control unit 3 Wide area air-fuel ratio sensor 10 Catalyst 13 O 2 sensor

Claims (6)

エンジンの排気通路に配設された酸素保持能力を有する触媒であって酸素吸収または酸素脱離の速度が速い成分と遅い成分の少なくとも2つの成分を含む触媒と、
前記触媒上流の排気空燃比を検出する触媒上流側センサと、
この触媒上流側センサの出力に基づいて触媒上流の所定時間当たりの過不足酸素量を演算する手段と、
前記触媒下流の排気空燃比を検出する触媒下流側センサと、
この触媒下流側センサにより検出される前記触媒下流の排気空燃比がストイキの近傍であるとき、前記触媒上流の所定時間当たりの過不足酸素量に基づいて酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量を演算する手段と、
空燃比制御条件の成立時に、そのときの触媒酸素保持量が酸素吸収または酸素脱離の速度が速い成分のみに対する目標値となるようにエンジンの空燃比を制御する手段と
を備えることを特徴とするエンジンの排気浄化装置。
A catalyst having an oxygen holding capacity and disposed in an exhaust passage of an engine, the catalyst including at least two components, a component having a high rate of oxygen absorption or desorption and a component having a low rate of oxygen desorption;
A catalyst upstream sensor for detecting an exhaust air-fuel ratio upstream of the catalyst;
Means for calculating the excess / deficient oxygen amount per predetermined time upstream of the catalyst based on the output of the catalyst upstream sensor;
A catalyst downstream sensor for detecting an exhaust air-fuel ratio downstream of the catalyst;
When said catalyst downstream of the exhaust air-fuel ratio is near the stoichiometric, the predetermined time based on the excess or deficiency of oxygen per oxygen absorbing or oxygen removal rate of release is fast component of the catalyst upstream the detected by the catalyst downstream sensor Means for calculating the amount of catalyst oxygen retained by
And means for controlling the air-fuel ratio of the engine so that when the air-fuel ratio control condition is satisfied, the catalyst oxygen retention amount at that time becomes a target value for only the component having a high oxygen absorption or oxygen desorption rate. Exhaust gas purification device for the engine.
前記酸素吸収または酸素脱離の速度が速い成分は触媒金属であることを特徴とする請求項1に記載のエンジンの排気浄化装置。2. The engine exhaust gas purification apparatus according to claim 1, wherein the component having a high oxygen absorption or oxygen desorption rate is a catalyst metal. 前記酸素吸収または酸素脱離の速度が遅い成分は酸素吸収補助剤であることを特徴とする請求項1に記載のエンジンの排気浄化装置。2. The engine exhaust gas purification apparatus according to claim 1, wherein the component having a low oxygen absorption or oxygen desorption rate is an oxygen absorption auxiliary agent. 前記目標値は酸素吸収または酸素脱離の速度が速い成分による最大触媒酸素保持量の1/2であることを特徴とする請求項1から3までのいずれか一つに記載のエンジンの排気浄化装置。The engine exhaust purification according to any one of claims 1 to 3, wherein the target value is ½ of a maximum catalyst oxygen retention amount by a component having a high oxygen absorption or oxygen desorption rate. apparatus. 前記最大触媒酸素保持量は予め定めた固定値であることを特徴とする請求項4に記載のエンジンの排気浄化装置。The engine exhaust purification device according to claim 4, wherein the maximum catalyst oxygen retention amount is a predetermined fixed value. 前記最大触媒酸素保持量は触媒下流の排気空燃比がストイキからリーンに変化するときの前記酸素吸収または酸素脱離の速度が速い成分による触媒酸素保持量であることを特徴とする請求項4に記載のエンジンの排気浄化装置。5. The maximum catalyst oxygen retention amount is a catalyst oxygen retention amount due to a component having a high oxygen absorption or oxygen desorption rate when the exhaust air-fuel ratio downstream of the catalyst changes from stoichiometric to lean. The engine exhaust gas purification apparatus as described.
JP2000026273A 2000-02-03 2000-02-03 Engine exhaust purification system Expired - Lifetime JP3610862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026273A JP3610862B2 (en) 2000-02-03 2000-02-03 Engine exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026273A JP3610862B2 (en) 2000-02-03 2000-02-03 Engine exhaust purification system

Publications (2)

Publication Number Publication Date
JP2001214781A JP2001214781A (en) 2001-08-10
JP3610862B2 true JP3610862B2 (en) 2005-01-19

Family

ID=18552028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026273A Expired - Lifetime JP3610862B2 (en) 2000-02-03 2000-02-03 Engine exhaust purification system

Country Status (1)

Country Link
JP (1) JP3610862B2 (en)

Also Published As

Publication number Publication date
JP2001214781A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP3528739B2 (en) Engine exhaust purification device
JP3572961B2 (en) Engine exhaust purification device
JP4877246B2 (en) Air-fuel ratio control device for internal combustion engine
US6128899A (en) Exhaust gas purification system for internal combustion engine
JP3680244B2 (en) Adsorption amount calculation device for unburned fuel component adsorbent of internal combustion engine
JP2004257324A (en) Emission control device for internal combustion engine
JP3997599B2 (en) Air-fuel ratio control device for internal combustion engine
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
JP3835140B2 (en) Engine air-fuel ratio control device
JPH10339195A (en) Exhaust emission control device of internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
JP3355842B2 (en) Exhaust purification catalyst device for internal combustion engine and temperature detection device for exhaust purification catalyst
JP4186259B2 (en) Exhaust gas purification device for internal combustion engine
JP2000297630A (en) Deterioration determining device for exhaust emission purification device of internal combustion engine
JP4389141B2 (en) Exhaust gas purification device for internal combustion engine
JP3610862B2 (en) Engine exhaust purification system
JP2000110553A (en) Exhaust gas emission control device of internal combustion engine
US10392986B2 (en) Exhaust purification system, and control method for exhaust purification system
JP2002038941A (en) Exhaust emission control device for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP2009030459A (en) Exhaust emission control device of internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP4177007B2 (en) Exhaust gas purification apparatus and purification method for internal combustion engine
JP4428286B2 (en) Exhaust gas purification device for internal combustion engine
JP4608758B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3610862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term