JP3610589B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3610589B2
JP3610589B2 JP04011994A JP4011994A JP3610589B2 JP 3610589 B2 JP3610589 B2 JP 3610589B2 JP 04011994 A JP04011994 A JP 04011994A JP 4011994 A JP4011994 A JP 4011994A JP 3610589 B2 JP3610589 B2 JP 3610589B2
Authority
JP
Japan
Prior art keywords
binder
secondary battery
electrolyte secondary
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04011994A
Other languages
Japanese (ja)
Other versions
JPH07249408A (en
Inventor
薫 中島
清一 生山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP04011994A priority Critical patent/JP3610589B2/en
Publication of JPH07249408A publication Critical patent/JPH07249408A/en
Application granted granted Critical
Publication of JP3610589B2 publication Critical patent/JP3610589B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えばリチウムイオン二次電池などに適用して好適な非水電解液二次電池に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、リチウムイオン二次電池の電極の製造においては、電極活物質をバインダー溶液に分散させた懸濁液を集電体に塗布する工程が採られていた。
【0003】
ここで、バインダーとしては、ポリフッ化ビニリデンが多く用いられていた。このポリフッ化ビニリデンは、結晶性を持つため、電解液の分子の流通が難しく、充放電の負荷を大きくすることが出来なかった。
ポリフッ化ビニリデンは、一般には結晶化度が50%程度である。この結晶が融解する温度は140℃近辺にあり、このために−20°〜0℃で用いる電池としては、この結晶構造が性能を阻害していた。
【0004】
一方、この分子構造が柔軟性に欠けるという点は、集電体への接着性にも難点をもたらしており、電池をくり返し使用中に、電極合剤が部分的に、あるいはひどい時は全体的にはがれてきて、負荷特性が悪くなったり、容量劣化が起こったりするといった問題があった。
【0005】
本発明は、このような課題に鑑みてなされたものであり、結晶性を阻害するバインダーを用いて、充放電の負荷を大きくすることができる非水電解液二次電池を得ることを目的とする。
【0006】
【課題を解決するための手段】
本発明の非水電解液二次電池は、正極活物質とバインダーを含有する正極合剤を正極集電体両面に塗布した正極と、負極活物質とバインダーを含有する負極合剤を負極集電体両面に塗布した負極を、セパレータを介して巻回した非水電解液二次電池において、このバインダーは、フッ化ビニリデンモノマーと側鎖をもつモノマーとの共重合体であり、側鎖をもつモノマーは、スチレンまたは酢酸ビニルの中から選ばれる一種を含む電池である。
【0010】
上述のように、本発明の非水電解液二次電池は、バインダーとしてフッ化ビニリデンを共重合体の一成分とし、これにかさ高い側鎖をもったモノマーを共重合させたものを用いる。
【0011】
また、共重合体の数平均分子量が50,000〜200,000のものを用いる。ここで、数平均分子量が、50,000より小さくなると引っ張り強さなどの機械的強度が小さくなりすぎ、バインダーとして用いることができなくなる。また、数平均分子量が200,000より大きくなると、溶媒に溶かしても粘度が高くて集電体への塗布が困難となる。
【0012】
また、全モノマーに対する側鎖をもつモノマーのモル比は0.001〜0.05(0.1〜5モル%)である。ここで、モル比が0.001より小さいと、共重合体の結晶化を防止することができない。また、モル比が0.05より大きくなると、共重合体を合成する際溶媒を変える必要があり、既存の製造プロセスを用いることができなくなる。
【0013】
また、フッ化ビニリデンに共重合させるかさ高い側鎖をもったモノマーとして、スチレン、酢酸ビニル、プロピレン、イソプレンの中から少くとも一種類選んだものを用いる。これらのものは、価格が安く、電解液とも反応しにくい特徴を持っている。また、特に酢酸ビニルやイソプレンを用いた共重合体は、柔らかく接着効果も大きい。
このほか、かさ高い側鎖をもったモノマーとしては、ビニルピリジン、N−ビニル−2−ピロリドン、N−ビニルカルバゾールブタジエン、パラメトキシスチレン、メチルメタクリレート、メチルアクリレート、ブチルアクリレート、ヘプチルアクリレート、酢酸イソプロペニルなどが用いることができることはもちろんである。
【0014】
【作用】
本発明の非水電解液二次電池によれば、電極活物質粒子とバインダーを含有する電極合剤を、集電体上に積層した電池電極を用いる非水電解液二次電池において、このバインダーを、フッ化ビニリデンモノマーと側鎖をもつモノマーとの共重合体とすることにより、バインダーの結晶化を防止することができ、充放電の負荷を大きくすることができる。
【0015】
【実施例】
以下、本発明非水電解液二次電池の実施例について、図1及び図2を参照しながら説明しよう。
【0016】
まず、本例で用いたバインダーの説明をする前に、従来用いられているバインダーについて、その化学構造を説明する。
次式化1はポリフッ化ビニリデン(PVdF)である。
【0017】
【化1】

Figure 0003610589
【0018】
このポリフッ化ビニリデンのポリマーは分子パッキングが良いため、図3に示すように、結晶化しやすい性質を持つものである。
図3のように、固体状態の中では部分的に結晶部分1aがあり、この結晶部分1aの間はポリマーのアモルファス部分1bで満たされている。
【0019】
このポリフッ化ビニリデンを電極剤のバインダーとして用いた場合は、結晶化度が50%にも達するようなバインダーでは、図4のように電極剤2(例えば、正極:LiCoO2 、負極:Carbon)を囲いをとりかこむことになる。
【0020】
こういう状態であると、電解液中のLiの輸送が重要な電池では、結晶部分はLiの通路となり得ず阻害として働き、正極剤から負極剤あるいはその逆方向へのLiのやりとりが阻害されることになる。
【0021】
かかる状況を鑑み発明者らは、結晶化を防ぎ電解液の流通を良くするものはないかと鋭意努力した結果、ポリフッ化ビニリデンの分子中に、かさ高い置換基をもったビニル化合物を共重合させることにより目的が達せられることを見出した。
【0022】
なお、実施例に用いた共重合体は、フッ化ビニリデンとスチレンあるいは酢酸ビニルを一定量加え、ラジカル共重合で得られた。共重合パーセントは、0.1〜5%の範囲であった。
【0023】
実施例1
本例では、バインダーとして、次に組成のものを用いた。
すなわち、フッ化ビニリデンモノマーとスチレンモノマーの共重合体である。。その共重合体の組成は、以下の通りである。
フッ化ビニリデン 単位 98モル%
スチレン 単位 2モル%
(分子量 Mn=150,000)
この共重合体の構造式は、以下の化2で示される。
【0024】
【化2】
Figure 0003610589
【0025】
この共重合体(化2)の結晶性は、X線回折による分析の結果、0であることが判明した。
【0026】
この共重合体(化2)をバインダーとして用いて電極ミックスを作成し電池とした。ここで、ミックスの組成以外は、プロセスも全く従来法と同じである。
ミックスの組成は、以下に示すとおりである。
【0027】
正極ミックス
LiCoO2 68重量部
導電性カ−ボン 3重量部
バインダー(化2) 3重量部
溶媒(N−メチルピロリドン) 25重量部
【0028】
負極ミックス
フルフリルアルコール樹脂焼成体 47重量部
バインダー(化2) 5重量部
溶媒(N−メチルピロリドン) 47重量部
【0029】
プロセスの概略は、図1に示すとおりである。
ここで、図1を参照しながら、本例の非水電解液二次電池の製造工程を説明する。
【0030】
まず、正極活物質としてのリチウム・コバルト複合酸化物(LiCoO2 )を次のように合成する。市販の炭酸リチウム粉末(Li2 Co3 )と炭酸コバルト(CoCO3 )とをリチウム原子及びコバルト原子の比率が1:1となくように計算し、振動ミルを用いて充分に混合した後、空気中で電気炉を用いて900℃で5時間焼成し、その後、自動乳鉢を用いて粉砕して、LiCoO2 粉末を得る。
【0031】
次に、正極を次のようにしてつくる。上述の合成されたリチウム・コバルト複合酸化物(LiCoO2 )を正極活物質として用い、この正極活物質68重量部に導電材として導電性カ−ボン4重量部、バインダー(化2)3重量部を加えてから混合して、正極ミックスをつくる。そして、これらの正極ミックスを溶剤N−メチル−2−ピロリドン25重量部に分散させて、スラリーにする。
【0032】
次に、これらの正極ミックススラリーを、正極集電体としてのアルミニウム箔の両面に均一に塗布して乾燥し、その後に、ローラープレス機により圧縮成型し、さらに裁断して帯状の正極を得る。
【0033】
一方、負極は次のようにしてつくる。粉砕したフルフリルアルコール樹脂焼成体を負極活物質として用い、このフルフリルアルコール樹脂焼成体47重量部及びバインダー(化2)5重量部を加えてから混合して、負極ミックスとする。そして、この負極ミックスを溶剤N−メチル−2−ピロリドン47重量部に分散させて、スラリーにする。次に、この負極ミックススラリーを、負極集電体としての銅箔の両側に均一に塗布して、乾燥する。乾燥後に、ローラープレス機により圧縮成型し、さらに裁断して帯状の負極を得る
【0034】
次に、厚さ25μmの微孔性ポリプロピレンフィルムからなる一対のセパレータを、負極、セパレータ、正極、セパレータの順序で積層してから、この積層体を巻芯上に渦巻型に多数回巻回することによって、巻回体を作製する。
【0035】
そして、以上のような巻回体及び非水電解質(六フッ化リン酸リチウムを1モル/L溶解した炭酸プロピレンと、1,2−ジメトキシエタンとを混合して得たもの)を用いて、非水電解質二次電池を作製できる。この場合、上記非水電解質二次電池は、例えば直径20.5mm、高さ42mmの円筒形とすることができ 、通常に充電されると、約4.2Vの電圧で使用できるものである。また、実行 電極面積は、正極負極とも、680cmである。
【0036】
実施例2
ここでは、バインダーとしてフッ化ビニリデンと酢酸ビニルの共重合体を用いた。この共重合体は、フッ化ビニリデンと酢酸ビニルを所定量混合しラジカル共重合して得られたものである。このバインダーの共重合組成は酢酸ビニル成分が2モル%であった。これをバインダーとして用いて実施例1と全く同じプロセスで電池を作成した。用いたバインダーの結晶化度はゼロであった。
【0037】
比較例
ここでは、バインダーとして化1で示される従来のポリフッ化ビニリデン(分子量 Mn=100,000〜200,000)を用いた。これをバインダーとして用いて実施例1と全く同じプロセスで電池を作成した。
【0038】
次に、上述実施例1、2及び比較例で得られた電池について、電池の負荷特性を測定した。測定条件は、以下に示すとおりである。
充電:定電圧(4.2V)定電流(1A)で5時間充電する。
放電:定電流で放電し、2.75Vに達したところで放電を終了する。
【0039】
電池の負荷特性の測定結果は図2に示すとおりである。ここで、0.2Aの定電流放電時の容量を100%とした。
図2からわかるように、結晶化度が0のバインダー(実施例1及び2)を用いた電池ほど大電流で動作が可能である。これは、バインダーに結晶化した部分が無いと分子間に適度なすきまが生じ、電解液の流通が良くなり、負荷特性が良くなるものと思われる。
【0040】
以上のことから、本例によれば、ポリフッ化ビニリデンに、スチレンモノマーのようなフェニル基というかさ高い基を共重合で導入したところ、結晶性を阻害することが出来て、電池特性としては、充放電の負荷を大きくすることができる。
また、この効果は、フェニル基に限らず、1,2−ブタジエン共重合物、酢酸ビニル共重合体のような、それぞれビニル基(−CH=CH2 )やアセトキシ基(−OCOCH3 )のような置換基でもかさ高いため、同様に得ることができる。
【0041】
なお、本発明は上述の実施例に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0042】
【発明の効果】
以上説明したように、本発明によれば、ポリフッ化ビニリデンに、スチレンモノマーのようなフェニル基というかさ高い基を共重合で導入することにより、共重合体の結晶化を阻害することができ、電池特性としては、充放電の負荷を大きくすることができる。
また、この効果は、フェニル基に限らず、1,2−ブタジエン共重合物、酢酸ビニル共重合体のような、それぞれビニル基(−CH=CH2 )やアセトキシ基(−OCOCH3 )のような置換基でもかさ高いため、同様に得ることができる。
【図面の簡単な説明】
【図1】本発明非水電解液二次電池の製造工程図である。
【図2】本発明非水電解液二次電池の負荷特性を示す説明図である。
【図3】ポリフッ化ビニリデンの結晶化状態を示すモデル図である。
【図4】ポリフッ化ビニリデンと電極剤の接着状態を示すモデル図である。[0001]
[Industrial application fields]
The present invention relates to a non-aqueous electrolyte secondary battery suitable for application to, for example, a lithium ion secondary battery.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, in manufacturing an electrode of a lithium ion secondary battery, a step of applying a suspension in which an electrode active material is dispersed in a binder solution to a current collector has been adopted.
[0003]
Here, polyvinylidene fluoride was often used as the binder. Since this polyvinylidene fluoride has crystallinity, it was difficult to distribute the molecules of the electrolytic solution, and the load of charge / discharge could not be increased.
Polyvinylidene fluoride generally has a crystallinity of about 50%. The temperature at which this crystal melts is in the vicinity of 140 ° C. For this reason, this crystal structure hinders the performance of a battery used at −20 ° C. to 0 ° C.
[0004]
On the other hand, the lack of flexibility of this molecular structure also brings about a difficulty in adhesion to the current collector, and the electrode mixture is partially or severely used repeatedly during repeated use of the battery. As a result, the load characteristics deteriorated and the capacity deteriorated.
[0005]
This invention is made | formed in view of such a subject, and it aims at obtaining the nonaqueous electrolyte secondary battery which can enlarge the load of charging / discharging using the binder which inhibits crystallinity. To do.
[0006]
[Means for Solving the Problems]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode in which a positive electrode mixture containing a positive electrode active material and a binder is applied on both sides of a positive electrode current collector, and a negative electrode mixture containing a negative electrode active material and a binder. the negative electrode was applied to the body both sides, in a non-aqueous electrolyte secondary battery are wound through a separator, the binder, Ri copolymer der with a monomer having a vinylidene fluoride monomer and a side chain, the side chain The monomer possessed is a battery containing one selected from styrene and vinyl acetate .
[0010]
As described above, the non-aqueous electrolyte secondary battery of the present invention uses a vinylidene fluoride as a component of a copolymer as a binder and a copolymer with a monomer having a bulky side chain.
[0011]
Further, a copolymer having a number average molecular weight of 50,000 to 200,000 is used. Here, if the number average molecular weight is smaller than 50,000, the mechanical strength such as tensile strength becomes too small and it cannot be used as a binder. On the other hand, when the number average molecular weight is larger than 200,000, even if dissolved in a solvent, the viscosity is high and application to the current collector becomes difficult.
[0012]
Moreover, the molar ratio of the monomer having a side chain to the total monomer is 0.001 to 0.05 (0.1 to 5 mol%). Here, when the molar ratio is less than 0.001, crystallization of the copolymer cannot be prevented. On the other hand, when the molar ratio is larger than 0.05, it is necessary to change the solvent when synthesizing the copolymer, and the existing production process cannot be used.
[0013]
As the monomer having a bulky side chain to be copolymerized with vinylidene fluoride, at least one selected from styrene, vinyl acetate, propylene and isoprene is used. These products are inexpensive and difficult to react with the electrolyte. In particular, a copolymer using vinyl acetate or isoprene is soft and has a large adhesive effect.
Other monomers having bulky side chains include vinyl pyridine, N-vinyl-2-pyrrolidone, N-vinyl carbazole butadiene, paramethoxy styrene, methyl methacrylate, methyl acrylate, butyl acrylate, heptyl acrylate, isopropenyl acetate. Of course, etc. can be used.
[0014]
[Action]
According to the non-aqueous electrolyte secondary battery of the present invention, in a non-aqueous electrolyte secondary battery using a battery electrode in which an electrode mixture containing electrode active material particles and a binder is laminated on a current collector, this binder is used. Is a copolymer of a vinylidene fluoride monomer and a monomer having a side chain, crystallization of the binder can be prevented, and the charge / discharge load can be increased.
[0015]
【Example】
Hereinafter, examples of the nonaqueous electrolyte secondary battery of the present invention will be described with reference to FIGS. 1 and 2.
[0016]
First, before describing the binder used in this example, the chemical structure of a conventionally used binder will be described.
Formula 1 is polyvinylidene fluoride (PVdF).
[0017]
[Chemical 1]
Figure 0003610589
[0018]
Since this polyvinylidene fluoride polymer has good molecular packing, it has the property of being easily crystallized as shown in FIG.
As shown in FIG. 3, in the solid state, there is partly a crystal part 1a, and the space between the crystal parts 1a is filled with an amorphous part 1b of the polymer.
[0019]
When this polyvinylidene fluoride is used as a binder for an electrode agent, the binder having a crystallinity of as high as 50% surrounds the electrode agent 2 (eg, positive electrode: LiCoO 2, negative electrode: Carbon) as shown in FIG. Will be included.
[0020]
In such a state, in a battery in which the transport of Li + in the electrolyte is important, the crystal portion cannot act as a Li + passage and acts as an inhibition, and exchange of Li + from the positive electrode agent to the negative electrode agent or in the opposite direction is prevented. Will be disturbed.
[0021]
In view of this situation, the inventors have made intensive efforts to prevent crystallization and improve the flow of the electrolyte, and as a result, copolymerize a vinyl compound having a bulky substituent in the polyvinylidene fluoride molecule. I found out that the purpose was achieved.
[0022]
The copolymer used in the examples was obtained by radical copolymerization with a certain amount of vinylidene fluoride and styrene or vinyl acetate added. The percent copolymerization was in the range of 0.1-5%.
[0023]
Example 1
In this example, the binder having the following composition was used.
That is, it is a copolymer of vinylidene fluoride monomer and styrene monomer. . The composition of the copolymer is as follows.
Vinylidene fluoride unit 98 mol%
Styrene unit 2 mol%
(Molecular weight Mn = 150,000)
The structural formula of this copolymer is represented by the following chemical formula 2.
[0024]
[Chemical 2]
Figure 0003610589
[0025]
The crystallinity of this copolymer (Chemical Formula 2) was found to be 0 as a result of analysis by X-ray diffraction.
[0026]
An electrode mix was prepared using this copolymer (Chemical Formula 2) as a binder to obtain a battery. Here, except for the composition of the mix, the process is completely the same as the conventional method.
The composition of the mix is as shown below.
[0027]
Positive electrode mix LiCoO2 68 parts by weight Conductive carbon 3 parts by weight Binder (Chemical formula 2) 3 parts by weight Solvent (N-methylpyrrolidone) 25 parts by weight
Negative electrode mixed furfuryl alcohol resin fired body 47 parts by weight Binder (Chemical formula 2) 5 parts by weight Solvent (N-methylpyrrolidone) 47 parts by weight
The outline of the process is as shown in FIG.
Here, the manufacturing process of the nonaqueous electrolyte secondary battery of this example will be described with reference to FIG.
[0030]
First, lithium-cobalt composite oxide (LiCoO2) as a positive electrode active material is synthesized as follows. Commercially available lithium carbonate powder (Li2 Co3) and cobalt carbonate (CoCO3) were calculated so that the ratio of lithium atom and cobalt atom was not 1: 1, and after mixing thoroughly using a vibration mill, It is fired at 900 ° C. for 5 hours using an oven, and then pulverized using an automatic mortar to obtain LiCoO 2 powder.
[0031]
Next, a positive electrode is produced as follows. Using the synthesized lithium-cobalt composite oxide (LiCoO2) as a positive electrode active material, 4 parts by weight of conductive carbon and 3 parts by weight of binder (chemical formula 2) as a conductive material are added to 68 parts by weight of the positive electrode active material. Add and mix to make a positive mix. Then, these positive electrode mixes are dispersed in 25 parts by weight of a solvent N-methyl-2-pyrrolidone to form a slurry.
[0032]
Next, these positive electrode mix slurries are uniformly applied to both sides of an aluminum foil as a positive electrode current collector and dried, and then compression molded by a roller press machine and further cut to obtain a strip-shaped positive electrode.
[0033]
On the other hand, the negative electrode is produced as follows. Using the pulverized furfuryl alcohol resin fired body as a negative electrode active material, 47 parts by weight of this furfuryl alcohol resin fired body and 5 parts by weight of binder (Chemical Formula 2) are added and mixed to obtain a negative electrode mix. Then, this negative electrode mix is dispersed in 47 parts by weight of a solvent N-methyl-2-pyrrolidone to form a slurry. Next, this negative electrode mix slurry is uniformly applied to both sides of a copper foil as a negative electrode current collector and dried. After drying, it is compression-molded with a roller press and further cut to obtain a strip-shaped negative electrode.
Next, after laminating a pair of separators made of a microporous polypropylene film having a thickness of 25 μm in the order of negative electrode, separator, positive electrode, and separator, this laminate is wound many times in a spiral shape on the core. Thus, a wound body is produced.
[0035]
And using the winding body and non-aqueous electrolyte as described above (obtained by mixing propylene carbonate in which 1 mol / L of lithium hexafluorophosphate was dissolved and 1,2-dimethoxyethane), A non-aqueous electrolyte secondary battery can be produced. In this case, the non-aqueous electrolyte secondary battery can have a cylindrical shape with a diameter of 20.5 mm and a height of 42 mm, for example, and can be used at a voltage of about 4.2 V when charged normally. The effective electrode area is 680 cm 2 for both the positive electrode and the negative electrode.
[0036]
Example 2
Here, a copolymer of vinylidene fluoride and vinyl acetate was used as a binder. This copolymer is obtained by radical copolymerization of a predetermined amount of vinylidene fluoride and vinyl acetate. The copolymer composition of this binder was 2 mol% of vinyl acetate component. Using this as a binder, a battery was produced in exactly the same process as in Example 1. The binder used had a crystallinity of zero.
[0037]
Comparative Example Here, a conventional polyvinylidene fluoride represented by Chemical Formula 1 (molecular weight Mn = 100,000 to 200,000) was used as a binder. Using this as a binder, a battery was produced in exactly the same process as in Example 1.
[0038]
Next, the battery load characteristics were measured for the batteries obtained in Examples 1 and 2 and the comparative example. The measurement conditions are as shown below.
Charge: Charge for 5 hours at a constant voltage (4.2 V) and a constant current (1 A).
Discharge: Discharge with a constant current, and when the voltage reaches 2.75 V, the discharge ends.
[0039]
The measurement results of the load characteristics of the battery are as shown in FIG. Here, the capacity at constant current discharge of 0.2 A was set to 100%.
As can be seen from FIG. 2, a battery using a binder having a crystallinity of 0 (Examples 1 and 2) can operate at a larger current. This is presumably that when there is no crystallized portion in the binder, an appropriate gap is generated between the molecules, the flow of the electrolyte is improved, and the load characteristics are improved.
[0040]
From the above, according to this example, when a bulky group such as a phenyl group such as a styrene monomer was introduced into polyvinylidene fluoride by copolymerization, the crystallinity could be inhibited, and the battery characteristics were as follows: The charge / discharge load can be increased.
In addition, this effect is not limited to phenyl groups, but is substituted with vinyl groups (—CH═CH 2) and acetoxy groups (—OCOCH 3) such as 1,2-butadiene copolymers and vinyl acetate copolymers, respectively. Since the base is bulky, it can be obtained similarly.
[0041]
The present invention is not limited to the above-described embodiments, and various other configurations can be adopted without departing from the gist of the present invention.
[0042]
【The invention's effect】
As described above, according to the present invention, by introducing a bulky group such as a phenyl group such as a styrene monomer into a polyvinylidene fluoride by copolymerization, crystallization of the copolymer can be inhibited, As battery characteristics, the charge / discharge load can be increased.
In addition, this effect is not limited to phenyl groups, but is substituted with vinyl groups (—CH═CH 2) and acetoxy groups (—OCOCH 3) such as 1,2-butadiene copolymers and vinyl acetate copolymers, respectively. Since the base is bulky, it can be obtained similarly.
[Brief description of the drawings]
FIG. 1 is a manufacturing process diagram of a nonaqueous electrolyte secondary battery of the present invention.
FIG. 2 is an explanatory diagram showing load characteristics of the nonaqueous electrolyte secondary battery of the present invention.
FIG. 3 is a model diagram showing a crystallization state of polyvinylidene fluoride.
FIG. 4 is a model diagram showing an adhesion state between polyvinylidene fluoride and an electrode agent.

Claims (1)

正極活物質とバインダーを含有する正極合剤を正極集電体両面に塗布した正極と、負極活物質とバインダーを含有する負極合剤を負極集電体両面に塗布した負極を、セパレータを介して巻回した非水電解液二次電池において、
上記バインダーは、フッ化ビニリデンモノマーと側鎖を持つモノマーとの共重合体であり、
上記側鎖をもつモノマーは、スチレンまたは酢酸ビニルの中から選ばれる一種を含むことを特徴とする非水電解液二次電池。
A positive electrode in which a positive electrode mixture containing a positive electrode active material and a binder is applied on both sides of the positive electrode current collector, and a negative electrode in which a negative electrode mixture containing a negative electrode active material and a binder is applied on both sides of the negative electrode current collector, In a wound non-aqueous electrolyte secondary battery,
The binder is a copolymer of a vinylidene fluoride monomer and a monomer having a side chain,
Monomers with the side chains, non-aqueous electrolyte secondary battery you comprising the one selected from among styrene or vinyl acetate.
JP04011994A 1994-03-10 1994-03-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3610589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04011994A JP3610589B2 (en) 1994-03-10 1994-03-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04011994A JP3610589B2 (en) 1994-03-10 1994-03-10 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004253358A Division JP2005005276A (en) 2004-08-31 2004-08-31 Nonaqueous electrolyte liquid secondary battery

Publications (2)

Publication Number Publication Date
JPH07249408A JPH07249408A (en) 1995-09-26
JP3610589B2 true JP3610589B2 (en) 2005-01-12

Family

ID=12571948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04011994A Expired - Fee Related JP3610589B2 (en) 1994-03-10 1994-03-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3610589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585896A (en) * 2017-09-29 2019-04-05 辉能科技股份有限公司 Flexible battery
JP7029922B2 (en) * 2017-10-10 2022-03-04 日産自動車株式会社 Manufacturing method of electrodes for non-aqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JPH07249408A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP7034409B2 (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
US8187752B2 (en) High energy lithium ion secondary batteries
JP5713198B2 (en) Method for manufacturing lithium secondary battery
CN106848160A (en) Porous layer
KR102468252B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
CN102318108A (en) Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JP7390786B2 (en) Lithium battery electrolyte additive, organic electrolyte containing the same, and lithium battery
TW200926479A (en) Electrolytic solution and lithium battery employing the same
JP7045598B2 (en) Positive electrode for lithium secondary battery, its manufacturing method and lithium secondary battery including it
JP7361116B2 (en) Compositions for electrochemical devices, positive electrode mixtures, positive electrode structures, and secondary batteries
JP2022545913A (en) SECONDARY BATTERY, DEVICE CONTAINING SECONDARY BATTERY, METHOD FOR MANUFACTURING SECONDARY BATTERY, AND ADHESIVE COMPOSITION
JP7282925B2 (en) Positive electrode for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2020537299A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it, and lithium secondary battery
JP7329489B2 (en) Positive electrode active material and lithium secondary battery containing the same
JP2022530000A (en) A method for producing a positive electrode active material for a lithium secondary battery and a positive electrode active material produced by the above-mentioned manufacturing method.
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
CN113871699A (en) Solid electrolyte and lithium ion battery comprising same
JP2020525988A (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material produced thereby, positive electrode for lithium secondary battery including the same, and lithium secondary battery
JP7313761B2 (en) Method for manufacturing positive electrode for secondary battery, positive electrode manufactured in this way, and lithium secondary battery including the same
JP4581170B2 (en) Non-aqueous electrolyte battery binder, battery electrode mixture using the same, and non-aqueous electrolyte battery
US11196043B2 (en) Silicon-based particle-polymer composite and negative electrode active material comprising the same
JP2005005276A (en) Nonaqueous electrolyte liquid secondary battery
JP3610589B2 (en) Non-aqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees